
CST8152 – Compilers, MMXVII Page 1 of 8

CST 8152 – Compilers - Assignment #1

Due Date: prior or on February 1, 2017

Earnings: 5% of your course grade (plus 1% bonus)

Purpose: Programming and Using Dynamic Structures (buffers) with C

This is a review of and an exercise in C coding style, programming techniques, data types and
structures, memory management, and simple file input/output. It will give you a better
understanding of the type of internal data structures used by a simple compiler you will be building
this semester. This assignment will be also an exercise in “excessively defensive programming”.
You are to write functions that should be “overly” protected and should not abruptly terminate or

“crash” at run-time due to invalid function parameters, erroneous internal calculations, or memory
violations. To complete the assignment, you should fulfill the following two tasks:

Task 1: The Buffer Data Structure and Utility Functions

Buffers are often used when developing compilers because of their efficiency (see page 111 of

your textbook). You are to implement a buffer that can operate in three different modes: a “fixed-

size” buffer, an “additive self-incrementing” buffer, and a “multiplicative self-incrementing” buffer.
The buffer implementation is based on two associated data structures: a Buffer Descriptor (or
Buffer Handle) and an array of characters (the actual character buffer). Both structures are to be

created “on demand” at run time, that is, they are to be allocated dynamically. The Buffer
Descriptor or Buffer Handle - the names suggest the purpose of this buffer control data structure -
contains all the necessary information about the array of characters: a pointer to the beginning of
the character array location in memory, the current size, the next character entry position, the
increment factor, the operational mode and some additional parameters.

In this assignment you are to complete the coding for a "buffer utility", which includes the buffer
data structure and the associated functions, following strictly the given specifications. Use the data

declarations and function prototypes given below. Do not change the names and the data types

of the functions and the variables. Any change will be regarded as a serious specification

violation. Write the associated code.
The following structure declaration must be used to implement the Buffer Descriptor:

typedef struct BufferDescriptor {

 char *cb_head; /* pointer to the beginning of character array (character buffer) */

 short capacity; /* current dynamic memory size (in bytes) allocated to character buffer */

 short addc_offset; /* the offset (in chars) to the add-character location */

 short getc_offset; /* the offset (in chars) to the get-character location */

 short markc_offset; /* the offset (in chars) to the mark location */

 char inc_factor; /* character array increment factor */

 char r_flag; /* character array reallocation flag */

 char mode; /* operational mode indicator*/

 int eob; /* end-of-buffer-reached flag */

} Buffer, *pBuffer;

CST8152 – Compilers, MMXVII Page 2 of 8

Where:

capacity is the current total size (measured in bytes) of the memory allocated for the character
array by malloc()/realloc() functions. In the text below it is referred also as current capacity. It is
whatever value you have used in the call to malloc()/realloc() that allocates the storage pointed to
by cb_head.

inc_factor is a buffer increment factor. It is used in the calculations of a new buffer capacity when
the buffer needs to grow. The buffer needs to grow when it is full but still another character needs
to be added to the buffer. The buffer is full when addc_offset measured in bytes is equal to
capacity and thus all the allocated memory has been used. The inc_factor is only used when the

buffer operates in one of the “self-incrementing” modes. In “additive self-incrementing” mode it is a
positive integer number in the range of 1 to 255 and represents directly the increment (measured in
characters) that must be added to the current capacity every time the buffer needs to grow. In

“multiplicative self-incrementing” mode it is a positive integer number in the range of 1 to 100 and
represents a percentage used to calculate the new capacity increment that must be added to the
current capacity every time the buffer needs to grow.

addc_offset is the distance (measured in chars) from the beginning of the character array
(cb_head) to the location where the next character is to be added to the existing buffer content.
addc_offset (measured in bytes) must never be larger than capacity, or else you are overrunning
the buffer in memory and your program may crash at run-time or destroy data.

getc_offset is the distance (measured in chars) from the beginning of the character array
(cb_head) to the location of the character which will be returned if the function b_getc() is called.
The value getc_offset (measured in chars) must never be larger than addc_offset, or else you are
overrunning the buffer in memory and your program may get wrong data or crash at run-time. If the
value of getc_offset is equal to the value of addc_offset, the buffer has reached the end of its
current content.

markc_offset is the distance (measured in chars) from the beginning of the character array
(cb_head) to the location of a mark. A mark is a location in the buffer, which indicates the position
of a specific character (for example, the beginning of a word or a phrase).

r_flag is a reallocation flag variable. It takes two integer values (0 or 1), and when set to 1, it
indicates that the location of the character array in memory has been changed due to memory
reallocation. This could happen when the buffer needs to expand or shrink. The flag can be used to
avoid dangling pointers when pointers instead of offsets are used to access the information in the
character buffer.

mode is an operational mode indicator. It can be set to three different integer numbers: 1, 0, and

 –1. The number 0 indicates that the buffer operates in “fixed-size” mode; 1 indicates “additive self-

incrementing” mode; and –1 indicates “multiplicative self-incrementing” mode. The mode is set
when a new buffer is created and cannot be changed later.

eob is an end-of-buffer content flag variable. It takes two integer values 0 or 1. When set to 1, it
indicates that the end of the buffer content has been reached. If eob is set to 1, the function
b_getc() should not be called before the getc_offset is reset.

CST8152 – Compilers, MMXVII Page 3 of 8

You are to implement the following set of buffer utility functions. Later they will be used by all other
parts of the compiler when a temporary storage space is needed.

The first implementation step in all functions must be the validation (if possible and appropriate)
of the function arguments. If an argument value is invalid, the function must return an appropriate
failure indicator.

Buffer * b_create (short init_capacity,char inc_factor,char o_mode)

This function creates a new buffer in memory (on the program heap). The function
- tries to allocate memory for one Buffer structure using calloc();
- tries to allocates memory for one dynamic character buffer (character array) calling malloc() with

the given initial capacity init_capacity and. The returned pointer is assigned to cb_head;
- sets the buffer operational mode indicator mode and the Buffer structure increment factor

inc_factor. If the o_mode is the symbol f or inc_factor is 0, the mode and the buffer inc_factor

are set to number 0. If the o_mode is the symbol f and inc_factor is not 0, the mode and the

buffer inc_factor are set to 0. If the o_mode is a and inc_factor is in the range of 1 to 255

inclusive , the mode is set to number 1 and the buffer inc_factor is set to the value of

inc_factor. If the o_mode is m and inc_factor is in the range of 1 to 100 inclusive, the mode is

set to number -1 and the inc_factor value is assigned to the buffer inc_factor;

- copies the given init_capacity into the Buffer structure capacity variable.

Finally, on success, the function returns a pointer to the Buffer structure. It must return NULL
pointer on any error which violates the constraints imposed upon the buffer parameters or prevents
the creation of a working buffer. If run-time error occurs, the function must return immediately after
the error is discovered. Check for all possible errors which can occur at run time. Do not allow

“memory leaks”, “dangling” pointers, or “bad” parameters.

pBuffer b_addc(pBuffer const pBD, char symbol)

The function resets r_flag to 0 and tries to add the character symbol to the character array of the
given buffer pointed by pBD. If the buffer is operational and it is not full, the symbol can be stored
in the character buffer. In this case, the function adds the character to the content of the character
buffer, increments addc_offset by 1 and returns.

If the character buffer is already full, the function will try to resize the buffer by increasing the
current capacity to a new capacity. How the capacity is increased depends on the current
operational mode of the buffer.

If the operational mode is 0, the function returns NULL.

If the operational mode is 1, it tries to increase the current capacity of the buffer to a new capacity

by adding inc_factor (converted to bytes) to capacity. If the result from the operation is positive,
the function proceeds; otherwise it returns NULL.

If the operational mode is -1 it tries to increase the current capacity of the buffer to a new capacity
in the following manner:

- If the current capacity can not be incremented anymore because it has already reached the

maximum size of the buffer, the function returns NULL.

CST8152 – Compilers, MMXVII Page 4 of 8

- The function tries to increase the current capacity using the following formulae:

available space = maximum buffer size – current capacity
new increment = available space * inc_factor / 100
new capacity = current capacity + new increment

If the new capacity has been incremented successfully, no further adjustment of the new capacity
is required. If as a result of the calculations, the current capacity cannot be incremented, but the
current capacity is still smaller than the maximum possible buffer size, the maximum positive value

for the buffer size is assigned to the new capacity. The maximum positive value (maximum buffer
size) is defined by the data type of the variable, which contains the buffer capacity.

If the capacity increment in mode 1 or -1 is successful, the function performs the following
operations:

 The function tries to expand the character buffer calling realloc() with the new capacity. If the
reallocation fails, the function returns NULL;

 If the location in memory of the character buffer has been changed by the reallocation, the

function sets r_flag to 1 (use SET_R_FLAG constant defined in buffer.h);

 Adds (appends) the character symbol to the buffer content;

 Changes the value of addc_offset by 1, and saves the newly calculated capacity value into
capacity variable;

 The function returns a pointer to the Buffer structure.

The function must return NULL on any error. Some of the possible errors are indicated above but

you must check for all possible errors that can occur at run-time. Do not allow “memory leaks”.

Avoid creating “dangling pointers” and using “bad” parameters. The function must not destroy
the buffer or the contents of the buffer even when an error occurs – it must simply return NULL

leaving the existing buffer content intact. A change in the project platform (16-bit, 32-bit or 64-

bit) must not lead to improper behavior.

int b_reset (Buffer * const pBD)

The function retains the memory space allocated to the buffer at the moment, but re-initializes all
appropriate data members of the given Buffer structure (buffer descriptor), such that the buffer will
appear empty and the next call to b_addc() will put the character at the beginning of the character
buffer. The function does not need to clear the existing contents of the character buffer. If a run-

time error is possible, the function should return –1 in order to notify the calling function about the
failure.

void b_free (Buffer * const pBD)

The function de-allocates (frees) the memory occupied by the character buffer and the Buffer
structure (buffer descriptor). The function should not cause abnormal behavior (crash).

int b_isfull (Buffer * const pBD)

The function returns 1 if the character buffer is full; it returns 0 otherwise. If a run-time error is

possible, the function should return –1.

CST8152 – Compilers, MMXVII Page 5 of 8

short b_size (Buffer * const pBD)

The function returns the current size of the character buffer. The current size is the amount of
space measured in chars that is currently being used by the added (stored) characters. If a run-

time error is possible, the function should return –1.

short b_capacity(Buffer * const pBD)

The function returns the current capacity of the character buffer. If a run-time error is possible, the

function should return –1.

char * b_setmark (Buffer * const pBD, short mark)

The function sets markc_offset to mark. The parameter mark must be within the current size of
the buffer (0 to addc_offset inclusive). The function returns a pointer to the currently set
markc_offset location in the buffer character array. If a run-time error is possible, the function

should return NULL.

short b_mark (Buffer * const pBD)

The function returns markc_offset to the calling function. If a run-time error is possible, the

function should return –1.

int b_mode (Buffer * const pBD)

The function returns the value of mode to the calling function. If a run-time error is possible, the
function should notify the calling function about the failure .

size_t b_incfactor (Buffer * const pBD)

The function returns the non-negative value of inc_factor to the calling function. If a run-time error

is possible, the function should return 256.

int b_load (FILE * const fi, Buffer * const pBD)

The function loads (reads) an open input file specified by fi into a buffer specified by pB. The
function must use the standard function fgetc(fi) to read one character at a time and the function
b_addc() to add the character to the buffer. If the current character cannot be put in the buffer, the

function must return -2 (use the defined LOAD_FAIL constant). The operation is repeated until the

standard macro feof(fi) detects end-of-file on the input file. The end-of-file character must not be
added to the content of the buffer.

If some other run-time errors are possible, the function should return –1. If the loading operation is
successful, the function must return the number of characters added to the buffer.

int b_isempty (Buffer * const pBD)

If the addc_offset is 0, the function returns 1; otherwise it returns 0. If a run-time error is possible,

it should return –1.

CST8152 – Compilers, MMXVII Page 6 of 8

int b_eob (Buffer * const pBD)

The function returns eob to the calling function. If a run-time error is possible, it should return –1.

char b_getc (Buffer * const pBD)

The function performs the following steps:

- checks the argument for validity (possible run-time error). If it is not valid, it returns -2;

- if getc_offset and addc_offset are equal, it sets eob to 1 and returns -1; otherwise it sets eob

to 0;

- returns the character located at getc_offset. Before returning it increments getc_offset by 1.

int b_print (Buffer * const pBD)

The function is intended to be used for used for diagnostic purposes only. Using the printf() library
function the function prints character by character the contents of the character buffer to the
standard output (stdout). Before printing the content the function checks if the buffer is empty, and
if it is, it prints the following message The buffer is empty. adding a new line at the end.

Then the function stores the getc_offset into a temporary variable and sets the getc_offset to 0.
Next, the function prints the content calling b_getc() in a loop and using b_eob() to detect the end
of the buffer content. Then the function restores the original value of getc_offset. Finally, it prints a

new line character. It returns the number of characters printed. The function returns –1 on failure.

Buffer *b_pack(Buffer * const pBD)

For all operational modes of the buffer the function shrinks (or in some cases may expand) the
buffer to a new capacity. The new capacity is the current size plus a space for one more char. In
other words the new capacity is addc_offset + 1 converted to bytes. The function uses realloc() to
adjust the new capacity, and then updates all the necessary members of the buffer descriptor
structure. Finally it returns a pointer to Buffer. The function must return NULL if for some reason it
cannot to perform the required operation. It must set the buffer r_flag appropriately.

char b_rflag (Buffer * const pBD)

The function returns r_flag to the calling function. If a run-time error is possible, it should return –1.

short b_retract (Buffer * const pBD)

The function decrements getc_offset by 1. If a run-time error is possible, it should return –1;
otherwise it returns getc_offset.

short b_retract_to_mark (Buffer * const pBD)

The function sets getc_offset to the value of the current markc_offset . If a run-time error is

possible, it should return –1; otherwise it returns getc_offset.

short b_getcoffset (Buffer * const pBD)

The function returns getc_offset to the calling function. If a run-time error is possible, it should

return –1.

CST8152 – Compilers, MMXVII Page 7 of 8

All constant definitions, data type and function declarations (prototypes) must be located in a
header file named buffer.h. You are allowed to use only named constants in your programs
(except when incrementing something by 1 or setting a numeric value to 0). To name a constant
you must use #define preprocessor directive (see buffer.h). The incomplete buffer.h is posted.
The function definitions must be stored in a file named buffer.c.

Task 2: Testing the Buffer

To test your program you are to use the test harness program platy_bt.c (do not modify it) and the
input files ass1e.pls (an empty file), and ass1.pls. The corresponding output files are ass1e.out
and ass1ai.out (mode = 1), ass1mi.out (mode = -1), ass1fi.out (mode = 0). Those files are
available as part of the assignment postings. You must create a standard console project named
buffer with an executable target buffer (see Creating_C_Project document in Lab0). The project
must contain only one header file (buffer.h) and two souce files: buffer.c and platy_bt.c.

Here is a brief description of the program that is provided for you on BB. It simulates “normal”
operating conditions for your buffer utility. The program (platy_bt.c) main function takes to

parameters from the command line: an input file name and a character (f - fixed-size, a – additive

self-increment, or m – multiplicative self increment) specifying the buffer operational mode. It opens
up a file with the specified name (for example, ass1.pls), creates a buffer, and loads it with data
from the file using the ca_load() function. Then the program prints the current capacity, the current
size, the current operational mode, the increment factor, the current mark, and the contents of the
buffer. It packs the buffer, and if the pack operation is successful, it prints the buffer contents again.
Your program must not overflow any buffers in any operational mode, no matter how long the input
file is. The provided main program will not test all your functions. You are strongly encouraged to
test all your buffer functions with your own test files and and modified main function.

Bonus Task: Implementing a Preprocessor Macro Definition and Expansion (1%)

Implement b_isfull() both as a function and a macro expansion (macro). Using conditional
processing you must allow the user to choose between using the macro or the function in the

compiled code. If B_FULL name is defined the macro shoud be used in the compiled code. If the

B_FULL name is not defined or undefined, the function should be used in the compiled code.
To receive credit for the bonus task your code must be well documented, tested, and working.

CST8152 – Compilers, MMXVII Page 8 of 8

SUBMIT THE FOLLOWING:

Paper Submission: Hand in on paper, the fully documented source code of your buffer.h and
buffer.c files. Print your output for the test files ass1.pls and ass1e.pls. Include a description or
listing of your own test file(s) (output and/or input, if appropriate) showing how you tested your
program. Don't kill a hundred trees; submit descriptions and short excerpts of your testing inputs
and outputs if the files are large. Save the Third Rock from the Sun! Print and submit the Marking
Sheet for Assignment 1 with your Name and Student ID filled in.

Digital Submission: Compress into a zip file the following files: platy_bt.c, buffer.h, buffer.c,
ass1.pls, ass1e.pls and the corresponding test output files produced by your program. Include your
additional input/output test files if you have any. Upload the zip file on Blackboard using the
Assignment 1 link in the Assignments folder on Blackboard. The file must be submitted prior or on

the due date as indicated in the assignment. The name of the file must be Your Last Name
followed by the last three digits of your student number. For example: Ranev345.zip.

Make sure all printed materials are placed into an unsealed envelope and are deposited into my
assignment submission box prior to the end of the due date. If the due time is midnight, you can
make the submission the next morning. The submission must follow the course submission
standards. You will find the Assignment Submission Standard as well as the Assignment Marking

Guide (CST8152_ASSAMG.pdf) for the Compilers course on the BB.

Assignments will not be marked if the source files are not submitted on time. Assignments
could be late, but the lateness will affect negatively your mark: see the Course Outline and the
Marking Guide. All assignments must be successfully completed to receive credit for the course,
even if the assignments are late.

Evaluation Note: Make your functions as efficient as possible. These functions are called many
times during the compilation process. The functions will be graded with respect to design,
documentation, error checking, robustness, and efficiency. When evaluating and marking your
assignment, I will use the standard project and platy_bt.c and the test files posted on the net. If
your program compiles, runs, and produces correct output files, it will be considered a working
program. Additionally, I will try my best to “crash” your functions using a modified main program,
which will test all your functions including calling them with “invalid” parameters. I will use also
some additional test files (for example, a large file). This can lead to fairly big reduction of your

assignment mark (see CST8152_ASSAMG and cMarkingSheetA1 documents).

Enjoy the assignment. And do not forget that:
 “Writing a program is like painting. It is better to start on a new canvas.” Ancient P-Artist
“It is part of the nature of humans to begin with romance (buffer) and build to reality
(compiler).” by Ray Bradbury
#define buff·er (bùf¹er) noun (Microsoft Bookshelf)
1. Something that lessens or absorbs the shock of an impact.
2. One that protects by intercepting or moderating adverse pressures or influences: “A sense of humor . . . may have served as a

buffer against the . . . shocks of disappointment” (James Russell Lowell).
3. Something that separates potentially antagonistic entities, as an area between two rival powers that serves to lessen the

danger of conflict.
4. Chemistry. A substance that minimizes change in the acidity of a solution when an acid or base is added to the solution.
5. Computer Science. A device or memory area used to store data temporarily and deliver it at a rate different from that at

which it was received.

S^R, CST8152 – Compilers, January 9, 2017

