package imaging import ( "image" "math" ) type iwpair struct { i int w int32 } type pweights struct { iwpairs []iwpair wsum int32 } func precomputeWeights(dstSize, srcSize int, filter ResampleFilter) []pweights { du := float64(srcSize) / float64(dstSize) scale := du if scale < 1.0 { scale = 1.0 } ru := math.Ceil(scale * filter.Support) out := make([]pweights, dstSize) for v := 0; v < dstSize; v++ { fu := (float64(v)+0.5)*du - 0.5 startu := int(math.Ceil(fu - ru)) if startu < 0 { startu = 0 } endu := int(math.Floor(fu + ru)) if endu > srcSize-1 { endu = srcSize - 1 } wsum := int32(0) for u := startu; u <= endu; u++ { w := int32(0xff * filter.Kernel((float64(u)-fu)/scale)) if w != 0 { wsum += w out[v].iwpairs = append(out[v].iwpairs, iwpair{u, w}) } } out[v].wsum = wsum } return out } // Resize resizes the image to the specified width and height using the specified resampling // filter and returns the transformed image. If one of width or height is 0, the image aspect // ratio is preserved. // // Supported resample filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali, // CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine. // // Usage example: // // dstImage := imaging.Resize(srcImage, 800, 600, imaging.Lanczos) // func Resize(img image.Image, width, height int, filter ResampleFilter) *image.NRGBA { dstW, dstH := width, height if dstW < 0 || dstH < 0 { return &image.NRGBA{} } if dstW == 0 && dstH == 0 { return &image.NRGBA{} } src := toNRGBA(img) srcW := src.Bounds().Max.X srcH := src.Bounds().Max.Y if srcW <= 0 || srcH <= 0 { return &image.NRGBA{} } // if new width or height is 0 then preserve aspect ratio, minimum 1px if dstW == 0 { tmpW := float64(dstH) * float64(srcW) / float64(srcH) dstW = int(math.Max(1.0, math.Floor(tmpW+0.5))) } if dstH == 0 { tmpH := float64(dstW) * float64(srcH) / float64(srcW) dstH = int(math.Max(1.0, math.Floor(tmpH+0.5))) } var dst *image.NRGBA if filter.Support <= 0.0 { // nearest-neighbor special case dst = resizeNearest(src, dstW, dstH) } else { // two-pass resize if srcW != dstW { dst = resizeHorizontal(src, dstW, filter) } else { dst = src } if srcH != dstH { dst = resizeVertical(dst, dstH, filter) } } return dst } func resizeHorizontal(src *image.NRGBA, width int, filter ResampleFilter) *image.NRGBA { srcBounds := src.Bounds() srcW := srcBounds.Max.X srcH := srcBounds.Max.Y dstW := width dstH := srcH dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH)) weights := precomputeWeights(dstW, srcW, filter) parallel(dstH, func(partStart, partEnd int) { for dstY := partStart; dstY < partEnd; dstY++ { for dstX := 0; dstX < dstW; dstX++ { var c [4]int32 for _, iw := range weights[dstX].iwpairs { i := dstY*src.Stride + iw.i*4 c[0] += int32(src.Pix[i+0]) * iw.w c[1] += int32(src.Pix[i+1]) * iw.w c[2] += int32(src.Pix[i+2]) * iw.w c[3] += int32(src.Pix[i+3]) * iw.w } j := dstY*dst.Stride + dstX*4 sum := weights[dstX].wsum dst.Pix[j+0] = clampint32(int32(float32(c[0])/float32(sum) + 0.5)) dst.Pix[j+1] = clampint32(int32(float32(c[1])/float32(sum) + 0.5)) dst.Pix[j+2] = clampint32(int32(float32(c[2])/float32(sum) + 0.5)) dst.Pix[j+3] = clampint32(int32(float32(c[3])/float32(sum) + 0.5)) } } }) return dst } func resizeVertical(src *image.NRGBA, height int, filter ResampleFilter) *image.NRGBA { srcBounds := src.Bounds() srcW := srcBounds.Max.X srcH := srcBounds.Max.Y dstW := srcW dstH := height dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH)) weights := precomputeWeights(dstH, srcH, filter) parallel(dstW, func(partStart, partEnd int) { for dstX := partStart; dstX < partEnd; dstX++ { for dstY := 0; dstY < dstH; dstY++ { var c [4]int32 for _, iw := range weights[dstY].iwpairs { i := iw.i*src.Stride + dstX*4 c[0] += int32(src.Pix[i+0]) * iw.w c[1] += int32(src.Pix[i+1]) * iw.w c[2] += int32(src.Pix[i+2]) * iw.w c[3] += int32(src.Pix[i+3]) * iw.w } j := dstY*dst.Stride + dstX*4 sum := weights[dstY].wsum dst.Pix[j+0] = clampint32(int32(float32(c[0])/float32(sum) + 0.5)) dst.Pix[j+1] = clampint32(int32(float32(c[1])/float32(sum) + 0.5)) dst.Pix[j+2] = clampint32(int32(float32(c[2])/float32(sum) + 0.5)) dst.Pix[j+3] = clampint32(int32(float32(c[3])/float32(sum) + 0.5)) } } }) return dst } // fast nearest-neighbor resize, no filtering func resizeNearest(src *image.NRGBA, width, height int) *image.NRGBA { dstW, dstH := width, height srcBounds := src.Bounds() srcW := srcBounds.Max.X srcH := srcBounds.Max.Y dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH)) dx := float64(srcW) / float64(dstW) dy := float64(srcH) / float64(dstH) parallel(dstH, func(partStart, partEnd int) { for dstY := partStart; dstY < partEnd; dstY++ { fy := (float64(dstY)+0.5)*dy - 0.5 for dstX := 0; dstX < dstW; dstX++ { fx := (float64(dstX)+0.5)*dx - 0.5 srcX := int(math.Min(math.Max(math.Floor(fx+0.5), 0.0), float64(srcW))) srcY := int(math.Min(math.Max(math.Floor(fy+0.5), 0.0), float64(srcH))) srcOff := srcY*src.Stride + srcX*4 dstOff := dstY*dst.Stride + dstX*4 copy(dst.Pix[dstOff:dstOff+4], src.Pix[srcOff:srcOff+4]) } } }) return dst } // Fit scales down the image using the specified resample filter to fit the specified // maximum width and height and returns the transformed image. // // Supported resample filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali, // CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine. // // Usage example: // // dstImage := imaging.Fit(srcImage, 800, 600, imaging.Lanczos) // func Fit(img image.Image, width, height int, filter ResampleFilter) *image.NRGBA { maxW, maxH := width, height if maxW <= 0 || maxH <= 0 { return &image.NRGBA{} } srcBounds := img.Bounds() srcW := srcBounds.Dx() srcH := srcBounds.Dy() if srcW <= 0 || srcH <= 0 { return &image.NRGBA{} } if srcW <= maxW && srcH <= maxH { return Clone(img) } srcAspectRatio := float64(srcW) / float64(srcH) maxAspectRatio := float64(maxW) / float64(maxH) var newW, newH int if srcAspectRatio > maxAspectRatio { newW = maxW newH = int(float64(newW) / srcAspectRatio) } else { newH = maxH newW = int(float64(newH) * srcAspectRatio) } return Resize(img, newW, newH, filter) } // Thumbnail scales the image up or down using the specified resample filter, crops it // to the specified width and hight and returns the transformed image. // // Supported resample filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali, // CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine. // // Usage example: // // dstImage := imaging.Thumbnail(srcImage, 100, 100, imaging.Lanczos) // func Thumbnail(img image.Image, width, height int, filter ResampleFilter) *image.NRGBA { thumbW, thumbH := width, height if thumbW <= 0 || thumbH <= 0 { return &image.NRGBA{} } srcBounds := img.Bounds() srcW := srcBounds.Dx() srcH := srcBounds.Dy() if srcW <= 0 || srcH <= 0 { return &image.NRGBA{} } srcAspectRatio := float64(srcW) / float64(srcH) thumbAspectRatio := float64(thumbW) / float64(thumbH) var tmp image.Image if srcAspectRatio > thumbAspectRatio { tmp = Resize(img, 0, thumbH, filter) } else { tmp = Resize(img, thumbW, 0, filter) } return CropCenter(tmp, thumbW, thumbH) } // Resample filter struct. It can be used to make custom filters. // // Supported resample filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali, // CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine. // // General filter recommendations: // // - Lanczos // Probably the best resampling filter for photographic images yielding sharp results, // but it's slower than cubic filters (see below). // // - CatmullRom // A sharp cubic filter. It's a good filter for both upscaling and downscaling if sharp results are needed. // // - MitchellNetravali // A high quality cubic filter that produces smoother results with less ringing than CatmullRom. // // - BSpline // A good filter if a very smooth output is needed. // // - Linear // Bilinear interpolation filter, produces reasonably good, smooth output. It's faster than cubic filters. // // - Box // Simple and fast resampling filter appropriate for downscaling. // When upscaling it's similar to NearestNeighbor. // // - NearestNeighbor // Fastest resample filter, no antialiasing at all. Rarely used. // type ResampleFilter struct { Support float64 Kernel func(float64) float64 } // Nearest-neighbor filter, no anti-aliasing. var NearestNeighbor ResampleFilter // Box filter (averaging pixels). var Box ResampleFilter // Linear filter. var Linear ResampleFilter // Hermite cubic spline filter (BC-spline; B=0; C=0). var Hermite ResampleFilter // Mitchell-Netravali cubic filter (BC-spline; B=1/3; C=1/3). var MitchellNetravali ResampleFilter // Catmull-Rom - sharp cubic filter (BC-spline; B=0; C=0.5). var CatmullRom ResampleFilter // Cubic B-spline - smooth cubic filter (BC-spline; B=1; C=0). var BSpline ResampleFilter // Gaussian Blurring Filter. var Gaussian ResampleFilter // Bartlett-windowed sinc filter (3 lobes). var Bartlett ResampleFilter // Lanczos filter (3 lobes). var Lanczos ResampleFilter // Hann-windowed sinc filter (3 lobes). var Hann ResampleFilter // Hamming-windowed sinc filter (3 lobes). var Hamming ResampleFilter // Blackman-windowed sinc filter (3 lobes). var Blackman ResampleFilter // Welch-windowed sinc filter (parabolic window, 3 lobes). var Welch ResampleFilter // Cosine-windowed sinc filter (3 lobes). var Cosine ResampleFilter func bcspline(x, b, c float64) float64 { x = math.Abs(x) if x < 1.0 { return ((12-9*b-6*c)*x*x*x + (-18+12*b+6*c)*x*x + (6 - 2*b)) / 6 } if x < 2.0 { return ((-b-6*c)*x*x*x + (6*b+30*c)*x*x + (-12*b-48*c)*x + (8*b + 24*c)) / 6 } return 0 } func sinc(x float64) float64 { if x == 0 { return 1 } return math.Sin(math.Pi*x) / (math.Pi * x) } func init() { NearestNeighbor = ResampleFilter{ Support: 0.0, // special case - not applying the filter } Box = ResampleFilter{ Support: 0.5, Kernel: func(x float64) float64 { x = math.Abs(x) if x <= 0.5 { return 1.0 } return 0 }, } Linear = ResampleFilter{ Support: 1.0, Kernel: func(x float64) float64 { x = math.Abs(x) if x < 1.0 { return 1.0 - x } return 0 }, } Hermite = ResampleFilter{ Support: 1.0, Kernel: func(x float64) float64 { x = math.Abs(x) if x < 1.0 { return bcspline(x, 0.0, 0.0) } return 0 }, } MitchellNetravali = ResampleFilter{ Support: 2.0, Kernel: func(x float64) float64 { x = math.Abs(x) if x < 2.0 { return bcspline(x, 1.0/3.0, 1.0/3.0) } return 0 }, } CatmullRom = ResampleFilter{ Support: 2.0, Kernel: func(x float64) float64 { x = math.Abs(x) if x < 2.0 { return bcspline(x, 0.0, 0.5) } return 0 }, } BSpline = ResampleFilter{ Support: 2.0, Kernel: func(x float64) float64 { x = math.Abs(x) if x < 2.0 { return bcspline(x, 1.0, 0.0) } return 0 }, } Gaussian = ResampleFilter{ Support: 2.0, Kernel: func(x float64) float64 { x = math.Abs(x) if x < 2.0 { return math.Exp(-2 * x * x) } return 0 }, } Bartlett = ResampleFilter{ Support: 3.0, Kernel: func(x float64) float64 { x = math.Abs(x) if x < 3.0 { return sinc(x) * (3.0 - x) / 3.0 } return 0 }, } Lanczos = ResampleFilter{ Support: 3.0, Kernel: func(x float64) float64 { x = math.Abs(x) if x < 3.0 { return sinc(x) * sinc(x/3.0) } return 0 }, } Hann = ResampleFilter{ Support: 3.0, Kernel: func(x float64) float64 { x = math.Abs(x) if x < 3.0 { return sinc(x) * (0.5 + 0.5*math.Cos(math.Pi*x/3.0)) } return 0 }, } Hamming = ResampleFilter{ Support: 3.0, Kernel: func(x float64) float64 { x = math.Abs(x) if x < 3.0 { return sinc(x) * (0.54 + 0.46*math.Cos(math.Pi*x/3.0)) } return 0 }, } Blackman = ResampleFilter{ Support: 3.0, Kernel: func(x float64) float64 { x = math.Abs(x) if x < 3.0 { return sinc(x) * (0.42 - 0.5*math.Cos(math.Pi*x/3.0+math.Pi) + 0.08*math.Cos(2.0*math.Pi*x/3.0)) } return 0 }, } Welch = ResampleFilter{ Support: 3.0, Kernel: func(x float64) float64 { x = math.Abs(x) if x < 3.0 { return sinc(x) * (1.0 - (x * x / 9.0)) } return 0 }, } Cosine = ResampleFilter{ Support: 3.0, Kernel: func(x float64) float64 { x = math.Abs(x) if x < 3.0 { return sinc(x) * math.Cos((math.Pi/2.0)*(x/3.0)) } return 0 }, } }