route/vendor/github.com/aclements/go-moremath/scale/log.go

226 lines
5.0 KiB
Go
Raw Normal View History

2017-10-06 15:29:20 +00:00
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package scale
import "math"
type Log struct {
private struct{}
// Min and Max specify the lower and upper bounds of the input
// domain. The input range [Min, Max] will be mapped to the
// output range [0, 1]. The range [Min, Max] must not include
// 0.
Min, Max float64
// Base specifies the base of the logarithm for computing
// ticks. Ticks will be placed at Base^((2^l)*n) for tick
// level l ∈ and n ∈ . Typically l is 0, in which case this
// is simply Base^n.
Base int
// If Clamp is true, the input is clamped to [Min, Max].
Clamp bool
// TODO: Let the user specify the minor ticks. Default to [1,
// .. 9], but [1, 3] and [1, 2, 5] are common.
}
// *Log is a Quantitative scale.
var _ Quantitative = &Log{}
// NewLog constructs a Log scale. If the arguments are out of range,
// it returns a RangeErr.
func NewLog(min, max float64, base int) (Log, error) {
if min > max {
min, max = max, min
}
if base <= 1 {
return Log{}, RangeErr("Log scale base must be 2 or more")
}
if min <= 0 && max >= 0 {
return Log{}, RangeErr("Log scale range cannot include 0")
}
return Log{Min: min, Max: max, Base: base}, nil
}
func (s *Log) ebounds() (bool, float64, float64) {
if s.Min < 0 {
return true, -s.Max, -s.Min
}
return false, s.Min, s.Max
}
func (s Log) Map(x float64) float64 {
neg, min, max := s.ebounds()
if neg {
x = -x
}
if x <= 0 {
return math.NaN()
}
if min == max {
return 0.5
}
logMin, logMax := math.Log(min), math.Log(max)
y := (math.Log(x) - logMin) / (logMax - logMin)
if neg {
y = 1 - y
}
if s.Clamp {
y = clamp(y)
}
return y
}
func (s Log) Unmap(y float64) float64 {
neg, min, max := s.ebounds()
if neg {
y = 1 - y
}
logMin, logMax := math.Log(min), math.Log(max)
x := math.Exp(y*(logMax-logMin) + logMin)
if neg {
x = -x
}
return x
}
func (s *Log) SetClamp(clamp bool) {
s.Clamp = clamp
}
// The tick levels are:
//
// Level 0 is a major tick at Base^n (1, 10, 100, ...)
// Level 1 is a major tick at Base^(2*n) (1, 100, 10000, ...)
// Level 2 is a major tick at Base^(4*n) (1, 10000, 100000000, ...)
//
// That is, each level eliminates every other tick. Levels below 0 are
// not defined.
func logb(x float64, b float64) float64 {
return math.Log(x) / math.Log(b)
}
func (s *Log) spacingAtLevel(level int, roundOut bool) (firstN, lastN, ebase float64) {
_, min, max := s.ebounds()
// Compute the effective base at this level.
ebase = math.Pow(float64(s.Base), math.Pow(2, float64(level)))
lmin, lmax := logb(min, ebase), logb(max, ebase)
// Add a tiny bit of slack to the floor and ceiling so that
// rounding errors don't significantly affect tick marks.
slack := (lmax - lmin) * 1e-10
if roundOut {
firstN = math.Floor(lmin + slack)
lastN = math.Ceil(lmax - slack)
} else {
firstN = math.Ceil(lmin - slack)
lastN = math.Floor(lmax + slack)
}
return
}
func (s *Log) CountTicks(level int) int {
return logTicker{s, false}.CountTicks(level)
}
func (s *Log) TicksAtLevel(level int) interface{} {
return logTicker{s, false}.TicksAtLevel(level)
}
type logTicker struct {
s *Log
roundOut bool
}
func (t logTicker) CountTicks(level int) int {
if level < 0 {
const maxInt = int(^uint(0) >> 1)
return maxInt
}
firstN, lastN, _ := t.s.spacingAtLevel(level, t.roundOut)
return int(lastN - firstN + 1)
}
func (t logTicker) TicksAtLevel(level int) interface{} {
neg, min, max := t.s.ebounds()
ticks := []float64{}
if level < 0 {
// Minor ticks for level 0. Get the major
// ticks, but round out so we can fill in
// minor ticks outside of the major ticks.
firstN, lastN, _ := t.s.spacingAtLevel(0, true)
for n := firstN; n <= lastN; n++ {
tick := math.Pow(float64(t.s.Base), n)
step := tick
for i := 0; i < t.s.Base-1; i++ {
if min <= tick && tick <= max {
ticks = append(ticks, tick)
}
tick += step
}
}
} else {
firstN, lastN, base := t.s.spacingAtLevel(level, t.roundOut)
for n := firstN; n <= lastN; n++ {
ticks = append(ticks, math.Pow(base, n))
}
}
if neg {
// Negate and reverse order of ticks.
for i := 0; i < (len(ticks)+1)/2; i++ {
j := len(ticks) - i - 1
ticks[i], ticks[j] = -ticks[j], -ticks[i]
}
}
return ticks
}
func (s Log) Ticks(o TickOptions) (major, minor []float64) {
if o.Max <= 0 {
return nil, nil
} else if s.Min == s.Max {
return []float64{s.Min}, []float64{s.Max}
}
t := logTicker{&s, false}
level, ok := o.FindLevel(t, 0)
if !ok {
return nil, nil
}
return t.TicksAtLevel(level).([]float64), t.TicksAtLevel(level - 1).([]float64)
}
func (s *Log) Nice(o TickOptions) {
if s.Min == s.Max {
return
}
neg, _, _ := s.ebounds()
t := logTicker{s, true}
level, ok := o.FindLevel(t, 0)
if !ok {
return
}
firstN, lastN, base := s.spacingAtLevel(level, true)
s.Min = math.Pow(base, firstN)
s.Max = math.Pow(base, lastN)
if neg {
s.Min, s.Max = -s.Max, -s.Min
}
}