route/vendor/github.com/xtaci/kcp-go/kcp_test.go

304 lines
7.0 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

package kcp
import (
"bytes"
"container/list"
"encoding/binary"
"fmt"
"math/rand"
"sync"
"testing"
"time"
)
func iclock() int32 {
return int32((time.Now().UnixNano() / 1000000) & 0xffffffff)
}
type DelayPacket struct {
_ptr []byte
_size int
_ts int32
}
func (p *DelayPacket) Init(size int, src []byte) {
p._ptr = make([]byte, size)
p._size = size
copy(p._ptr, src[:size])
}
func (p *DelayPacket) ptr() []byte { return p._ptr }
func (p *DelayPacket) size() int { return p._size }
func (p *DelayPacket) ts() int32 { return p._ts }
func (p *DelayPacket) setts(ts int32) { p._ts = ts }
type DelayTunnel struct{ *list.List }
type Random *rand.Rand
type LatencySimulator struct {
current int32
lostrate, rttmin, rttmax, nmax int
p12 DelayTunnel
p21 DelayTunnel
r12 *rand.Rand
r21 *rand.Rand
}
// lostrate: 往返一周丢包率的百分比,默认 10%
// rttminrtt最小值默认 60
// rttmaxrtt最大值默认 125
//func (p *LatencySimulator)Init(int lostrate = 10, int rttmin = 60, int rttmax = 125, int nmax = 1000):
func (p *LatencySimulator) Init(lostrate, rttmin, rttmax, nmax int) {
p.r12 = rand.New(rand.NewSource(9))
p.r21 = rand.New(rand.NewSource(99))
p.p12 = DelayTunnel{list.New()}
p.p21 = DelayTunnel{list.New()}
p.current = iclock()
p.lostrate = lostrate / 2 // 上面数据是往返丢包率单程除以2
p.rttmin = rttmin / 2
p.rttmax = rttmax / 2
p.nmax = nmax
}
// 发送数据
// peer - 端点0/1从0发送从1接收从1发送从0接收
func (p *LatencySimulator) send(peer int, data []byte, size int) int {
rnd := 0
if peer == 0 {
rnd = p.r12.Intn(100)
} else {
rnd = p.r21.Intn(100)
}
//println("!!!!!!!!!!!!!!!!!!!!", rnd, p.lostrate, peer)
if rnd < p.lostrate {
return 0
}
pkt := &DelayPacket{}
pkt.Init(size, data)
p.current = iclock()
delay := p.rttmin
if p.rttmax > p.rttmin {
delay += rand.Int() % (p.rttmax - p.rttmin)
}
pkt.setts(p.current + int32(delay))
if peer == 0 {
p.p12.PushBack(pkt)
} else {
p.p21.PushBack(pkt)
}
return 1
}
// 接收数据
func (p *LatencySimulator) recv(peer int, data []byte, maxsize int) int32 {
var it *list.Element
if peer == 0 {
it = p.p21.Front()
if p.p21.Len() == 0 {
return -1
}
} else {
it = p.p12.Front()
if p.p12.Len() == 0 {
return -1
}
}
pkt := it.Value.(*DelayPacket)
p.current = iclock()
if p.current < pkt.ts() {
return -2
}
if maxsize < pkt.size() {
return -3
}
if peer == 0 {
p.p21.Remove(it)
} else {
p.p12.Remove(it)
}
maxsize = pkt.size()
copy(data, pkt.ptr()[:maxsize])
return int32(maxsize)
}
//=====================================================================
//=====================================================================
// 模拟网络
var vnet *LatencySimulator
// 测试用例
func test(mode int) {
// 创建模拟网络丢包率10%Rtt 60ms~125ms
vnet = &LatencySimulator{}
vnet.Init(10, 60, 125, 1000)
// 创建两个端点的 kcp对象第一个参数 conv是会话编号同一个会话需要相同
// 最后一个是 user参数用来传递标识
output1 := func(buf []byte, size int) {
if vnet.send(0, buf, size) != 1 {
}
}
output2 := func(buf []byte, size int) {
if vnet.send(1, buf, size) != 1 {
}
}
kcp1 := NewKCP(0x11223344, output1)
kcp2 := NewKCP(0x11223344, output2)
current := uint32(iclock())
slap := current + 20
index := 0
next := 0
var sumrtt uint32
count := 0
maxrtt := 0
// 配置窗口大小平均延迟200ms每20ms发送一个包
// 而考虑到丢包重发设置最大收发窗口为128
kcp1.WndSize(128, 128)
kcp2.WndSize(128, 128)
// 判断测试用例的模式
if mode == 0 {
// 默认模式
kcp1.NoDelay(0, 10, 0, 0)
kcp2.NoDelay(0, 10, 0, 0)
} else if mode == 1 {
// 普通模式,关闭流控等
kcp1.NoDelay(0, 10, 0, 1)
kcp2.NoDelay(0, 10, 0, 1)
} else {
// 启动快速模式
// 第二个参数 nodelay-启用以后若干常规加速将启动
// 第三个参数 interval为内部处理时钟默认设置为 10ms
// 第四个参数 resend为快速重传指标设置为2
// 第五个参数 为是否禁用常规流控,这里禁止
kcp1.NoDelay(1, 10, 2, 1)
kcp2.NoDelay(1, 10, 2, 1)
}
buffer := make([]byte, 2000)
var hr int32
ts1 := iclock()
for {
time.Sleep(1 * time.Millisecond)
current = uint32(iclock())
kcp1.Update()
kcp2.Update()
// 每隔 20mskcp1发送数据
for ; current >= slap; slap += 20 {
buf := new(bytes.Buffer)
binary.Write(buf, binary.LittleEndian, uint32(index))
index++
binary.Write(buf, binary.LittleEndian, uint32(current))
// 发送上层协议包
kcp1.Send(buf.Bytes())
//println("now", iclock())
}
// 处理虚拟网络检测是否有udp包从p1->p2
for {
hr = vnet.recv(1, buffer, 2000)
if hr < 0 {
break
}
// 如果 p2收到udp则作为下层协议输入到kcp2
kcp2.Input(buffer[:hr], true, false)
}
// 处理虚拟网络检测是否有udp包从p2->p1
for {
hr = vnet.recv(0, buffer, 2000)
if hr < 0 {
break
}
// 如果 p1收到udp则作为下层协议输入到kcp1
kcp1.Input(buffer[:hr], true, false)
//println("@@@@", hr, r)
}
// kcp2接收到任何包都返回回去
for {
hr = int32(kcp2.Recv(buffer[:10]))
// 没有收到包就退出
if hr < 0 {
break
}
// 如果收到包就回射
buf := bytes.NewReader(buffer)
var sn uint32
binary.Read(buf, binary.LittleEndian, &sn)
kcp2.Send(buffer[:hr])
}
// kcp1收到kcp2的回射数据
for {
hr = int32(kcp1.Recv(buffer[:10]))
buf := bytes.NewReader(buffer)
// 没有收到包就退出
if hr < 0 {
break
}
var sn uint32
var ts, rtt uint32
binary.Read(buf, binary.LittleEndian, &sn)
binary.Read(buf, binary.LittleEndian, &ts)
rtt = uint32(current) - ts
if sn != uint32(next) {
// 如果收到的包不连续
//for i:=0;i<8 ;i++ {
//println("---", i, buffer[i])
//}
println("ERROR sn ", count, "<->", next, sn)
return
}
next++
sumrtt += rtt
count++
if rtt > uint32(maxrtt) {
maxrtt = int(rtt)
}
//println("[RECV] mode=", mode, " sn=", sn, " rtt=", rtt)
}
if next > 100 {
break
}
}
ts1 = iclock() - ts1
names := []string{"default", "normal", "fast"}
fmt.Printf("%s mode result (%dms):\n", names[mode], ts1)
fmt.Printf("avgrtt=%d maxrtt=%d\n", int(sumrtt/uint32(count)), maxrtt)
}
func TestNetwork(t *testing.T) {
test(0) // 默认模式,类似 TCP正常模式无快速重传常规流控
test(1) // 普通模式,关闭流控等
test(2) // 快速模式,所有开关都打开,且关闭流控
}
func BenchmarkFlush(b *testing.B) {
kcp := NewKCP(1, func(buf []byte, size int) {})
kcp.snd_buf = make([]segment, 32)
for k := range kcp.snd_buf {
kcp.snd_buf[k].xmit = 1
kcp.snd_buf[k].resendts = currentMs() + 10000
}
b.ResetTimer()
b.ReportAllocs()
var mu sync.Mutex
for i := 0; i < b.N; i++ {
mu.Lock()
kcp.flush(false)
mu.Unlock()
}
}