XeOS/src/memory.rs

107 lines
4.1 KiB
Rust

use bootloader::bootinfo::{MemoryMap, MemoryRegionType};
use x86_64::{
structures::paging::{
FrameAllocator, Mapper, OffsetPageTable, Page, PageTable, PhysFrame, Size4KiB,
UnusedPhysFrame,
},
PhysAddr, VirtAddr,
};
/// Initialize a new OffsetPageTable.
///
/// This function is unsafe because the caller must guarantee that the
/// complete physical memory is mapped to virtual memory at the passed
/// `physical_memory_offset`. Also, this function must be only called once
/// to avoid aliasing `&mut` references (which is undefined behavior).
pub unsafe fn init(physical_memory_offset: VirtAddr) -> OffsetPageTable<'static> {
let level_4_table = active_level_4_table(physical_memory_offset);
OffsetPageTable::new(level_4_table, physical_memory_offset)
}
/// Returns a mutable reference to the active level 4 table.
///
/// This function is unsafe because the caller must guarantee that the
/// complete physical memory is mapped to virtual memory at the passed
/// `physical_memory_offset`. Also, this function must be only called once
/// to avoid aliasing `&mut` references (which is undefined behavior).
unsafe fn active_level_4_table(physical_memory_offset: VirtAddr) -> &'static mut PageTable {
use x86_64::registers::control::Cr3;
let (level_4_table_frame, _) = Cr3::read();
let phys = level_4_table_frame.start_address();
let virt = physical_memory_offset + phys.as_u64();
let page_table_ptr: *mut PageTable = virt.as_mut_ptr();
&mut *page_table_ptr // unsafe
}
/// Creates an example mapping for the given page to frame `0xb8000`.
pub fn create_example_mapping(
page: Page,
mapper: &mut OffsetPageTable,
frame_allocator: &mut impl FrameAllocator<Size4KiB>,
) {
use x86_64::structures::paging::PageTableFlags as Flags;
let frame = PhysFrame::containing_address(PhysAddr::new(0xb8000));
// FIXME: ONLY FOR TEMPORARY TESTING
let unused_frame = unsafe { UnusedPhysFrame::new(frame) };
let flags = Flags::PRESENT | Flags::WRITABLE;
let map_to_result = mapper.map_to(page, unused_frame, flags, frame_allocator);
map_to_result.expect("map_to failed").flush();
}
/// A FrameAllocator that always returns `None`.
pub struct EmptyFrameAllocator;
unsafe impl FrameAllocator<Size4KiB> for EmptyFrameAllocator {
fn allocate_frame(&mut self) -> Option<UnusedPhysFrame> {
None
}
}
/// A FrameAllocator that returns usable frames from the bootloader's memory map.
pub struct BootInfoFrameAllocator {
memory_map: &'static MemoryMap,
next: usize,
}
impl BootInfoFrameAllocator {
/// Create a FrameAllocator from the passed memory map.
///
/// This function is unsafe because the caller must guarantee that the passed
/// memory map is valid. The main requirement is that all frames that are marked
/// as `USABLE` in it are really unused.
pub unsafe fn init(memory_map: &'static MemoryMap) -> Self {
BootInfoFrameAllocator {
memory_map,
next: 0,
}
}
/// Returns an iterator over the usable frames specified in the memory map.
fn usable_frames(&self) -> impl Iterator<Item = UnusedPhysFrame> {
// get usable regions from memory map
let regions = self.memory_map.iter();
let usable_regions = regions.filter(|r| r.region_type == MemoryRegionType::Usable);
// map each region to its address range
let addr_ranges = usable_regions.map(|r| r.range.start_addr()..r.range.end_addr());
// transform to an iterator of frame start addresses
let frame_addresses = addr_ranges.flat_map(|r| r.step_by(4096));
// create `PhysFrame` types from the start addresses
let frames = frame_addresses.map(|addr| PhysFrame::containing_address(PhysAddr::new(addr)));
// we know that the frames are really unused
frames.map(|f| unsafe { UnusedPhysFrame::new(f) })
}
}
unsafe impl FrameAllocator<Size4KiB> for BootInfoFrameAllocator {
fn allocate_frame(&mut self) -> Option<UnusedPhysFrame> {
let frame = self.usable_frames().nth(self.next);
self.next += 1;
frame
}
}