226 lines
5.0 KiB
Go
226 lines
5.0 KiB
Go
// Copyright 2015 The Go Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package scale
|
||
|
||
import "math"
|
||
|
||
type Log struct {
|
||
private struct{}
|
||
|
||
// Min and Max specify the lower and upper bounds of the input
|
||
// domain. The input range [Min, Max] will be mapped to the
|
||
// output range [0, 1]. The range [Min, Max] must not include
|
||
// 0.
|
||
Min, Max float64
|
||
|
||
// Base specifies the base of the logarithm for computing
|
||
// ticks. Ticks will be placed at Base^((2^l)*n) for tick
|
||
// level l ∈ ℕ and n ∈ ℤ. Typically l is 0, in which case this
|
||
// is simply Base^n.
|
||
Base int
|
||
|
||
// If Clamp is true, the input is clamped to [Min, Max].
|
||
Clamp bool
|
||
|
||
// TODO: Let the user specify the minor ticks. Default to [1,
|
||
// .. 9], but [1, 3] and [1, 2, 5] are common.
|
||
}
|
||
|
||
// *Log is a Quantitative scale.
|
||
var _ Quantitative = &Log{}
|
||
|
||
// NewLog constructs a Log scale. If the arguments are out of range,
|
||
// it returns a RangeErr.
|
||
func NewLog(min, max float64, base int) (Log, error) {
|
||
if min > max {
|
||
min, max = max, min
|
||
}
|
||
|
||
if base <= 1 {
|
||
return Log{}, RangeErr("Log scale base must be 2 or more")
|
||
}
|
||
if min <= 0 && max >= 0 {
|
||
return Log{}, RangeErr("Log scale range cannot include 0")
|
||
}
|
||
|
||
return Log{Min: min, Max: max, Base: base}, nil
|
||
}
|
||
|
||
func (s *Log) ebounds() (bool, float64, float64) {
|
||
if s.Min < 0 {
|
||
return true, -s.Max, -s.Min
|
||
}
|
||
return false, s.Min, s.Max
|
||
}
|
||
|
||
func (s Log) Map(x float64) float64 {
|
||
neg, min, max := s.ebounds()
|
||
if neg {
|
||
x = -x
|
||
}
|
||
if x <= 0 {
|
||
return math.NaN()
|
||
}
|
||
if min == max {
|
||
return 0.5
|
||
}
|
||
|
||
logMin, logMax := math.Log(min), math.Log(max)
|
||
y := (math.Log(x) - logMin) / (logMax - logMin)
|
||
if neg {
|
||
y = 1 - y
|
||
}
|
||
if s.Clamp {
|
||
y = clamp(y)
|
||
}
|
||
return y
|
||
}
|
||
|
||
func (s Log) Unmap(y float64) float64 {
|
||
neg, min, max := s.ebounds()
|
||
if neg {
|
||
y = 1 - y
|
||
}
|
||
logMin, logMax := math.Log(min), math.Log(max)
|
||
x := math.Exp(y*(logMax-logMin) + logMin)
|
||
if neg {
|
||
x = -x
|
||
}
|
||
return x
|
||
}
|
||
|
||
func (s *Log) SetClamp(clamp bool) {
|
||
s.Clamp = clamp
|
||
}
|
||
|
||
// The tick levels are:
|
||
//
|
||
// Level 0 is a major tick at Base^n (1, 10, 100, ...)
|
||
// Level 1 is a major tick at Base^(2*n) (1, 100, 10000, ...)
|
||
// Level 2 is a major tick at Base^(4*n) (1, 10000, 100000000, ...)
|
||
//
|
||
// That is, each level eliminates every other tick. Levels below 0 are
|
||
// not defined.
|
||
|
||
func logb(x float64, b float64) float64 {
|
||
return math.Log(x) / math.Log(b)
|
||
}
|
||
|
||
func (s *Log) spacingAtLevel(level int, roundOut bool) (firstN, lastN, ebase float64) {
|
||
_, min, max := s.ebounds()
|
||
|
||
// Compute the effective base at this level.
|
||
ebase = math.Pow(float64(s.Base), math.Pow(2, float64(level)))
|
||
lmin, lmax := logb(min, ebase), logb(max, ebase)
|
||
|
||
// Add a tiny bit of slack to the floor and ceiling so that
|
||
// rounding errors don't significantly affect tick marks.
|
||
slack := (lmax - lmin) * 1e-10
|
||
|
||
if roundOut {
|
||
firstN = math.Floor(lmin + slack)
|
||
lastN = math.Ceil(lmax - slack)
|
||
} else {
|
||
firstN = math.Ceil(lmin - slack)
|
||
lastN = math.Floor(lmax + slack)
|
||
}
|
||
|
||
return
|
||
}
|
||
|
||
func (s *Log) CountTicks(level int) int {
|
||
return logTicker{s, false}.CountTicks(level)
|
||
}
|
||
|
||
func (s *Log) TicksAtLevel(level int) interface{} {
|
||
return logTicker{s, false}.TicksAtLevel(level)
|
||
}
|
||
|
||
type logTicker struct {
|
||
s *Log
|
||
roundOut bool
|
||
}
|
||
|
||
func (t logTicker) CountTicks(level int) int {
|
||
if level < 0 {
|
||
const maxInt = int(^uint(0) >> 1)
|
||
return maxInt
|
||
}
|
||
|
||
firstN, lastN, _ := t.s.spacingAtLevel(level, t.roundOut)
|
||
return int(lastN - firstN + 1)
|
||
}
|
||
|
||
func (t logTicker) TicksAtLevel(level int) interface{} {
|
||
neg, min, max := t.s.ebounds()
|
||
ticks := []float64{}
|
||
|
||
if level < 0 {
|
||
// Minor ticks for level 0. Get the major
|
||
// ticks, but round out so we can fill in
|
||
// minor ticks outside of the major ticks.
|
||
firstN, lastN, _ := t.s.spacingAtLevel(0, true)
|
||
for n := firstN; n <= lastN; n++ {
|
||
tick := math.Pow(float64(t.s.Base), n)
|
||
step := tick
|
||
for i := 0; i < t.s.Base-1; i++ {
|
||
if min <= tick && tick <= max {
|
||
ticks = append(ticks, tick)
|
||
}
|
||
tick += step
|
||
}
|
||
}
|
||
} else {
|
||
firstN, lastN, base := t.s.spacingAtLevel(level, t.roundOut)
|
||
for n := firstN; n <= lastN; n++ {
|
||
ticks = append(ticks, math.Pow(base, n))
|
||
}
|
||
}
|
||
|
||
if neg {
|
||
// Negate and reverse order of ticks.
|
||
for i := 0; i < (len(ticks)+1)/2; i++ {
|
||
j := len(ticks) - i - 1
|
||
ticks[i], ticks[j] = -ticks[j], -ticks[i]
|
||
}
|
||
}
|
||
|
||
return ticks
|
||
}
|
||
|
||
func (s Log) Ticks(o TickOptions) (major, minor []float64) {
|
||
if o.Max <= 0 {
|
||
return nil, nil
|
||
} else if s.Min == s.Max {
|
||
return []float64{s.Min}, []float64{s.Max}
|
||
}
|
||
t := logTicker{&s, false}
|
||
|
||
level, ok := o.FindLevel(t, 0)
|
||
if !ok {
|
||
return nil, nil
|
||
}
|
||
return t.TicksAtLevel(level).([]float64), t.TicksAtLevel(level - 1).([]float64)
|
||
}
|
||
|
||
func (s *Log) Nice(o TickOptions) {
|
||
if s.Min == s.Max {
|
||
return
|
||
}
|
||
neg, _, _ := s.ebounds()
|
||
t := logTicker{s, true}
|
||
|
||
level, ok := o.FindLevel(t, 0)
|
||
if !ok {
|
||
return
|
||
}
|
||
firstN, lastN, base := s.spacingAtLevel(level, true)
|
||
s.Min = math.Pow(base, firstN)
|
||
s.Max = math.Pow(base, lastN)
|
||
if neg {
|
||
s.Min, s.Max = -s.Max, -s.Min
|
||
}
|
||
}
|