elemental-ircd/libratbox/src/commio.c

2108 lines
44 KiB
C

/*
* ircd-ratbox: A slightly useful ircd.
* commio.c: Network/file related functions
*
* Copyright (C) 1990 Jarkko Oikarinen and University of Oulu, Co Center
* Copyright (C) 1996-2002 Hybrid Development Team
* Copyright (C) 2002-2005 ircd-ratbox development team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301
* USA
*
* $Id: commio.c 25038 2008-01-23 16:03:08Z androsyn $
*/
#include <libratbox_config.h>
#include <ratbox_lib.h>
#include <commio-int.h>
#include <commio-ssl.h>
#include <event-int.h>
#ifdef HAVE_SYS_UIO_H
#include <sys/uio.h>
#endif
#define HAVE_SSL 1
#ifndef MSG_NOSIGNAL
#define MSG_NOSIGNAL 0
#endif
struct timeout_data
{
rb_fde_t *F;
rb_dlink_node node;
time_t timeout;
PF *timeout_handler;
void *timeout_data;
};
rb_dlink_list *rb_fd_table;
static rb_bh *fd_heap;
static rb_dlink_list timeout_list;
static rb_dlink_list closed_list;
static struct ev_entry *rb_timeout_ev;
static const char *rb_err_str[] = { "Comm OK", "Error during bind()",
"Error during DNS lookup", "connect timeout",
"Error during connect()",
"Comm Error"
};
/* Highest FD and number of open FDs .. */
static int number_fd = 0;
static int rb_maxconnections = 0;
static PF rb_connect_timeout;
static PF rb_connect_tryconnect;
#ifdef RB_IPV6
static void mangle_mapped_sockaddr(struct sockaddr *in);
#endif
#ifndef HAVE_SOCKETPAIR
static int rb_inet_socketpair(int d, int type, int protocol, int sv[2]);
#endif
static inline rb_fde_t *
add_fd(int fd)
{
rb_fde_t *F = rb_find_fd(fd);
rb_dlink_list *list;
/* look up to see if we have it already */
if(F != NULL)
return F;
F = rb_bh_alloc(fd_heap);
F->fd = fd;
list = &rb_fd_table[rb_hash_fd(fd)];
rb_dlinkAdd(F, &F->node, list);
return(F);
}
static inline void
remove_fd(rb_fde_t *F)
{
rb_dlink_list *list;
if(F == NULL || !IsFDOpen(F))
return;
list = &rb_fd_table[rb_hash_fd(F->fd)];
rb_dlinkMoveNode(&F->node, list, &closed_list);
}
static void
free_fds(void)
{
rb_fde_t *F;
rb_dlink_node *ptr, *next;
RB_DLINK_FOREACH_SAFE(ptr, next, closed_list.head)
{
F = ptr->data;
rb_dlinkDelete(ptr, &closed_list);
rb_bh_free(fd_heap, F);
}
}
/* 32bit solaris is kinda slow and stdio only supports fds < 256
* so we got to do this crap below.
* (BTW Fuck you Sun, I hate your guts and I hope you go bankrupt soon)
*/
#if defined (__SVR4) && defined (__sun)
static void
rb_fd_hack(int *fd)
{
int newfd;
if(*fd > 256 || *fd < 0)
return;
if((newfd = fcntl(*fd, F_DUPFD, 256)) != -1)
{
close(*fd);
*fd = newfd;
}
return;
}
#else
#define rb_fd_hack(fd)
#endif
/* close_all_connections() can be used *before* the system come up! */
static void
rb_close_all(void)
{
int i;
#ifndef NDEBUG
int fd;
#endif
/* XXX someone tell me why we care about 4 fd's ? */
/* XXX btw, fd 3 is used for profiler ! */
for (i = 4; i < rb_maxconnections; ++i)
{
close(i);
}
/* XXX should his hack be done in all cases? */
#ifndef NDEBUG
/* fugly hack to reserve fd == 2 */
(void) close(2);
fd = open("stderr.log", O_WRONLY | O_CREAT | O_APPEND, 0644);
if(fd >= 0)
{
dup2(fd, 2);
close(fd);
}
#endif
}
/*
* get_sockerr - get the error value from the socket or the current errno
*
* Get the *real* error from the socket (well try to anyway..).
* This may only work when SO_DEBUG is enabled but its worth the
* gamble anyway.
*/
int
rb_get_sockerr(rb_fde_t *F)
{
int errtmp;
int err = 0;
rb_socklen_t len = sizeof(err);
if(!(F->type & RB_FD_SOCKET))
return errno;
rb_get_errno();
errtmp = errno;
#ifdef SO_ERROR
if(F != NULL && !getsockopt(rb_get_fd(F), SOL_SOCKET, SO_ERROR, (char *) &err, (rb_socklen_t *) & len))
{
if(err)
errtmp = err;
}
errno = errtmp;
#endif
return errtmp;
}
/*
* rb_getmaxconnect - return the max number of connections allowed
*/
int
rb_getmaxconnect(void)
{
return(rb_maxconnections);
}
/*
* set_sock_buffers - set send and receive buffers for socket
*
* inputs - fd file descriptor
* - size to set
* output - returns true (1) if successful, false (0) otherwise
* side effects -
*/
int
rb_set_buffers(rb_fde_t *F, int size)
{
if(F == NULL)
return 0;
if(setsockopt
(F->fd, SOL_SOCKET, SO_RCVBUF, (char *) &size, sizeof(size))
|| setsockopt(F->fd, SOL_SOCKET, SO_SNDBUF, (char *) &size, sizeof(size)))
return 0;
return 1;
}
/*
* set_non_blocking - Set the client connection into non-blocking mode.
*
* inputs - fd to set into non blocking mode
* output - 1 if successful 0 if not
* side effects - use POSIX compliant non blocking and
* be done with it.
*/
int
rb_set_nb(rb_fde_t *F)
{
int nonb = 0;
int res;
int fd;
if(F == NULL)
return 0;
fd = F->fd;
if((res = rb_setup_fd(F)))
return res;
#ifdef O_NONBLOCK
nonb |= O_NONBLOCK;
res = fcntl(fd, F_GETFL, 0);
if(-1 == res || fcntl(fd, F_SETFL, res | nonb) == -1)
return 0;
#else
nonb = 1;
res = 0;
if(ioctl(fd, FIONBIO, (char *)&nonb) == -1)
return 0;
#endif
return 1;
}
/*
* rb_settimeout() - set the socket timeout
*
* Set the timeout for the fd
*/
void
rb_settimeout(rb_fde_t *F, time_t timeout, PF * callback, void *cbdata)
{
struct timeout_data *td;
if(F == NULL)
return;
lrb_assert(IsFDOpen(F));
td = F->timeout;
if(callback == NULL) /* user wants to remove */
{
if(td == NULL)
return;
rb_dlinkDelete(&td->node, &timeout_list);
rb_free(td);
F->timeout = NULL;
if(rb_dlink_list_length(&timeout_list) == 0)
{
rb_event_delete(rb_timeout_ev);
rb_timeout_ev = NULL;
}
return;
}
if(F->timeout == NULL)
td = F->timeout = rb_malloc(sizeof(struct timeout_data));
td->F = F;
td->timeout = rb_current_time() + timeout;
td->timeout_handler = callback;
td->timeout_data = cbdata;
rb_dlinkAdd(td, &td->node, &timeout_list);
if(rb_timeout_ev == NULL)
{
rb_timeout_ev = rb_event_add("rb_checktimeouts", rb_checktimeouts, NULL, 5);
}
}
/*
* rb_checktimeouts() - check the socket timeouts
*
* All this routine does is call the given callback/cbdata, without closing
* down the file descriptor. When close handlers have been implemented,
* this will happen.
*/
void
rb_checktimeouts(void *notused)
{
rb_dlink_node *ptr, *next;
struct timeout_data *td;
rb_fde_t *F;
PF *hdl;
void *data;
RB_DLINK_FOREACH_SAFE(ptr, next, timeout_list.head)
{
td = ptr->data;
F = td->F;
if(F == NULL || !IsFDOpen(F))
continue;
if(td->timeout < rb_current_time())
{
hdl = td->timeout_handler;
data = td->timeout_data;
rb_dlinkDelete(&td->node, &timeout_list);
F->timeout = NULL;
rb_free(td);
hdl(F, data);
}
}
}
static void
rb_accept_tryaccept(rb_fde_t *F, void *data)
{
struct rb_sockaddr_storage st;
rb_fde_t *new_F;
rb_socklen_t addrlen = sizeof(st);
int new_fd;
while(1)
{
new_fd = accept(F->fd, (struct sockaddr *)&st, &addrlen);
rb_get_errno();
if(new_fd < 0)
{
rb_setselect(F, RB_SELECT_ACCEPT, rb_accept_tryaccept, NULL);
return;
}
rb_fd_hack(&new_fd);
new_F = rb_open(new_fd, RB_FD_SOCKET, "Incoming Connection");
if(unlikely(!rb_set_nb(new_F)))
{
rb_get_errno();
rb_lib_log("rb_accept: Couldn't set FD %d non blocking!", new_F->fd);
rb_close(new_F);
}
#ifdef RB_IPV6
mangle_mapped_sockaddr((struct sockaddr *)&st);
#endif
if(F->accept->precb != NULL)
{
if(!F->accept->precb(new_F, (struct sockaddr *)&st, addrlen, F->accept->data)) /* pre-callback decided to drop it */
continue;
}
#ifdef HAVE_SSL
if(F->type & RB_FD_SSL)
{
rb_ssl_accept_setup(F, new_fd, (struct sockaddr *)&st, addrlen);
}
else
#endif /* HAVE_SSL */
{
F->accept->callback(new_F, RB_OK, (struct sockaddr *)&st, addrlen, F->accept->data);
}
}
}
/* try to accept a TCP connection */
void
rb_accept_tcp(rb_fde_t *F, ACPRE *precb, ACCB *callback, void *data)
{
if(F == NULL)
return;
lrb_assert(callback);
F->accept = rb_malloc(sizeof(struct acceptdata));
F->accept->callback = callback;
F->accept->data = data;
F->accept->precb = precb;
rb_accept_tryaccept(F, NULL);
}
/*
* void rb_connect_tcp(int fd, struct sockaddr *dest,
* struct sockaddr *clocal, int socklen,
* CNCB *callback, void *data, int timeout)
* Input: An fd to connect with, a host and port to connect to,
* a local sockaddr to connect from + length(or NULL to use the
* default), a callback, the data to pass into the callback, the
* address family.
* Output: None.
* Side-effects: A non-blocking connection to the host is started, and
* if necessary, set up for selection. The callback given
* may be called now, or it may be called later.
*/
void
rb_connect_tcp(rb_fde_t *F, struct sockaddr *dest,
struct sockaddr *clocal, int socklen, CNCB * callback, void *data, int timeout)
{
if(F == NULL)
return;
lrb_assert(callback);
F->connect = rb_malloc(sizeof(struct conndata));
F->connect->callback = callback;
F->connect->data = data;
memcpy(&F->connect->hostaddr, dest, sizeof(F->connect->hostaddr));
/* Note that we're using a passed sockaddr here. This is because
* generally you'll be bind()ing to a sockaddr grabbed from
* getsockname(), so this makes things easier.
* XXX If NULL is passed as local, we should later on bind() to the
* virtual host IP, for completeness.
* -- adrian
*/
if((clocal != NULL) && (bind(F->fd, clocal, socklen) < 0))
{
/* Failure, call the callback with RB_ERR_BIND */
rb_connect_callback(F, RB_ERR_BIND);
/* ... and quit */
return;
}
/* We have a valid IP, so we just call tryconnect */
/* Make sure we actually set the timeout here .. */
rb_settimeout(F, timeout, rb_connect_timeout, NULL);
rb_connect_tryconnect(F, NULL);
}
/*
* rb_connect_callback() - call the callback, and continue with life
*/
void
rb_connect_callback(rb_fde_t *F, int status)
{
CNCB *hdl;
void *data;
/* This check is gross..but probably necessary */
if(F == NULL || F->connect == NULL || F->connect->callback == NULL)
return;
/* Clear the connect flag + handler */
hdl = F->connect->callback;
data = F->connect->data;
F->connect->callback = NULL;
/* Clear the timeout handler */
rb_settimeout(F, 0, NULL, NULL);
/* Call the handler */
hdl(F, status, data);
}
/*
* rb_connect_timeout() - this gets called when the socket connection
* times out. This *only* can be called once connect() is initially
* called ..
*/
static void
rb_connect_timeout(rb_fde_t *F, void *notused)
{
/* error! */
rb_connect_callback(F, RB_ERR_TIMEOUT);
}
/* static void rb_connect_tryconnect(int fd, void *notused)
* Input: The fd, the handler data(unused).
* Output: None.
* Side-effects: Try and connect with pending connect data for the FD. If
* we succeed or get a fatal error, call the callback.
* Otherwise, it is still blocking or something, so register
* to select for a write event on this FD.
*/
static void
rb_connect_tryconnect(rb_fde_t *F, void *notused)
{
int retval;
if(F == NULL || F->connect == NULL || F->connect->callback == NULL)
return;
/* Try the connect() */
retval = connect(F->fd,
(struct sockaddr *) &F->connect->hostaddr, GET_SS_LEN(&F->connect->hostaddr));
/* Error? */
if(retval < 0)
{
/*
* If we get EISCONN, then we've already connect()ed the socket,
* which is a good thing.
* -- adrian
*/
rb_get_errno();
if(errno == EISCONN)
rb_connect_callback(F, RB_OK);
else if(rb_ignore_errno(errno))
/* Ignore error? Reschedule */
rb_setselect(F, RB_SELECT_CONNECT,
rb_connect_tryconnect, NULL);
else
/* Error? Fail with RB_ERR_CONNECT */
rb_connect_callback(F, RB_ERR_CONNECT);
return;
}
/* If we get here, we've suceeded, so call with RB_OK */
rb_connect_callback(F, RB_OK);
}
int
rb_connect_sockaddr(rb_fde_t *F, struct sockaddr *addr, int len)
{
if(F == NULL)
return 0;
memcpy(addr, &F->connect->hostaddr, len);
return 1;
}
/*
* rb_error_str() - return an error string for the given error condition
*/
const char *
rb_errstr(int error)
{
if(error < 0 || error >= RB_ERR_MAX)
return "Invalid error number!";
return rb_err_str[error];
}
int
rb_socketpair(int family, int sock_type, int proto, rb_fde_t **F1, rb_fde_t **F2, const char *note)
{
int nfd[2];
if(number_fd >= rb_maxconnections)
{
errno = ENFILE;
return -1;
}
#ifndef WIN32
if(socketpair(family, sock_type, proto, nfd))
#else
if(rb_inet_socketpair(AF_INET, SOCK_STREAM, proto, nfd))
#endif
return -1;
rb_fd_hack(&nfd[0]);
rb_fd_hack(&nfd[1]);
*F1 = rb_open(nfd[0], RB_FD_SOCKET, note);
*F2 = rb_open(nfd[1], RB_FD_SOCKET, note);
if(*F1 == NULL)
{
if(*F2 != NULL)
rb_close(*F2);
return -1;
}
if(*F2 == NULL)
{
rb_close(*F1);
return -1;
}
/* Set the socket non-blocking, and other wonderful bits */
if(unlikely(!rb_set_nb(*F1)))
{
rb_lib_log("rb_open: Couldn't set FD %d non blocking: %s", nfd[0], strerror(errno));
rb_close(*F1);
rb_close(*F2);
return -1;
}
if(unlikely(!rb_set_nb(*F2)))
{
rb_lib_log("rb_open: Couldn't set FD %d non blocking: %s", nfd[1], strerror(errno));
rb_close(*F1);
rb_close(*F2);
return -1;
}
return 0;
}
int
rb_pipe(rb_fde_t **F1, rb_fde_t **F2, const char *desc)
{
#ifndef WIN32
int fd[2];
if(number_fd >= rb_maxconnections)
{
errno = ENFILE;
return -1;
}
if(pipe(fd) == -1)
return -1;
rb_fd_hack(&fd[0]);
rb_fd_hack(&fd[1]);
*F1 = rb_open(fd[0], RB_FD_PIPE, desc);
*F2 = rb_open(fd[1], RB_FD_PIPE, desc);
if(unlikely(!rb_set_nb(*F1)))
{
rb_lib_log("rb_open: Couldn't set FD %d non blocking: %s", fd[0], strerror(errno));
rb_close(*F1);
rb_close(*F2);
return -1;
}
if(unlikely(!rb_set_nb(*F2)))
{
rb_lib_log("rb_open: Couldn't set FD %d non blocking: %s", fd[1], strerror(errno));
rb_close(*F1);
rb_close(*F2);
return -1;
}
return 0;
#else
/* Its not a pipe..but its selectable. I'll take dirty hacks
* for $500 Alex.
*/
return rb_socketpair(AF_INET, SOCK_STREAM, 0, F1, F2, desc);
#endif
}
/*
* rb_socket() - open a socket
*
* This is a highly highly cut down version of squid's rb_open() which
* for the most part emulates socket(), *EXCEPT* it fails if we're about
* to run out of file descriptors.
*/
rb_fde_t *
rb_socket(int family, int sock_type, int proto, const char *note)
{
rb_fde_t *F;
int fd;
/* First, make sure we aren't going to run out of file descriptors */
if(unlikely(number_fd >= rb_maxconnections))
{
errno = ENFILE;
return NULL;
}
/*
* Next, we try to open the socket. We *should* drop the reserved FD
* limit if/when we get an error, but we can deal with that later.
* XXX !!! -- adrian
*/
fd = socket(family, sock_type, proto);
rb_fd_hack(&fd);
if(unlikely(fd < 0))
return NULL; /* errno will be passed through, yay.. */
#if defined(RB_IPV6) && defined(IPV6_V6ONLY)
/*
* Make sure we can take both IPv4 and IPv6 connections
* on an AF_INET6 socket
*/
if(family == AF_INET6)
{
int off = 1;
if(setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &off, sizeof(off)) == -1)
{
rb_lib_log("rb_socket: Could not set IPV6_V6ONLY option to 1 on FD %d: %s",
fd, strerror(errno));
close(fd);
return NULL;
}
}
#endif
F = rb_open(fd, RB_FD_SOCKET, note);
if(F == NULL)
return NULL;
/* Set the socket non-blocking, and other wonderful bits */
if(unlikely(!rb_set_nb(F)))
{
rb_lib_log("rb_open: Couldn't set FD %d non blocking: %s", fd, strerror(errno));
rb_close(F);
return NULL;
}
return F;
}
/*
* If a sockaddr_storage is AF_INET6 but is a mapped IPv4
* socket manged the sockaddr.
*/
#ifdef RB_IPV6
static void
mangle_mapped_sockaddr(struct sockaddr *in)
{
struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) in;
if(in->sa_family == AF_INET)
return;
if(in->sa_family == AF_INET6 && IN6_IS_ADDR_V4MAPPED(&in6->sin6_addr))
{
struct sockaddr_in in4;
memset(&in4, 0, sizeof(struct sockaddr_in));
in4.sin_family = AF_INET;
in4.sin_port = in6->sin6_port;
in4.sin_addr.s_addr = ((rb_uint32_t *) & in6->sin6_addr)[3];
memcpy(in, &in4, sizeof(struct sockaddr_in));
}
return;
}
#endif
/*
* rb_listen() - listen on a port
*/
int
rb_listen(rb_fde_t *F, int backlog)
{
F->type = RB_FD_SOCKET|RB_FD_LISTEN;
/* Currently just a simple wrapper for the sake of being complete */
return listen(F->fd, backlog);
}
void
rb_fdlist_init(int closeall, int maxfds, size_t heapsize)
{
static int initialized = 0;
#ifdef WIN32
WSADATA wsaData;
int err;
int vers = MAKEWORD(2, 0);
err = WSAStartup(vers, &wsaData);
if(err != 0)
{
rb_lib_die("WSAStartup failed");
}
#endif
if(!initialized)
{
rb_maxconnections = maxfds;
if(closeall)
rb_close_all();
/* Since we're doing this once .. */
initialized = 1;
}
fd_heap = rb_bh_create(sizeof(rb_fde_t), heapsize, "librb_fd_heap");
}
/* Called to open a given filedescriptor */
rb_fde_t *
rb_open(int fd, rb_uint8_t type, const char *desc)
{
rb_fde_t *F = add_fd(fd);
lrb_assert(fd >= 0);
if(unlikely(IsFDOpen(F)))
{
return NULL;
}
lrb_assert(!IsFDOpen(F));
F->fd = fd;
F->type = type;
SetFDOpen(F);
if(desc != NULL)
F->desc = rb_strndup(desc, FD_DESC_SZ);
number_fd++;
return F;
}
/* Called to close a given filedescriptor */
void
rb_close(rb_fde_t *F)
{
int type, fd;
if(F == NULL)
return;
fd = F->fd;
type = F->type;
lrb_assert(IsFDOpen(F));
lrb_assert(!(type & RB_FD_FILE));
if(unlikely(type & RB_FD_FILE))
{
lrb_assert(F->read_handler == NULL);
lrb_assert(F->write_handler == NULL);
}
rb_setselect(F, RB_SELECT_WRITE | RB_SELECT_READ, NULL, NULL);
rb_settimeout(F, 0, NULL, NULL);
rb_free(F->accept);
rb_free(F->connect);
rb_free(F->desc);
#ifdef HAVE_SSL
if(type & RB_FD_SSL)
{
rb_ssl_shutdown(F);
}
#endif /* HAVE_SSL */
if(IsFDOpen(F))
{
remove_fd(F);
ClearFDOpen(F);
}
number_fd--;
#ifdef WIN32
if(type & (RB_FD_SOCKET|RB_FD_PIPE))
{
closesocket(fd);
return;
} else
#endif
close(fd);
}
/*
* rb_dump_fd() - dump the list of active filedescriptors
*/
void
rb_dump_fd(DUMPCB * cb, void *data)
{
static const char *empty = "";
rb_dlink_node *ptr;
rb_dlink_list *bucket;
rb_fde_t *F;
unsigned int i;
for(i = 0; i < RB_FD_HASH_SIZE; i++)
{
bucket = &rb_fd_table[i];
if(rb_dlink_list_length(bucket) <= 0)
continue;
RB_DLINK_FOREACH(ptr, bucket->head)
{
F = ptr->data;
if(F == NULL || !IsFDOpen(F))
continue;
cb(F->fd, F->desc ? F->desc : empty, data);
}
}
}
/*
* rb_note() - set the fd note
*
* Note: must be careful not to overflow rb_fd_table[fd].desc when
* calling.
*/
void
rb_note(rb_fde_t *F, const char *string)
{
if(F == NULL)
return;
rb_free(F->desc);
F->desc = rb_strndup(string, FD_DESC_SZ);
}
void
rb_set_type(rb_fde_t *F, rb_uint8_t type)
{
/* if the caller is calling this, lets assume they have a clue */
F->type = type;
return;
}
rb_uint8_t
rb_get_type(rb_fde_t *F)
{
return F->type;
}
int
rb_fd_ssl(rb_fde_t *F)
{
if(F == NULL)
return 0;
if(F->type & RB_FD_SSL)
return 1;
return 0;
}
int
rb_get_fd(rb_fde_t *F)
{
if(F == NULL)
return -1;
return(F->fd);
}
rb_fde_t *
rb_get_fde(int fd)
{
return rb_find_fd(fd);
}
ssize_t
rb_read(rb_fde_t *F, void *buf, int count)
{
int ret;
if(F == NULL)
return 0;
/* This needs to be *before* RB_FD_SOCKET otherwise you'll process
* an SSL socket as a regular socket
*/
#ifdef HAVE_SSL
if(F->type & RB_FD_SSL)
{
return rb_ssl_read(F, buf, count);
}
#endif
if(F->type & RB_FD_SOCKET)
{
ret = recv(F->fd, buf, count, 0);
if(ret < 0)
{
rb_get_errno();
}
return ret;
}
/* default case */
return read(F->fd, buf, count);
}
ssize_t
rb_write(rb_fde_t *F, const void *buf, int count)
{
int ret;
if(F == NULL)
return 0;
#ifdef HAVE_SSL
if(F->type & RB_FD_SSL)
{
return rb_ssl_write(F, buf, count);
}
#endif
if(F->type & RB_FD_SOCKET)
{
ret = send(F->fd, buf, count, MSG_NOSIGNAL);
if(ret < 0) {
rb_get_errno();
}
return ret;
}
return write(F->fd, buf, count);
}
#if defined(HAVE_SSL) || defined(WIN32) || !defined(HAVE_WRITEV)
static ssize_t
rb_fake_writev(rb_fde_t *F, const struct rb_iovec *vp, size_t vpcount)
{
size_t count = 0;
while (vpcount-- > 0)
{
size_t written = rb_write(F, vp->iov_base, vp->iov_len);
if (written <= 0)
{
if(count > 0)
return count;
else
return written;
}
count += written;
vp++;
}
return (count);
}
#endif
#if defined(WIN32) || !defined(HAVE_WRITEV)
ssize_t
rb_writev(rb_fde_t *F, struct rb_iovec *vecount, int count)
{
return rb_fake_writev(F, vecount, count);
}
#else
ssize_t
rb_writev(rb_fde_t *F, struct rb_iovec *vector, int count)
{
if(F == NULL) {
errno = EBADF;
return -1;
}
#ifdef HAVE_SSL
if(F->type & RB_FD_SSL)
{
return rb_fake_writev(F, vector, count);
}
#endif /* HAVE_SSL */
#ifdef HAVE_SENDMSG
if(F->type & RB_FD_SOCKET)
{
struct msghdr msg;
memset(&msg, 0, sizeof(msg));
msg.msg_iov = (struct iovec *)vector;
msg.msg_iovlen = count;
return sendmsg(F->fd, &msg, MSG_NOSIGNAL);
}
#endif /* HAVE_SENDMSG */
return writev(F->fd, (struct iovec *)vector, count);
}
#endif
/*
* From: Thomas Helvey <tomh@inxpress.net>
*/
static const char *IpQuadTab[] = {
"0", "1", "2", "3", "4", "5", "6", "7", "8", "9",
"10", "11", "12", "13", "14", "15", "16", "17", "18", "19",
"20", "21", "22", "23", "24", "25", "26", "27", "28", "29",
"30", "31", "32", "33", "34", "35", "36", "37", "38", "39",
"40", "41", "42", "43", "44", "45", "46", "47", "48", "49",
"50", "51", "52", "53", "54", "55", "56", "57", "58", "59",
"60", "61", "62", "63", "64", "65", "66", "67", "68", "69",
"70", "71", "72", "73", "74", "75", "76", "77", "78", "79",
"80", "81", "82", "83", "84", "85", "86", "87", "88", "89",
"90", "91", "92", "93", "94", "95", "96", "97", "98", "99",
"100", "101", "102", "103", "104", "105", "106", "107", "108", "109",
"110", "111", "112", "113", "114", "115", "116", "117", "118", "119",
"120", "121", "122", "123", "124", "125", "126", "127", "128", "129",
"130", "131", "132", "133", "134", "135", "136", "137", "138", "139",
"140", "141", "142", "143", "144", "145", "146", "147", "148", "149",
"150", "151", "152", "153", "154", "155", "156", "157", "158", "159",
"160", "161", "162", "163", "164", "165", "166", "167", "168", "169",
"170", "171", "172", "173", "174", "175", "176", "177", "178", "179",
"180", "181", "182", "183", "184", "185", "186", "187", "188", "189",
"190", "191", "192", "193", "194", "195", "196", "197", "198", "199",
"200", "201", "202", "203", "204", "205", "206", "207", "208", "209",
"210", "211", "212", "213", "214", "215", "216", "217", "218", "219",
"220", "221", "222", "223", "224", "225", "226", "227", "228", "229",
"230", "231", "232", "233", "234", "235", "236", "237", "238", "239",
"240", "241", "242", "243", "244", "245", "246", "247", "248", "249",
"250", "251", "252", "253", "254", "255"
};
/*
* inetntoa - in_addr to string
* changed name to remove collision possibility and
* so behaviour is guaranteed to take a pointer arg.
* -avalon 23/11/92
* inet_ntoa -- returned the dotted notation of a given
* internet number
* argv 11/90).
* inet_ntoa -- its broken on some Ultrix/Dynix too. -avalon
*/
static const char *
inetntoa(const char *in)
{
static char buf[16];
char *bufptr = buf;
const unsigned char *a = (const unsigned char *) in;
const char *n;
n = IpQuadTab[*a++];
while (*n)
*bufptr++ = *n++;
*bufptr++ = '.';
n = IpQuadTab[*a++];
while (*n)
*bufptr++ = *n++;
*bufptr++ = '.';
n = IpQuadTab[*a++];
while (*n)
*bufptr++ = *n++;
*bufptr++ = '.';
n = IpQuadTab[*a];
while (*n)
*bufptr++ = *n++;
*bufptr = '\0';
return buf;
}
/*
* Copyright (c) 1996-1999 by Internet Software Consortium.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE CONSORTIUM DISCLAIMS
* ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE
* CONSORTIUM BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
* SOFTWARE.
*/
#define SPRINTF(x) ((size_t)rb_sprintf x)
/*
* WARNING: Don't even consider trying to compile this on a system where
* sizeof(int) < 4. sizeof(int) > 4 is fine; all the world's not a VAX.
*/
static const char *inet_ntop4(const unsigned char * src, char *dst, unsigned int size);
#ifdef RB_IPV6
static const char *inet_ntop6(const unsigned char * src, char *dst, unsigned int size);
#endif
/* const char *
* inet_ntop4(src, dst, size)
* format an IPv4 address
* return:
* `dst' (as a const)
* notes:
* (1) uses no statics
* (2) takes a unsigned char* not an in_addr as input
* author:
* Paul Vixie, 1996.
*/
static const char *
inet_ntop4(const unsigned char *src, char *dst, unsigned int size)
{
if(size < 16)
return NULL;
return strcpy(dst, inetntoa((const char *) src));
}
/* const char *
* inet_ntop6(src, dst, size)
* convert IPv6 binary address into presentation (printable) format
* author:
* Paul Vixie, 1996.
*/
#ifdef RB_IPV6
static const char *
inet_ntop6(const unsigned char *src, char *dst, unsigned int size)
{
/*
* Note that int32_t and int16_t need only be "at least" large enough
* to contain a value of the specified size. On some systems, like
* Crays, there is no such thing as an integer variable with 16 bits.
* Keep this in mind if you think this function should have been coded
* to use pointer overlays. All the world's not a VAX.
*/
char tmp[sizeof "ffff:ffff:ffff:ffff:ffff:ffff:255.255.255.255"], *tp;
struct
{
int base, len;
}
best, cur;
unsigned int words[IN6ADDRSZ / INT16SZ];
int i;
/*
* Preprocess:
* Copy the input (bytewise) array into a wordwise array.
* Find the longest run of 0x00's in src[] for :: shorthanding.
*/
memset(words, '\0', sizeof words);
for (i = 0; i < IN6ADDRSZ; i += 2)
words[i / 2] = (src[i] << 8) | src[i + 1];
best.base = -1;
best.len = 0;
cur.base = -1;
cur.len = 0;
for (i = 0; i < (IN6ADDRSZ / INT16SZ); i++)
{
if(words[i] == 0)
{
if(cur.base == -1)
cur.base = i, cur.len = 1;
else
cur.len++;
}
else
{
if(cur.base != -1)
{
if(best.base == -1 || cur.len > best.len)
best = cur;
cur.base = -1;
}
}
}
if(cur.base != -1)
{
if(best.base == -1 || cur.len > best.len)
best = cur;
}
if(best.base != -1 && best.len < 2)
best.base = -1;
/*
* Format the result.
*/
tp = tmp;
for (i = 0; i < (IN6ADDRSZ / INT16SZ); i++)
{
/* Are we inside the best run of 0x00's? */
if(best.base != -1 && i >= best.base && i < (best.base + best.len))
{
if(i == best.base)
{
if(i == 0)
*tp++ = '0';
*tp++ = ':';
}
continue;
}
/* Are we following an initial run of 0x00s or any real hex? */
if(i != 0)
*tp++ = ':';
/* Is this address an encapsulated IPv4? */
if(i == 6 && best.base == 0 &&
(best.len == 6 || (best.len == 5 && words[5] == 0xffff)))
{
if(!inet_ntop4(src + 12, tp, sizeof tmp - (tp - tmp)))
return (NULL);
tp += strlen(tp);
break;
}
tp += SPRINTF((tp, "%x", words[i]));
}
/* Was it a trailing run of 0x00's? */
if(best.base != -1 && (best.base + best.len) == (IN6ADDRSZ / INT16SZ))
*tp++ = ':';
*tp++ = '\0';
/*
* Check for overflow, copy, and we're done.
*/
if((unsigned int) (tp - tmp) > size)
{
return (NULL);
}
return strcpy(dst, tmp);
}
#endif
int
rb_inet_pton_sock(const char *src, struct sockaddr *dst)
{
if(rb_inet_pton(AF_INET, src, &((struct sockaddr_in *) dst)->sin_addr))
{
((struct sockaddr_in *) dst)->sin_port = 0;
((struct sockaddr_in *) dst)->sin_family = AF_INET;
SET_SS_LEN(dst, sizeof(struct sockaddr_in));
return 1;
}
#ifdef RB_IPV6
else if(rb_inet_pton(AF_INET6, src, &((struct sockaddr_in6 *) dst)->sin6_addr))
{
((struct sockaddr_in6 *) dst)->sin6_port = 0;
((struct sockaddr_in6 *) dst)->sin6_family = AF_INET6;
SET_SS_LEN(dst, sizeof(struct sockaddr_in6));
return 1;
}
#endif
return 0;
}
const char *
rb_inet_ntop_sock(struct sockaddr *src, char *dst, unsigned int size)
{
switch (src->sa_family)
{
case AF_INET:
return (rb_inet_ntop(AF_INET, &((struct sockaddr_in *) src)->sin_addr, dst, size));
break;
#ifdef RB_IPV6
case AF_INET6:
return (rb_inet_ntop(AF_INET6, &((struct sockaddr_in6 *) src)->sin6_addr, dst, size));
break;
#endif
default:
return NULL;
break;
}
}
/* char *
* rb_inet_ntop(af, src, dst, size)
* convert a network format address to presentation format.
* return:
* pointer to presentation format address (`dst'), or NULL (see errno).
* author:
* Paul Vixie, 1996.
*/
const char *
rb_inet_ntop(int af, const void *src, char *dst, unsigned int size)
{
switch (af)
{
case AF_INET:
return (inet_ntop4(src, dst, size));
#ifdef RB_IPV6
case AF_INET6:
if(IN6_IS_ADDR_V4MAPPED((const struct in6_addr *) src) ||
IN6_IS_ADDR_V4COMPAT((const struct in6_addr *) src))
return (inet_ntop4
((const unsigned char *)
&((const struct in6_addr *) src)->s6_addr[12], dst, size));
else
return (inet_ntop6(src, dst, size));
#endif
default:
return (NULL);
}
/* NOTREACHED */
}
/*
* WARNING: Don't even consider trying to compile this on a system where
* sizeof(int) < 4. sizeof(int) > 4 is fine; all the world's not a VAX.
*/
/* int
* rb_inet_pton(af, src, dst)
* convert from presentation format (which usually means ASCII printable)
* to network format (which is usually some kind of binary format).
* return:
* 1 if the address was valid for the specified address family
* 0 if the address wasn't valid (`dst' is untouched in this case)
* -1 if some other error occurred (`dst' is untouched in this case, too)
* author:
* Paul Vixie, 1996.
*/
/* int
* inet_pton4(src, dst)
* like inet_aton() but without all the hexadecimal and shorthand.
* return:
* 1 if `src' is a valid dotted quad, else 0.
* notice:
* does not touch `dst' unless it's returning 1.
* author:
* Paul Vixie, 1996.
*/
static int
inet_pton4(const char *src, unsigned char *dst)
{
int saw_digit, octets, ch;
unsigned char tmp[INADDRSZ], *tp;
saw_digit = 0;
octets = 0;
*(tp = tmp) = 0;
while ((ch = *src++) != '\0')
{
if(ch >= '0' && ch <= '9')
{
unsigned int new = *tp * 10 + (ch - '0');
if(new > 255)
return (0);
*tp = new;
if(!saw_digit)
{
if(++octets > 4)
return (0);
saw_digit = 1;
}
}
else if(ch == '.' && saw_digit)
{
if(octets == 4)
return (0);
*++tp = 0;
saw_digit = 0;
}
else
return (0);
}
if(octets < 4)
return (0);
memcpy(dst, tmp, INADDRSZ);
return (1);
}
#ifdef RB_IPV6
/* int
* inet_pton6(src, dst)
* convert presentation level address to network order binary form.
* return:
* 1 if `src' is a valid [RFC1884 2.2] address, else 0.
* notice:
* (1) does not touch `dst' unless it's returning 1.
* (2) :: in a full address is silently ignored.
* credit:
* inspired by Mark Andrews.
* author:
* Paul Vixie, 1996.
*/
static int
inet_pton6(const char *src, unsigned char *dst)
{
static const char xdigits[] = "0123456789abcdef";
unsigned char tmp[IN6ADDRSZ], *tp, *endp, *colonp;
const char *curtok;
int ch, saw_xdigit;
unsigned int val;
tp = memset(tmp, '\0', IN6ADDRSZ);
endp = tp + IN6ADDRSZ;
colonp = NULL;
/* Leading :: requires some special handling. */
if(*src == ':')
if(*++src != ':')
return (0);
curtok = src;
saw_xdigit = 0;
val = 0;
while ((ch = tolower(*src++)) != '\0')
{
const char *pch;
pch = strchr(xdigits, ch);
if(pch != NULL)
{
val <<= 4;
val |= (pch - xdigits);
if(val > 0xffff)
return (0);
saw_xdigit = 1;
continue;
}
if(ch == ':')
{
curtok = src;
if(!saw_xdigit)
{
if(colonp)
return (0);
colonp = tp;
continue;
}
else if(*src == '\0')
{
return (0);
}
if(tp + INT16SZ > endp)
return (0);
*tp++ = (unsigned char) (val >> 8) & 0xff;
*tp++ = (unsigned char) val & 0xff;
saw_xdigit = 0;
val = 0;
continue;
}
if(*src != '\0' && ch == '.')
{
if(((tp + INADDRSZ) <= endp) && inet_pton4(curtok, tp) > 0)
{
tp += INADDRSZ;
saw_xdigit = 0;
break; /* '\0' was seen by inet_pton4(). */
}
}
else
continue;
return (0);
}
if(saw_xdigit)
{
if(tp + INT16SZ > endp)
return (0);
*tp++ = (unsigned char) (val >> 8) & 0xff;
*tp++ = (unsigned char) val & 0xff;
}
if(colonp != NULL)
{
/*
* Since some memmove()'s erroneously fail to handle
* overlapping regions, we'll do the shift by hand.
*/
const int n = tp - colonp;
int i;
if(tp == endp)
return (0);
for (i = 1; i <= n; i++)
{
endp[-i] = colonp[n - i];
colonp[n - i] = 0;
}
tp = endp;
}
if(tp != endp)
return (0);
memcpy(dst, tmp, IN6ADDRSZ);
return (1);
}
#endif
int
rb_inet_pton(int af, const char *src, void *dst)
{
switch (af)
{
case AF_INET:
return (inet_pton4(src, dst));
#ifdef RB_IPV6
case AF_INET6:
/* Somebody might have passed as an IPv4 address this is sick but it works */
if(inet_pton4(src, dst))
{
char tmp[HOSTIPLEN];
rb_sprintf(tmp, "::ffff:%s", src);
return (inet_pton6(tmp, dst));
}
else
return (inet_pton6(src, dst));
#endif
default:
return (-1);
}
/* NOTREACHED */
}
#ifndef HAVE_SOCKETPAIR
int
rb_inet_socketpair(int family, int type, int protocol, int fd[2])
{
int listener = -1;
int connector = -1;
int acceptor = -1;
struct sockaddr_in listen_addr;
struct sockaddr_in connect_addr;
size_t size;
if(protocol || family != AF_INET)
{
errno = EAFNOSUPPORT;
return -1;
}
if(!fd)
{
errno = EINVAL;
return -1;
}
listener = socket(AF_INET, type, 0);
if(listener == -1)
return -1;
memset(&listen_addr, 0, sizeof(listen_addr));
listen_addr.sin_family = AF_INET;
listen_addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
listen_addr.sin_port = 0; /* kernel choses port. */
if(bind(listener, (struct sockaddr *) &listen_addr, sizeof(listen_addr)) == -1)
goto tidy_up_and_fail;
if(listen(listener, 1) == -1)
goto tidy_up_and_fail;
connector = socket(AF_INET, type, 0);
if(connector == -1)
goto tidy_up_and_fail;
/* We want to find out the port number to connect to. */
size = sizeof(connect_addr);
if(getsockname(listener, (struct sockaddr *) &connect_addr, &size) == -1)
goto tidy_up_and_fail;
if(size != sizeof(connect_addr))
goto abort_tidy_up_and_fail;
if(connect(connector, (struct sockaddr *) &connect_addr, sizeof(connect_addr)) == -1)
goto tidy_up_and_fail;
size = sizeof(listen_addr);
acceptor = accept(listener, (struct sockaddr *) &listen_addr, &size);
if(acceptor == -1)
goto tidy_up_and_fail;
if(size != sizeof(listen_addr))
goto abort_tidy_up_and_fail;
close(listener);
/* Now check we are talking to ourself by matching port and host on the
two sockets. */
if(getsockname(connector, (struct sockaddr *) &connect_addr, &size) == -1)
goto tidy_up_and_fail;
if(size != sizeof(connect_addr)
|| listen_addr.sin_family != connect_addr.sin_family
|| listen_addr.sin_addr.s_addr != connect_addr.sin_addr.s_addr
|| listen_addr.sin_port != connect_addr.sin_port)
{
goto abort_tidy_up_and_fail;
}
fd[0] = connector;
fd[1] = acceptor;
return 0;
abort_tidy_up_and_fail:
errno = EINVAL; /* I hope this is portable and appropriate. */
tidy_up_and_fail:
{
int save_errno = errno;
if(listener != -1)
close(listener);
if(connector != -1)
close(connector);
if(acceptor != -1)
close(acceptor);
errno = save_errno;
return -1;
}
}
#endif
static void (*setselect_handler) (rb_fde_t *, unsigned int, PF *, void *);
static int (*select_handler) (long);
static int (*setup_fd_handler) (rb_fde_t *);
static int (*io_sched_event) (struct ev_entry *, int);
static void (*io_unsched_event) (struct ev_entry *);
static int (*io_supports_event) (void);
static void (*io_init_event) (void);
static char iotype[25];
const char *
rb_get_iotype(void)
{
return iotype;
}
static int
rb_unsupported_event(void)
{
return 0;
}
static int
try_kqueue(void)
{
if(!rb_init_netio_kqueue())
{
setselect_handler = rb_setselect_kqueue;
select_handler = rb_select_kqueue;
setup_fd_handler = rb_setup_fd_kqueue;
io_sched_event = rb_kqueue_sched_event;
io_unsched_event = rb_kqueue_unsched_event;
io_init_event = rb_kqueue_init_event;
io_supports_event = rb_kqueue_supports_event;
rb_strlcpy(iotype, "kqueue", sizeof(iotype));
return 0;
}
return -1;
}
static int
try_epoll(void)
{
if(!rb_init_netio_epoll())
{
setselect_handler = rb_setselect_epoll;
select_handler = rb_select_epoll;
setup_fd_handler = rb_setup_fd_epoll;
io_sched_event = rb_epoll_sched_event;
io_unsched_event = rb_epoll_unsched_event;
io_supports_event = rb_epoll_supports_event;
io_init_event = rb_epoll_init_event;
rb_strlcpy(iotype, "epoll", sizeof(iotype));
return 0;
}
return -1;
}
static int
try_ports(void)
{
if(!rb_init_netio_ports())
{
setselect_handler = rb_setselect_ports;
select_handler = rb_select_ports;
setup_fd_handler = rb_setup_fd_ports;
io_sched_event = NULL;
io_unsched_event = NULL;
io_init_event = NULL;
io_supports_event = rb_unsupported_event;
rb_strlcpy(iotype, "ports", sizeof(iotype));
return 0;
}
return -1;
}
static int
try_devpoll(void)
{
if(!rb_init_netio_devpoll())
{
setselect_handler = rb_setselect_devpoll;
select_handler = rb_select_devpoll;
setup_fd_handler = rb_setup_fd_devpoll;
io_sched_event = NULL;
io_unsched_event = NULL;
io_init_event = NULL;
io_supports_event = rb_unsupported_event;
rb_strlcpy(iotype, "devpoll", sizeof(iotype));
return 0;
}
return -1;
}
static int
try_sigio(void)
{
if(!rb_init_netio_sigio())
{
setselect_handler = rb_setselect_sigio;
select_handler = rb_select_sigio;
setup_fd_handler = rb_setup_fd_sigio;
io_sched_event = rb_sigio_sched_event;
io_unsched_event = rb_sigio_unsched_event;
io_supports_event = rb_sigio_supports_event;
io_init_event = rb_sigio_init_event;
rb_strlcpy(iotype, "sigio", sizeof(iotype));
return 0;
}
return -1;
}
static int
try_poll(void)
{
if(!rb_init_netio_poll())
{
setselect_handler = rb_setselect_poll;
select_handler = rb_select_poll;
setup_fd_handler = rb_setup_fd_poll;
io_sched_event = NULL;
io_unsched_event = NULL;
io_init_event = NULL;
io_supports_event = rb_unsupported_event;
rb_strlcpy(iotype, "poll", sizeof(iotype));
return 0;
}
return -1;
}
static int
try_win32(void)
{
if(!rb_init_netio_win32())
{
setselect_handler = rb_setselect_win32;
select_handler = rb_select_win32;
setup_fd_handler = rb_setup_fd_win32;
io_sched_event = NULL;
io_unsched_event = NULL;
io_init_event = NULL;
io_supports_event = rb_unsupported_event;
rb_strlcpy(iotype, "win32", sizeof(iotype));
return 0;
}
return -1;
}
static int
try_select(void)
{
if(!rb_init_netio_select())
{
setselect_handler = rb_setselect_select;
select_handler = rb_select_select;
setup_fd_handler = rb_setup_fd_select;
io_sched_event = NULL;
io_unsched_event = NULL;
io_init_event = NULL;
io_supports_event = rb_unsupported_event;
rb_strlcpy(iotype, "select", sizeof(iotype));
return 0;
}
return -1;
}
int
rb_io_sched_event(struct ev_entry *ev, int when)
{
if(ev == NULL || io_supports_event == NULL || io_sched_event == NULL || !io_supports_event())
return 0;
return io_sched_event(ev, when);
}
void
rb_io_unsched_event(struct ev_entry *ev)
{
if(ev == NULL || io_supports_event == NULL || io_unsched_event == NULL || !io_supports_event())
return;
io_unsched_event(ev);
}
int
rb_io_supports_event(void)
{
if(io_supports_event == NULL)
return 0;
return io_supports_event();
}
void
rb_io_init_event(void)
{
io_init_event();
rb_event_io_register_all();
}
void
rb_init_netio(void)
{
char *ioenv = getenv("LIBRB_USE_IOTYPE");
rb_fd_table = rb_malloc(RB_FD_HASH_SIZE * sizeof(rb_dlink_list));
rb_init_ssl();
if(ioenv != NULL)
{
if(!strcmp("epoll", ioenv))
{
if(!try_epoll())
return;
} else
if(!strcmp("kqueue", ioenv))
{
if(!try_kqueue())
return;
} else
if(!strcmp("ports", ioenv))
{
if(!try_ports())
return;
} else
if(!strcmp("poll", ioenv))
{
if(!try_poll())
return;
} else
if(!strcmp("devpoll", ioenv))
{
if(!try_devpoll())
return;
} else
if(!strcmp("sigio", ioenv))
{
if(!try_sigio())
return;
} else
if(!strcmp("win32", ioenv))
{
if(!try_win32())
return;
}
if(!strcmp("select", ioenv))
{
if(!try_select())
return;
}
}
if(!try_kqueue())
return;
if(!try_epoll())
return;
if(!try_ports())
return;
if(!try_devpoll())
return;
if(!try_sigio())
return;
if(!try_poll())
return;
if(!try_win32())
return;
if(!try_select())
return;
rb_lib_log("rb_init_netio: Could not find any io handlers...giving up");
abort();
}
void
rb_setselect(rb_fde_t *F, unsigned int type, PF * handler, void *client_data)
{
setselect_handler(F, type, handler, client_data);
}
int
rb_select(unsigned long timeout)
{
int ret = select_handler(timeout);
free_fds();
return ret;
}
int
rb_setup_fd(rb_fde_t *F)
{
return setup_fd_handler(F);
}
int
rb_ignore_errno(int error)
{
switch(error)
{
#ifdef EINPROGRESS
case EINPROGRESS:
#endif
#if defined EWOULDBLOCK
case EWOULDBLOCK:
#endif
#if defined(EAGAIN) && (EWOULDBLOCK != EAGAIN)
case EAGAIN:
#endif
#ifdef EINTR
case EINTR:
#endif
#ifdef ERESTART
case ERESTART:
#endif
#ifdef ENOBUFS
case ENOBUFS:
#endif
return 1;
default:
break;
}
return 0;
}
int
rb_recv_fd_buf(rb_fde_t *F, void *data, size_t datasize, rb_fde_t **xF, int nfds)
{
struct msghdr msg;
struct cmsghdr *cmsg;
struct iovec iov[1];
struct stat st;
rb_uint8_t stype = RB_FD_UNKNOWN;
const char *desc;
int fd, len, x, rfds;
int control_len = CMSG_SPACE(sizeof(int) * nfds);
iov[0].iov_base = data;
iov[0].iov_len = datasize;
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_iov = iov;
msg.msg_iovlen = 1;
msg.msg_flags = 0;
cmsg = alloca(control_len);
msg.msg_control = cmsg;
msg.msg_controllen = control_len;
if((len = recvmsg(rb_get_fd(F), &msg, 0)) <= 0)
return len;
if(msg.msg_controllen > 0 && msg.msg_control != NULL && (cmsg = CMSG_FIRSTHDR(&msg)) != NULL)
{
rfds = (msg.msg_controllen - sizeof(struct cmsghdr)) / sizeof(int);
for(x = 0; x < nfds && x < rfds; x++)
{
fd = ((int *)CMSG_DATA(cmsg))[x];
stype = RB_FD_UNKNOWN;
desc = "remote unknown";
if(!fstat(fd, &st))
{
if(S_ISSOCK(st.st_mode))
{
stype = RB_FD_SOCKET;
desc = "remote socket";
}
else if(S_ISFIFO(st.st_mode))
{
stype = RB_FD_PIPE;
desc = "remote pipe";
}
else if(S_ISREG(st.st_mode))
{
stype = RB_FD_FILE;
desc = "remote file";
}
}
xF[x] = rb_open(fd, stype, desc);
}
} else
*xF = NULL;
return len;
}
int
rb_send_fd_buf(rb_fde_t *xF, rb_fde_t **F, int count, void *data, size_t datasize)
{
int n;
struct msghdr msg;
struct cmsghdr *cmsg;
struct iovec iov[1];
char empty = '0';
char *buf;
memset(&msg, 0, sizeof(&msg));
if(datasize == 0)
{
iov[0].iov_base = &empty;
iov[0].iov_len = 1;
} else {
iov[0].iov_base = data;
iov[0].iov_len = datasize;
}
msg.msg_iov = iov;
msg.msg_iovlen = 1;
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_flags = 0;
msg.msg_control = NULL;
msg.msg_controllen = 0;
if(count > 0)
{
int i;
int len = CMSG_SPACE(sizeof(int) * count);
buf = alloca(len);
msg.msg_control = buf;
msg.msg_controllen = len;
cmsg = CMSG_FIRSTHDR(&msg);
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
cmsg->cmsg_len = CMSG_LEN(sizeof(int) * count);
for(i = 0; i < count; i++)
{
((int *)CMSG_DATA(cmsg))[i] = rb_get_fd(F[i]);
}
msg.msg_controllen = cmsg->cmsg_len;
}
n = sendmsg(rb_get_fd(xF), &msg, MSG_NOSIGNAL);
return n;
}