route/vendor/github.com/hashicorp/terraform/config/config.go

1198 lines
29 KiB
Go

// The config package is responsible for loading and validating the
// configuration.
package config
import (
"fmt"
"regexp"
"strconv"
"strings"
hcl2 "github.com/hashicorp/hcl2/hcl"
"github.com/hashicorp/hil/ast"
"github.com/hashicorp/terraform/helper/hilmapstructure"
"github.com/hashicorp/terraform/plugin/discovery"
"github.com/hashicorp/terraform/tfdiags"
"github.com/mitchellh/reflectwalk"
)
// NameRegexp is the regular expression that all names (modules, providers,
// resources, etc.) must follow.
var NameRegexp = regexp.MustCompile(`(?i)\A[A-Z0-9_][A-Z0-9\-\_]*\z`)
// Config is the configuration that comes from loading a collection
// of Terraform templates.
type Config struct {
// Dir is the path to the directory where this configuration was
// loaded from. If it is blank, this configuration wasn't loaded from
// any meaningful directory.
Dir string
Terraform *Terraform
Atlas *AtlasConfig
Modules []*Module
ProviderConfigs []*ProviderConfig
Resources []*Resource
Variables []*Variable
Locals []*Local
Outputs []*Output
// The fields below can be filled in by loaders for validation
// purposes.
unknownKeys []string
}
// AtlasConfig is the configuration for building in HashiCorp's Atlas.
type AtlasConfig struct {
Name string
Include []string
Exclude []string
}
// Module is a module used within a configuration.
//
// This does not represent a module itself, this represents a module
// call-site within an existing configuration.
type Module struct {
Name string
Source string
Version string
Providers map[string]string
RawConfig *RawConfig
}
// ProviderConfig is the configuration for a resource provider.
//
// For example, Terraform needs to set the AWS access keys for the AWS
// resource provider.
type ProviderConfig struct {
Name string
Alias string
Version string
RawConfig *RawConfig
}
// A resource represents a single Terraform resource in the configuration.
// A Terraform resource is something that supports some or all of the
// usual "create, read, update, delete" operations, depending on
// the given Mode.
type Resource struct {
Mode ResourceMode // which operations the resource supports
Name string
Type string
RawCount *RawConfig
RawConfig *RawConfig
Provisioners []*Provisioner
Provider string
DependsOn []string
Lifecycle ResourceLifecycle
}
// Copy returns a copy of this Resource. Helpful for avoiding shared
// config pointers across multiple pieces of the graph that need to do
// interpolation.
func (r *Resource) Copy() *Resource {
n := &Resource{
Mode: r.Mode,
Name: r.Name,
Type: r.Type,
RawCount: r.RawCount.Copy(),
RawConfig: r.RawConfig.Copy(),
Provisioners: make([]*Provisioner, 0, len(r.Provisioners)),
Provider: r.Provider,
DependsOn: make([]string, len(r.DependsOn)),
Lifecycle: *r.Lifecycle.Copy(),
}
for _, p := range r.Provisioners {
n.Provisioners = append(n.Provisioners, p.Copy())
}
copy(n.DependsOn, r.DependsOn)
return n
}
// ResourceLifecycle is used to store the lifecycle tuning parameters
// to allow customized behavior
type ResourceLifecycle struct {
CreateBeforeDestroy bool `mapstructure:"create_before_destroy"`
PreventDestroy bool `mapstructure:"prevent_destroy"`
IgnoreChanges []string `mapstructure:"ignore_changes"`
}
// Copy returns a copy of this ResourceLifecycle
func (r *ResourceLifecycle) Copy() *ResourceLifecycle {
n := &ResourceLifecycle{
CreateBeforeDestroy: r.CreateBeforeDestroy,
PreventDestroy: r.PreventDestroy,
IgnoreChanges: make([]string, len(r.IgnoreChanges)),
}
copy(n.IgnoreChanges, r.IgnoreChanges)
return n
}
// Provisioner is a configured provisioner step on a resource.
type Provisioner struct {
Type string
RawConfig *RawConfig
ConnInfo *RawConfig
When ProvisionerWhen
OnFailure ProvisionerOnFailure
}
// Copy returns a copy of this Provisioner
func (p *Provisioner) Copy() *Provisioner {
return &Provisioner{
Type: p.Type,
RawConfig: p.RawConfig.Copy(),
ConnInfo: p.ConnInfo.Copy(),
When: p.When,
OnFailure: p.OnFailure,
}
}
// Variable is a module argument defined within the configuration.
type Variable struct {
Name string
DeclaredType string `mapstructure:"type"`
Default interface{}
Description string
}
// Local is a local value defined within the configuration.
type Local struct {
Name string
RawConfig *RawConfig
}
// Output is an output defined within the configuration. An output is
// resulting data that is highlighted by Terraform when finished. An
// output marked Sensitive will be output in a masked form following
// application, but will still be available in state.
type Output struct {
Name string
DependsOn []string
Description string
Sensitive bool
RawConfig *RawConfig
}
// VariableType is the type of value a variable is holding, and returned
// by the Type() function on variables.
type VariableType byte
const (
VariableTypeUnknown VariableType = iota
VariableTypeString
VariableTypeList
VariableTypeMap
)
func (v VariableType) Printable() string {
switch v {
case VariableTypeString:
return "string"
case VariableTypeMap:
return "map"
case VariableTypeList:
return "list"
default:
return "unknown"
}
}
// ProviderConfigName returns the name of the provider configuration in
// the given mapping that maps to the proper provider configuration
// for this resource.
func ProviderConfigName(t string, pcs []*ProviderConfig) string {
lk := ""
for _, v := range pcs {
k := v.Name
if strings.HasPrefix(t, k) && len(k) > len(lk) {
lk = k
}
}
return lk
}
// A unique identifier for this module.
func (r *Module) Id() string {
return fmt.Sprintf("%s", r.Name)
}
// Count returns the count of this resource.
func (r *Resource) Count() (int, error) {
raw := r.RawCount.Value()
count, ok := r.RawCount.Value().(string)
if !ok {
return 0, fmt.Errorf(
"expected count to be a string or int, got %T", raw)
}
v, err := strconv.ParseInt(count, 0, 0)
if err != nil {
return 0, err
}
return int(v), nil
}
// A unique identifier for this resource.
func (r *Resource) Id() string {
switch r.Mode {
case ManagedResourceMode:
return fmt.Sprintf("%s.%s", r.Type, r.Name)
case DataResourceMode:
return fmt.Sprintf("data.%s.%s", r.Type, r.Name)
default:
panic(fmt.Errorf("unknown resource mode %s", r.Mode))
}
}
// ProviderFullName returns the full name of the provider for this resource,
// which may either be specified explicitly using the "provider" meta-argument
// or implied by the prefix on the resource type name.
func (r *Resource) ProviderFullName() string {
return ResourceProviderFullName(r.Type, r.Provider)
}
// ResourceProviderFullName returns the full (dependable) name of the
// provider for a hypothetical resource with the given resource type and
// explicit provider string. If the explicit provider string is empty then
// the provider name is inferred from the resource type name.
func ResourceProviderFullName(resourceType, explicitProvider string) string {
if explicitProvider != "" {
// check for an explicit provider name, or return the original
parts := strings.SplitAfter(explicitProvider, "provider.")
return parts[len(parts)-1]
}
idx := strings.IndexRune(resourceType, '_')
if idx == -1 {
// If no underscores, the resource name is assumed to be
// also the provider name, e.g. if the provider exposes
// only a single resource of each type.
return resourceType
}
return resourceType[:idx]
}
// Validate does some basic semantic checking of the configuration.
func (c *Config) Validate() tfdiags.Diagnostics {
if c == nil {
return nil
}
var diags tfdiags.Diagnostics
for _, k := range c.unknownKeys {
diags = diags.Append(
fmt.Errorf("Unknown root level key: %s", k),
)
}
// Validate the Terraform config
if tf := c.Terraform; tf != nil {
errs := c.Terraform.Validate()
for _, err := range errs {
diags = diags.Append(err)
}
}
vars := c.InterpolatedVariables()
varMap := make(map[string]*Variable)
for _, v := range c.Variables {
if _, ok := varMap[v.Name]; ok {
diags = diags.Append(fmt.Errorf(
"Variable '%s': duplicate found. Variable names must be unique.",
v.Name,
))
}
varMap[v.Name] = v
}
for k, _ := range varMap {
if !NameRegexp.MatchString(k) {
diags = diags.Append(fmt.Errorf(
"variable %q: variable name must match regular expression %s",
k, NameRegexp,
))
}
}
for _, v := range c.Variables {
if v.Type() == VariableTypeUnknown {
diags = diags.Append(fmt.Errorf(
"Variable '%s': must be a string or a map",
v.Name,
))
continue
}
interp := false
fn := func(n ast.Node) (interface{}, error) {
// LiteralNode is a literal string (outside of a ${ ... } sequence).
// interpolationWalker skips most of these. but in particular it
// visits those that have escaped sequences (like $${foo}) as a
// signal that *some* processing is required on this string. For
// our purposes here though, this is fine and not an interpolation.
if _, ok := n.(*ast.LiteralNode); !ok {
interp = true
}
return "", nil
}
w := &interpolationWalker{F: fn}
if v.Default != nil {
if err := reflectwalk.Walk(v.Default, w); err == nil {
if interp {
diags = diags.Append(fmt.Errorf(
"variable %q: default may not contain interpolations",
v.Name,
))
}
}
}
}
// Check for references to user variables that do not actually
// exist and record those errors.
for source, vs := range vars {
for _, v := range vs {
uv, ok := v.(*UserVariable)
if !ok {
continue
}
if _, ok := varMap[uv.Name]; !ok {
diags = diags.Append(fmt.Errorf(
"%s: unknown variable referenced: '%s'; define it with a 'variable' block",
source,
uv.Name,
))
}
}
}
// Check that all count variables are valid.
for source, vs := range vars {
for _, rawV := range vs {
switch v := rawV.(type) {
case *CountVariable:
if v.Type == CountValueInvalid {
diags = diags.Append(fmt.Errorf(
"%s: invalid count variable: %s",
source,
v.FullKey(),
))
}
case *PathVariable:
if v.Type == PathValueInvalid {
diags = diags.Append(fmt.Errorf(
"%s: invalid path variable: %s",
source,
v.FullKey(),
))
}
}
}
}
// Check that providers aren't declared multiple times and that their
// version constraints, where present, are syntactically valid.
providerSet := make(map[string]bool)
for _, p := range c.ProviderConfigs {
name := p.FullName()
if _, ok := providerSet[name]; ok {
diags = diags.Append(fmt.Errorf(
"provider.%s: multiple configurations present; only one configuration is allowed per provider",
name,
))
continue
}
if p.Version != "" {
_, err := discovery.ConstraintStr(p.Version).Parse()
if err != nil {
diags = diags.Append(&hcl2.Diagnostic{
Severity: hcl2.DiagError,
Summary: "Invalid provider version constraint",
Detail: fmt.Sprintf(
"The value %q given for provider.%s is not a valid version constraint.",
p.Version, name,
),
// TODO: include a "Subject" source reference in here,
// once the config loader is able to retain source
// location information.
})
}
}
providerSet[name] = true
}
// Check that all references to modules are valid
modules := make(map[string]*Module)
dupped := make(map[string]struct{})
for _, m := range c.Modules {
// Check for duplicates
if _, ok := modules[m.Id()]; ok {
if _, ok := dupped[m.Id()]; !ok {
dupped[m.Id()] = struct{}{}
diags = diags.Append(fmt.Errorf(
"module %q: module repeated multiple times",
m.Id(),
))
}
// Already seen this module, just skip it
continue
}
modules[m.Id()] = m
// Check that the source has no interpolations
rc, err := NewRawConfig(map[string]interface{}{
"root": m.Source,
})
if err != nil {
diags = diags.Append(fmt.Errorf(
"module %q: module source error: %s",
m.Id(), err,
))
} else if len(rc.Interpolations) > 0 {
diags = diags.Append(fmt.Errorf(
"module %q: module source cannot contain interpolations",
m.Id(),
))
}
// Check that the name matches our regexp
if !NameRegexp.Match([]byte(m.Name)) {
diags = diags.Append(fmt.Errorf(
"module %q: module name must be a letter or underscore followed by only letters, numbers, dashes, and underscores",
m.Id(),
))
}
// Check that the configuration can all be strings, lists or maps
raw := make(map[string]interface{})
for k, v := range m.RawConfig.Raw {
var strVal string
if err := hilmapstructure.WeakDecode(v, &strVal); err == nil {
raw[k] = strVal
continue
}
var mapVal map[string]interface{}
if err := hilmapstructure.WeakDecode(v, &mapVal); err == nil {
raw[k] = mapVal
continue
}
var sliceVal []interface{}
if err := hilmapstructure.WeakDecode(v, &sliceVal); err == nil {
raw[k] = sliceVal
continue
}
diags = diags.Append(fmt.Errorf(
"module %q: argument %s must have a string, list, or map value",
m.Id(), k,
))
}
// Check for invalid count variables
for _, v := range m.RawConfig.Variables {
switch v.(type) {
case *CountVariable:
diags = diags.Append(fmt.Errorf(
"module %q: count variables are only valid within resources",
m.Name,
))
case *SelfVariable:
diags = diags.Append(fmt.Errorf(
"module %q: self variables are only valid within resources",
m.Name,
))
}
}
// Update the raw configuration to only contain the string values
m.RawConfig, err = NewRawConfig(raw)
if err != nil {
diags = diags.Append(fmt.Errorf(
"%s: can't initialize configuration: %s",
m.Id(), err,
))
}
// check that all named providers actually exist
for _, p := range m.Providers {
if !providerSet[p] {
diags = diags.Append(fmt.Errorf(
"module %q: cannot pass non-existent provider %q",
m.Name, p,
))
}
}
}
dupped = nil
// Check that all variables for modules reference modules that
// exist.
for source, vs := range vars {
for _, v := range vs {
mv, ok := v.(*ModuleVariable)
if !ok {
continue
}
if _, ok := modules[mv.Name]; !ok {
diags = diags.Append(fmt.Errorf(
"%s: unknown module referenced: %s",
source, mv.Name,
))
}
}
}
// Check that all references to resources are valid
resources := make(map[string]*Resource)
dupped = make(map[string]struct{})
for _, r := range c.Resources {
if _, ok := resources[r.Id()]; ok {
if _, ok := dupped[r.Id()]; !ok {
dupped[r.Id()] = struct{}{}
diags = diags.Append(fmt.Errorf(
"%s: resource repeated multiple times",
r.Id(),
))
}
}
resources[r.Id()] = r
}
dupped = nil
// Validate resources
for n, r := range resources {
// Verify count variables
for _, v := range r.RawCount.Variables {
switch v.(type) {
case *CountVariable:
diags = diags.Append(fmt.Errorf(
"%s: resource count can't reference count variable: %s",
n, v.FullKey(),
))
case *SimpleVariable:
diags = diags.Append(fmt.Errorf(
"%s: resource count can't reference variable: %s",
n, v.FullKey(),
))
// Good
case *ModuleVariable:
case *ResourceVariable:
case *TerraformVariable:
case *UserVariable:
case *LocalVariable:
default:
diags = diags.Append(fmt.Errorf(
"Internal error. Unknown type in count var in %s: %T",
n, v,
))
}
}
if !r.RawCount.couldBeInteger() {
diags = diags.Append(fmt.Errorf(
"%s: resource count must be an integer", n,
))
}
r.RawCount.init()
// Validate DependsOn
for _, err := range c.validateDependsOn(n, r.DependsOn, resources, modules) {
diags = diags.Append(err)
}
// Verify provisioners
for _, p := range r.Provisioners {
// This validation checks that there are no splat variables
// referencing ourself. This currently is not allowed.
for _, v := range p.ConnInfo.Variables {
rv, ok := v.(*ResourceVariable)
if !ok {
continue
}
if rv.Multi && rv.Index == -1 && rv.Type == r.Type && rv.Name == r.Name {
diags = diags.Append(fmt.Errorf(
"%s: connection info cannot contain splat variable referencing itself",
n,
))
break
}
}
for _, v := range p.RawConfig.Variables {
rv, ok := v.(*ResourceVariable)
if !ok {
continue
}
if rv.Multi && rv.Index == -1 && rv.Type == r.Type && rv.Name == r.Name {
diags = diags.Append(fmt.Errorf(
"%s: connection info cannot contain splat variable referencing itself",
n,
))
break
}
}
// Check for invalid when/onFailure values, though this should be
// picked up by the loader we check here just in case.
if p.When == ProvisionerWhenInvalid {
diags = diags.Append(fmt.Errorf(
"%s: provisioner 'when' value is invalid", n,
))
}
if p.OnFailure == ProvisionerOnFailureInvalid {
diags = diags.Append(fmt.Errorf(
"%s: provisioner 'on_failure' value is invalid", n,
))
}
}
// Verify ignore_changes contains valid entries
for _, v := range r.Lifecycle.IgnoreChanges {
if strings.Contains(v, "*") && v != "*" {
diags = diags.Append(fmt.Errorf(
"%s: ignore_changes does not support using a partial string together with a wildcard: %s",
n, v,
))
}
}
// Verify ignore_changes has no interpolations
rc, err := NewRawConfig(map[string]interface{}{
"root": r.Lifecycle.IgnoreChanges,
})
if err != nil {
diags = diags.Append(fmt.Errorf(
"%s: lifecycle ignore_changes error: %s",
n, err,
))
} else if len(rc.Interpolations) > 0 {
diags = diags.Append(fmt.Errorf(
"%s: lifecycle ignore_changes cannot contain interpolations",
n,
))
}
// If it is a data source then it can't have provisioners
if r.Mode == DataResourceMode {
if _, ok := r.RawConfig.Raw["provisioner"]; ok {
diags = diags.Append(fmt.Errorf(
"%s: data sources cannot have provisioners",
n,
))
}
}
}
for source, vs := range vars {
for _, v := range vs {
rv, ok := v.(*ResourceVariable)
if !ok {
continue
}
id := rv.ResourceId()
if _, ok := resources[id]; !ok {
diags = diags.Append(fmt.Errorf(
"%s: unknown resource '%s' referenced in variable %s",
source,
id,
rv.FullKey(),
))
continue
}
}
}
// Check that all locals are valid
{
found := make(map[string]struct{})
for _, l := range c.Locals {
if _, ok := found[l.Name]; ok {
diags = diags.Append(fmt.Errorf(
"%s: duplicate local. local value names must be unique",
l.Name,
))
continue
}
found[l.Name] = struct{}{}
for _, v := range l.RawConfig.Variables {
if _, ok := v.(*CountVariable); ok {
diags = diags.Append(fmt.Errorf(
"local %s: count variables are only valid within resources", l.Name,
))
}
}
}
}
// Check that all outputs are valid
{
found := make(map[string]struct{})
for _, o := range c.Outputs {
// Verify the output is new
if _, ok := found[o.Name]; ok {
diags = diags.Append(fmt.Errorf(
"output %q: an output of this name was already defined",
o.Name,
))
continue
}
found[o.Name] = struct{}{}
var invalidKeys []string
valueKeyFound := false
for k := range o.RawConfig.Raw {
if k == "value" {
valueKeyFound = true
continue
}
if k == "sensitive" {
if sensitive, ok := o.RawConfig.config[k].(bool); ok {
if sensitive {
o.Sensitive = true
}
continue
}
diags = diags.Append(fmt.Errorf(
"output %q: value for 'sensitive' must be boolean",
o.Name,
))
continue
}
if k == "description" {
if desc, ok := o.RawConfig.config[k].(string); ok {
o.Description = desc
continue
}
diags = diags.Append(fmt.Errorf(
"output %q: value for 'description' must be string",
o.Name,
))
continue
}
invalidKeys = append(invalidKeys, k)
}
if len(invalidKeys) > 0 {
diags = diags.Append(fmt.Errorf(
"output %q: invalid keys: %s",
o.Name, strings.Join(invalidKeys, ", "),
))
}
if !valueKeyFound {
diags = diags.Append(fmt.Errorf(
"output %q: missing required 'value' argument", o.Name,
))
}
for _, v := range o.RawConfig.Variables {
if _, ok := v.(*CountVariable); ok {
diags = diags.Append(fmt.Errorf(
"output %q: count variables are only valid within resources",
o.Name,
))
}
}
// Detect a common mistake of using a "count"ed resource in
// an output value without using the splat or index form.
// Prior to 0.11 this error was silently ignored, but outputs
// now have their errors checked like all other contexts.
//
// TODO: Remove this in 0.12.
for _, v := range o.RawConfig.Variables {
rv, ok := v.(*ResourceVariable)
if !ok {
continue
}
// If the variable seems to be treating the referenced
// resource as a singleton (no count specified) then
// we'll check to make sure it is indeed a singleton.
// It's a warning if not.
if rv.Multi || rv.Index != 0 {
// This reference is treating the resource as a
// multi-resource, so the warning doesn't apply.
continue
}
for _, r := range c.Resources {
if r.Id() != rv.ResourceId() {
continue
}
// We test specifically for the raw string "1" here
// because we _do_ want to generate this warning if
// the user has provided an expression that happens
// to return 1 right now, to catch situations where
// a count might dynamically be set to something
// other than 1 and thus splat syntax is still needed
// to be safe.
if r.RawCount != nil && r.RawCount.Raw != nil && r.RawCount.Raw["count"] != "1" && rv.Field != "count" {
diags = diags.Append(tfdiags.SimpleWarning(fmt.Sprintf(
"output %q: must use splat syntax to access %s attribute %q, because it has \"count\" set; use %s.*.%s to obtain a list of the attributes across all instances",
o.Name,
r.Id(), rv.Field,
r.Id(), rv.Field,
)))
}
}
}
}
}
// Validate the self variable
for source, rc := range c.rawConfigs() {
// Ignore provisioners. This is a pretty brittle way to do this,
// but better than also repeating all the resources.
if strings.Contains(source, "provision") {
continue
}
for _, v := range rc.Variables {
if _, ok := v.(*SelfVariable); ok {
diags = diags.Append(fmt.Errorf(
"%s: cannot contain self-reference %s",
source, v.FullKey(),
))
}
}
}
return diags
}
// InterpolatedVariables is a helper that returns a mapping of all the interpolated
// variables within the configuration. This is used to verify references
// are valid in the Validate step.
func (c *Config) InterpolatedVariables() map[string][]InterpolatedVariable {
result := make(map[string][]InterpolatedVariable)
for source, rc := range c.rawConfigs() {
for _, v := range rc.Variables {
result[source] = append(result[source], v)
}
}
return result
}
// rawConfigs returns all of the RawConfigs that are available keyed by
// a human-friendly source.
func (c *Config) rawConfigs() map[string]*RawConfig {
result := make(map[string]*RawConfig)
for _, m := range c.Modules {
source := fmt.Sprintf("module '%s'", m.Name)
result[source] = m.RawConfig
}
for _, pc := range c.ProviderConfigs {
source := fmt.Sprintf("provider config '%s'", pc.Name)
result[source] = pc.RawConfig
}
for _, rc := range c.Resources {
source := fmt.Sprintf("resource '%s'", rc.Id())
result[source+" count"] = rc.RawCount
result[source+" config"] = rc.RawConfig
for i, p := range rc.Provisioners {
subsource := fmt.Sprintf(
"%s provisioner %s (#%d)",
source, p.Type, i+1)
result[subsource] = p.RawConfig
}
}
for _, o := range c.Outputs {
source := fmt.Sprintf("output '%s'", o.Name)
result[source] = o.RawConfig
}
return result
}
func (c *Config) validateDependsOn(
n string,
v []string,
resources map[string]*Resource,
modules map[string]*Module) []error {
// Verify depends on points to resources that all exist
var errs []error
for _, d := range v {
// Check if we contain interpolations
rc, err := NewRawConfig(map[string]interface{}{
"value": d,
})
if err == nil && len(rc.Variables) > 0 {
errs = append(errs, fmt.Errorf(
"%s: depends on value cannot contain interpolations: %s",
n, d))
continue
}
// If it is a module, verify it is a module
if strings.HasPrefix(d, "module.") {
name := d[len("module."):]
if _, ok := modules[name]; !ok {
errs = append(errs, fmt.Errorf(
"%s: resource depends on non-existent module '%s'",
n, name))
}
continue
}
// Check resources
if _, ok := resources[d]; !ok {
errs = append(errs, fmt.Errorf(
"%s: resource depends on non-existent resource '%s'",
n, d))
}
}
return errs
}
func (m *Module) mergerName() string {
return m.Id()
}
func (m *Module) mergerMerge(other merger) merger {
m2 := other.(*Module)
result := *m
result.Name = m2.Name
result.RawConfig = result.RawConfig.merge(m2.RawConfig)
if m2.Source != "" {
result.Source = m2.Source
}
return &result
}
func (o *Output) mergerName() string {
return o.Name
}
func (o *Output) mergerMerge(m merger) merger {
o2 := m.(*Output)
result := *o
result.Name = o2.Name
result.Description = o2.Description
result.RawConfig = result.RawConfig.merge(o2.RawConfig)
result.Sensitive = o2.Sensitive
result.DependsOn = o2.DependsOn
return &result
}
func (c *ProviderConfig) GoString() string {
return fmt.Sprintf("*%#v", *c)
}
func (c *ProviderConfig) FullName() string {
if c.Alias == "" {
return c.Name
}
return fmt.Sprintf("%s.%s", c.Name, c.Alias)
}
func (c *ProviderConfig) mergerName() string {
return c.Name
}
func (c *ProviderConfig) mergerMerge(m merger) merger {
c2 := m.(*ProviderConfig)
result := *c
result.Name = c2.Name
result.RawConfig = result.RawConfig.merge(c2.RawConfig)
if c2.Alias != "" {
result.Alias = c2.Alias
}
return &result
}
func (r *Resource) mergerName() string {
return r.Id()
}
func (r *Resource) mergerMerge(m merger) merger {
r2 := m.(*Resource)
result := *r
result.Mode = r2.Mode
result.Name = r2.Name
result.Type = r2.Type
result.RawConfig = result.RawConfig.merge(r2.RawConfig)
if r2.RawCount.Value() != "1" {
result.RawCount = r2.RawCount
}
if len(r2.Provisioners) > 0 {
result.Provisioners = r2.Provisioners
}
return &result
}
// Merge merges two variables to create a new third variable.
func (v *Variable) Merge(v2 *Variable) *Variable {
// Shallow copy the variable
result := *v
// The names should be the same, but the second name always wins.
result.Name = v2.Name
if v2.DeclaredType != "" {
result.DeclaredType = v2.DeclaredType
}
if v2.Default != nil {
result.Default = v2.Default
}
if v2.Description != "" {
result.Description = v2.Description
}
return &result
}
var typeStringMap = map[string]VariableType{
"string": VariableTypeString,
"map": VariableTypeMap,
"list": VariableTypeList,
}
// Type returns the type of variable this is.
func (v *Variable) Type() VariableType {
if v.DeclaredType != "" {
declaredType, ok := typeStringMap[v.DeclaredType]
if !ok {
return VariableTypeUnknown
}
return declaredType
}
return v.inferTypeFromDefault()
}
// ValidateTypeAndDefault ensures that default variable value is compatible
// with the declared type (if one exists), and that the type is one which is
// known to Terraform
func (v *Variable) ValidateTypeAndDefault() error {
// If an explicit type is declared, ensure it is valid
if v.DeclaredType != "" {
if _, ok := typeStringMap[v.DeclaredType]; !ok {
validTypes := []string{}
for k := range typeStringMap {
validTypes = append(validTypes, k)
}
return fmt.Errorf(
"Variable '%s' type must be one of [%s] - '%s' is not a valid type",
v.Name,
strings.Join(validTypes, ", "),
v.DeclaredType,
)
}
}
if v.DeclaredType == "" || v.Default == nil {
return nil
}
if v.inferTypeFromDefault() != v.Type() {
return fmt.Errorf("'%s' has a default value which is not of type '%s' (got '%s')",
v.Name, v.DeclaredType, v.inferTypeFromDefault().Printable())
}
return nil
}
func (v *Variable) mergerName() string {
return v.Name
}
func (v *Variable) mergerMerge(m merger) merger {
return v.Merge(m.(*Variable))
}
// Required tests whether a variable is required or not.
func (v *Variable) Required() bool {
return v.Default == nil
}
// inferTypeFromDefault contains the logic for the old method of inferring
// variable types - we can also use this for validating that the declared
// type matches the type of the default value
func (v *Variable) inferTypeFromDefault() VariableType {
if v.Default == nil {
return VariableTypeString
}
var s string
if err := hilmapstructure.WeakDecode(v.Default, &s); err == nil {
v.Default = s
return VariableTypeString
}
var m map[string]interface{}
if err := hilmapstructure.WeakDecode(v.Default, &m); err == nil {
v.Default = m
return VariableTypeMap
}
var l []interface{}
if err := hilmapstructure.WeakDecode(v.Default, &l); err == nil {
v.Default = l
return VariableTypeList
}
return VariableTypeUnknown
}
func (m ResourceMode) Taintable() bool {
switch m {
case ManagedResourceMode:
return true
case DataResourceMode:
return false
default:
panic(fmt.Errorf("unsupported ResourceMode value %s", m))
}
}