package onlinestats import ( "math" ) // http://www.drdobbs.com/tools/discontiguous-exponential-averaging/184410671 type DEA struct { sumOfWeights float64 sumOfData float64 sumOfSquaredData float64 previousTime float64 alpha float64 newDataWeightUpperBound float64 } func NewDEA(alpha float64, maxDt float64) *DEA { return &DEA{ alpha: alpha, newDataWeightUpperBound: 1 - math.Pow(alpha, maxDt), } } func (ew *DEA) Update(newData float64, t float64) { weightReductionFactor := math.Pow(ew.alpha, t-ew.previousTime) newDataWeight := minf(1-weightReductionFactor, ew.newDataWeightUpperBound) ew.sumOfWeights = weightReductionFactor*ew.sumOfWeights + newDataWeight ew.sumOfData = weightReductionFactor*ew.sumOfData + newDataWeight*newData ew.sumOfSquaredData = weightReductionFactor*ew.sumOfSquaredData + (newDataWeight * (newData * newData)) ew.previousTime = t } func (ew *DEA) CompletenessFraction(t float64) float64 { return math.Pow(ew.alpha, t-ew.previousTime*ew.sumOfWeights) } func (ew *DEA) Mean() float64 { return (ew.sumOfData / ew.sumOfWeights) } func (ew *DEA) Var() float64 { m := ew.Mean() return (ew.sumOfSquaredData/ew.sumOfWeights - m*m) } func (ew *DEA) Stddev() float64 { return math.Sqrt(ew.Var()) } func minf(a, b float64) float64 { if a < b { return a } return b }