169 lines
4.5 KiB
Go
169 lines
4.5 KiB
Go
// Copyright 2015 The Go Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package scale
|
||
|
||
import (
|
||
"math"
|
||
|
||
"github.com/aclements/go-moremath/vec"
|
||
)
|
||
|
||
type Linear struct {
|
||
// Min and Max specify the lower and upper bounds of the input
|
||
// domain. The input domain [Min, Max] will be linearly mapped
|
||
// to the output range [0, 1].
|
||
Min, Max float64
|
||
|
||
// Base specifies a base for computing ticks. Ticks will be
|
||
// placed at powers of Base; that is at n*Base^l for n ∈ ℤ and
|
||
// some integer tick level l. As a special case, a base of 0
|
||
// alternates between ticks at n*10^⌊l/2⌋ and ticks at
|
||
// 5n*10^⌊l/2⌋.
|
||
Base int
|
||
|
||
// If Clamp is true, the input is clamped to [Min, Max].
|
||
Clamp bool
|
||
}
|
||
|
||
// *Linear is a Quantitative scale.
|
||
var _ Quantitative = &Linear{}
|
||
|
||
func (s Linear) Map(x float64) float64 {
|
||
if s.Min == s.Max {
|
||
return 0.5
|
||
}
|
||
y := (x - s.Min) / (s.Max - s.Min)
|
||
if s.Clamp {
|
||
y = clamp(y)
|
||
}
|
||
return y
|
||
}
|
||
|
||
func (s Linear) Unmap(y float64) float64 {
|
||
return y*(s.Max-s.Min) + s.Min
|
||
}
|
||
|
||
func (s *Linear) SetClamp(clamp bool) {
|
||
s.Clamp = clamp
|
||
}
|
||
|
||
// ebase sanity checks and returns the "effective base" of this scale.
|
||
// If s.Base is 0, it returns 10. If s.Base is 1 or negative, it
|
||
// panics.
|
||
func (s Linear) ebase() int {
|
||
if s.Base == 0 {
|
||
return 10
|
||
} else if s.Base == 1 {
|
||
panic("scale.Linear cannot have a base of 1")
|
||
} else if s.Base < 0 {
|
||
panic("scale.Linear cannot have a negative base")
|
||
}
|
||
return s.Base
|
||
}
|
||
|
||
// In the default base, the tick levels are:
|
||
//
|
||
// Level -2 is a major tick at -0.1, 0, 0.1, etc.
|
||
// Level -1 is a major tick at -1, -0.5, 0, 0.5, 1, etc.
|
||
// Level 0 is a major tick at -1, 0, 1, etc.
|
||
// Level 1 is a major tick at -10, -5, 0, 5, 10, etc.
|
||
// Level 2 is a major tick at -10, 0, 10, etc.
|
||
//
|
||
// That is, level 0 is unit intervals, and we alternate between
|
||
// interval *= 5 and interval *= 2. Combined, these give us interval
|
||
// *= 10 at every other level.
|
||
//
|
||
// In non-default bases, level 0 is the same and we alternate between
|
||
// interval *= 1 (for consistency) and interval *= base.
|
||
|
||
func (s *Linear) guessLevel() int {
|
||
return 2 * int(math.Log(s.Max-s.Min)/math.Log(float64(s.ebase())))
|
||
}
|
||
|
||
func (s *Linear) spacingAtLevel(level int, roundOut bool) (firstN, lastN, spacing float64) {
|
||
// Watch out! Integer division is round toward zero, but we
|
||
// need round down, and modulus is signed.
|
||
exp, double := math.Floor(float64(level)/2), (level%2 == 1 || level%2 == -1)
|
||
spacing = math.Pow(float64(s.ebase()), exp)
|
||
if double && s.Base == 0 {
|
||
spacing *= 5
|
||
}
|
||
|
||
// Add a tiny bit of slack to the floor and ceiling below so
|
||
// that rounding errors don't significantly affect tick marks.
|
||
slack := (s.Max - s.Min) * 1e-10
|
||
|
||
if roundOut {
|
||
firstN = math.Floor((s.Min + slack) / spacing)
|
||
lastN = math.Ceil((s.Max - slack) / spacing)
|
||
} else {
|
||
firstN = math.Ceil((s.Min - slack) / spacing)
|
||
lastN = math.Floor((s.Max + slack) / spacing)
|
||
}
|
||
return
|
||
}
|
||
|
||
// CountTicks returns the number of ticks in [s.Min, s.Max] at the
|
||
// given tick level.
|
||
func (s Linear) CountTicks(level int) int {
|
||
return linearTicker{&s, false}.CountTicks(level)
|
||
}
|
||
|
||
// TicksAtLevel returns the tick locations in [s.Min, s.Max] as a
|
||
// []float64 at the given tick level in ascending order.
|
||
func (s Linear) TicksAtLevel(level int) interface{} {
|
||
return linearTicker{&s, false}.TicksAtLevel(level)
|
||
}
|
||
|
||
type linearTicker struct {
|
||
s *Linear
|
||
roundOut bool
|
||
}
|
||
|
||
func (t linearTicker) CountTicks(level int) int {
|
||
firstN, lastN, _ := t.s.spacingAtLevel(level, t.roundOut)
|
||
return int(lastN - firstN + 1)
|
||
}
|
||
|
||
func (t linearTicker) TicksAtLevel(level int) interface{} {
|
||
firstN, lastN, spacing := t.s.spacingAtLevel(level, t.roundOut)
|
||
n := int(lastN - firstN + 1)
|
||
return vec.Linspace(firstN*spacing, lastN*spacing, n)
|
||
}
|
||
|
||
func (s Linear) Ticks(o TickOptions) (major, minor []float64) {
|
||
if o.Max <= 0 {
|
||
return nil, nil
|
||
} else if s.Min == s.Max {
|
||
return []float64{s.Min}, []float64{s.Min}
|
||
} else if s.Min > s.Max {
|
||
s.Min, s.Max = s.Max, s.Min
|
||
}
|
||
|
||
level, ok := o.FindLevel(linearTicker{&s, false}, s.guessLevel())
|
||
if !ok {
|
||
return nil, nil
|
||
}
|
||
return s.TicksAtLevel(level).([]float64), s.TicksAtLevel(level - 1).([]float64)
|
||
}
|
||
|
||
func (s *Linear) Nice(o TickOptions) {
|
||
if s.Min == s.Max {
|
||
s.Min -= 0.5
|
||
s.Max += 0.5
|
||
} else if s.Min > s.Max {
|
||
s.Min, s.Max = s.Max, s.Min
|
||
}
|
||
|
||
level, ok := o.FindLevel(linearTicker{s, true}, s.guessLevel())
|
||
if !ok {
|
||
return
|
||
}
|
||
|
||
firstN, lastN, spacing := s.spacingAtLevel(level, true)
|
||
s.Min = firstN * spacing
|
||
s.Max = lastN * spacing
|
||
}
|