route/vendor/github.com/lucas-clemente/quic-go/congestion/cubic_test.go

113 lines
4.3 KiB
Go

package congestion
import (
"math"
"time"
"github.com/lucas-clemente/quic-go/protocol"
. "github.com/onsi/ginkgo"
. "github.com/onsi/gomega"
)
const kBeta float32 = 0.7 // Default Cubic backoff factor.
const kNumConnections uint32 = 2
const kNConnectionBeta float32 = (float32(kNumConnections) - 1 + kBeta) / float32(kNumConnections)
const kNConnectionAlpha float32 = 3 * float32(kNumConnections) * float32(kNumConnections) * (1 - kNConnectionBeta) / (1 + kNConnectionBeta)
var _ = Describe("Cubic", func() {
var (
clock mockClock
cubic *Cubic
)
BeforeEach(func() {
clock = mockClock{}
cubic = NewCubic(&clock)
})
It("works above origin", func() {
// Convex growth.
const rtt_min = 100 * time.Millisecond
const rtt_min_s = float32(rtt_min/time.Millisecond) / 1000.0
current_cwnd := protocol.PacketNumber(10)
// Without the signed-integer, cubic-convex fix, we mistakenly
// increment cwnd after only one_ms_ and a single ack.
expected_cwnd := current_cwnd
// Initialize the state.
clock.Advance(time.Millisecond)
initial_time := clock.Now()
current_cwnd = cubic.CongestionWindowAfterAck(current_cwnd, rtt_min)
Expect(current_cwnd).To(Equal(expected_cwnd))
current_cwnd = expected_cwnd
initial_cwnd := current_cwnd
// Normal TCP phase.
// The maximum number of expected reno RTTs can be calculated by
// finding the point where the cubic curve and the reno curve meet.
max_reno_rtts := int(math.Sqrt(float64(kNConnectionAlpha/(0.4*rtt_min_s*rtt_min_s*rtt_min_s))) - 1)
for i := 0; i < max_reno_rtts; i++ {
max_per_ack_cwnd := current_cwnd
for n := uint64(1); n < uint64(float32(max_per_ack_cwnd)/kNConnectionAlpha); n++ {
// Call once per ACK.
next_cwnd := cubic.CongestionWindowAfterAck(current_cwnd, rtt_min)
Expect(next_cwnd).To(Equal(current_cwnd))
}
clock.Advance(100 * time.Millisecond)
current_cwnd = cubic.CongestionWindowAfterAck(current_cwnd, rtt_min)
// When we fix convex mode and the uint64 arithmetic, we
// increase the expected_cwnd only after after the first 100ms,
// rather than after the initial 1ms.
expected_cwnd++
Expect(current_cwnd).To(Equal(expected_cwnd))
}
// Cubic phase.
for i := 0; i < 52; i++ {
for n := protocol.PacketNumber(1); n < current_cwnd; n++ {
// Call once per ACK.
Expect(cubic.CongestionWindowAfterAck(current_cwnd, rtt_min)).To(Equal(current_cwnd))
}
clock.Advance(100 * time.Millisecond)
current_cwnd = cubic.CongestionWindowAfterAck(current_cwnd, rtt_min)
}
// Total time elapsed so far; add min_rtt (0.1s) here as well.
elapsed_time_s := float32(clock.Now().Sub(initial_time)+rtt_min) / float32(time.Second)
// |expected_cwnd| is initial value of cwnd + K * t^3, where K = 0.4.
expected_cwnd = initial_cwnd + protocol.PacketNumber((elapsed_time_s*elapsed_time_s*elapsed_time_s*410)/1024)
Expect(current_cwnd).To(Equal(expected_cwnd))
})
It("manages loss events", func() {
rtt_min := 100 * time.Millisecond
current_cwnd := protocol.PacketNumber(422)
expected_cwnd := current_cwnd
// Initialize the state.
clock.Advance(time.Millisecond)
Expect(cubic.CongestionWindowAfterAck(current_cwnd, rtt_min)).To(Equal(expected_cwnd))
expected_cwnd = protocol.PacketNumber(float32(current_cwnd) * kNConnectionBeta)
Expect(cubic.CongestionWindowAfterPacketLoss(current_cwnd)).To(Equal(expected_cwnd))
expected_cwnd = protocol.PacketNumber(float32(current_cwnd) * kNConnectionBeta)
Expect(cubic.CongestionWindowAfterPacketLoss(current_cwnd)).To(Equal(expected_cwnd))
})
It("works below origin", func() {
// Concave growth.
rtt_min := 100 * time.Millisecond
current_cwnd := protocol.PacketNumber(422)
expected_cwnd := current_cwnd
// Initialize the state.
clock.Advance(time.Millisecond)
Expect(cubic.CongestionWindowAfterAck(current_cwnd, rtt_min)).To(Equal(expected_cwnd))
expected_cwnd = protocol.PacketNumber(float32(current_cwnd) * kNConnectionBeta)
Expect(cubic.CongestionWindowAfterPacketLoss(current_cwnd)).To(Equal(expected_cwnd))
current_cwnd = expected_cwnd
// First update after loss to initialize the epoch.
current_cwnd = cubic.CongestionWindowAfterAck(current_cwnd, rtt_min)
// Cubic phase.
for i := 0; i < 40; i++ {
clock.Advance(100 * time.Millisecond)
current_cwnd = cubic.CongestionWindowAfterAck(current_cwnd, rtt_min)
}
expected_cwnd = 422
Expect(current_cwnd).To(Equal(expected_cwnd))
})
})