// Copyright 2012-2017 Apcera Inc. All rights reserved. // A Go client for the NATS messaging system (https://nats.io). package nats import ( "bufio" "bytes" "crypto/tls" "crypto/x509" "encoding/json" "errors" "fmt" "io/ioutil" "math/rand" "net" "net/url" "regexp" "runtime" "strconv" "strings" "sync" "time" "github.com/nats-io/go-nats/util" "github.com/nats-io/nuid" ) // Default Constants const ( Version = "1.3.1" DefaultURL = "nats://localhost:4222" DefaultPort = 4222 DefaultMaxReconnect = 60 DefaultReconnectWait = 2 * time.Second DefaultTimeout = 2 * time.Second DefaultPingInterval = 2 * time.Minute DefaultMaxPingOut = 2 DefaultMaxChanLen = 8192 // 8k DefaultReconnectBufSize = 8 * 1024 * 1024 // 8MB RequestChanLen = 8 LangString = "go" ) // STALE_CONNECTION is for detection and proper handling of stale connections. const STALE_CONNECTION = "stale connection" // PERMISSIONS_ERR is for when nats server subject authorization has failed. const PERMISSIONS_ERR = "permissions violation" // AUTHORIZATION_ERR is for when nats server user authorization has failed. const AUTHORIZATION_ERR = "authorization violation" // Errors var ( ErrConnectionClosed = errors.New("nats: connection closed") ErrSecureConnRequired = errors.New("nats: secure connection required") ErrSecureConnWanted = errors.New("nats: secure connection not available") ErrBadSubscription = errors.New("nats: invalid subscription") ErrTypeSubscription = errors.New("nats: invalid subscription type") ErrBadSubject = errors.New("nats: invalid subject") ErrSlowConsumer = errors.New("nats: slow consumer, messages dropped") ErrTimeout = errors.New("nats: timeout") ErrBadTimeout = errors.New("nats: timeout invalid") ErrAuthorization = errors.New("nats: authorization violation") ErrNoServers = errors.New("nats: no servers available for connection") ErrJsonParse = errors.New("nats: connect message, json parse error") ErrChanArg = errors.New("nats: argument needs to be a channel type") ErrMaxPayload = errors.New("nats: maximum payload exceeded") ErrMaxMessages = errors.New("nats: maximum messages delivered") ErrSyncSubRequired = errors.New("nats: illegal call on an async subscription") ErrMultipleTLSConfigs = errors.New("nats: multiple tls.Configs not allowed") ErrNoInfoReceived = errors.New("nats: protocol exception, INFO not received") ErrReconnectBufExceeded = errors.New("nats: outbound buffer limit exceeded") ErrInvalidConnection = errors.New("nats: invalid connection") ErrInvalidMsg = errors.New("nats: invalid message or message nil") ErrInvalidArg = errors.New("nats: invalid argument") ErrInvalidContext = errors.New("nats: invalid context") ErrStaleConnection = errors.New("nats: " + STALE_CONNECTION) ) // GetDefaultOptions returns default configuration options for the client. func GetDefaultOptions() Options { return Options{ AllowReconnect: true, MaxReconnect: DefaultMaxReconnect, ReconnectWait: DefaultReconnectWait, Timeout: DefaultTimeout, PingInterval: DefaultPingInterval, MaxPingsOut: DefaultMaxPingOut, SubChanLen: DefaultMaxChanLen, ReconnectBufSize: DefaultReconnectBufSize, } } // DEPRECATED: Use GetDefaultOptions() instead. // DefaultOptions is not safe for use by multiple clients. // For details see #308. var DefaultOptions = GetDefaultOptions() // Status represents the state of the connection. type Status int const ( DISCONNECTED = Status(iota) CONNECTED CLOSED RECONNECTING CONNECTING ) // ConnHandler is used for asynchronous events such as // disconnected and closed connections. type ConnHandler func(*Conn) // ErrHandler is used to process asynchronous errors encountered // while processing inbound messages. type ErrHandler func(*Conn, *Subscription, error) // asyncCB is used to preserve order for async callbacks. type asyncCB func() // Option is a function on the options for a connection. type Option func(*Options) error // Options can be used to create a customized connection. type Options struct { // Url represents a single NATS server url to which the client // will be connecting. If the Servers option is also set, it // then becomes the first server in the Servers array. Url string // Servers is a configured set of servers which this client // will use when attempting to connect. Servers []string // NoRandomize configures whether we will randomize the // server pool. NoRandomize bool // Name is an optional name label which will be sent to the server // on CONNECT to identify the client. Name string // Verbose signals the server to send an OK ack for commands // successfully processed by the server. Verbose bool // Pedantic signals the server whether it should be doing further // validation of subjects. Pedantic bool // Secure enables TLS secure connections that skip server // verification by default. NOT RECOMMENDED. Secure bool // TLSConfig is a custom TLS configuration to use for secure // transports. TLSConfig *tls.Config // AllowReconnect enables reconnection logic to be used when we // encounter a disconnect from the current server. AllowReconnect bool // MaxReconnect sets the number of reconnect attempts that will be // tried before giving up. If negative, then it will never give up // trying to reconnect. MaxReconnect int // ReconnectWait sets the time to backoff after attempting a reconnect // to a server that we were already connected to previously. ReconnectWait time.Duration // Timeout sets the timeout for a Dial operation on a connection. Timeout time.Duration // FlusherTimeout is the maximum time to wait for the flusher loop // to be able to finish writing to the underlying connection. FlusherTimeout time.Duration // PingInterval is the period at which the client will be sending ping // commands to the server, disabled if 0 or negative. PingInterval time.Duration // MaxPingsOut is the maximum number of pending ping commands that can // be awaiting a response before raising an ErrStaleConnection error. MaxPingsOut int // ClosedCB sets the closed handler that is called when a client will // no longer be connected. ClosedCB ConnHandler // DisconnectedCB sets the disconnected handler that is called // whenever the connection is disconnected. DisconnectedCB ConnHandler // ReconnectedCB sets the reconnected handler called whenever // the connection is successfully reconnected. ReconnectedCB ConnHandler // DiscoveredServersCB sets the callback that is invoked whenever a new // server has joined the cluster. DiscoveredServersCB ConnHandler // AsyncErrorCB sets the async error handler (e.g. slow consumer errors) AsyncErrorCB ErrHandler // ReconnectBufSize is the size of the backing bufio during reconnect. // Once this has been exhausted publish operations will return an error. ReconnectBufSize int // SubChanLen is the size of the buffered channel used between the socket // Go routine and the message delivery for SyncSubscriptions. // NOTE: This does not affect AsyncSubscriptions which are // dictated by PendingLimits() SubChanLen int // User sets the username to be used when connecting to the server. User string // Password sets the password to be used when connecting to a server. Password string // Token sets the token to be used when connecting to a server. Token string // Dialer allows a custom Dialer when forming connections. Dialer *net.Dialer // UseOldRequestStyle forces the old method of Requests that utilize // a new Inbox and a new Subscription for each request. UseOldRequestStyle bool } const ( // Scratch storage for assembling protocol headers scratchSize = 512 // The size of the bufio reader/writer on top of the socket. defaultBufSize = 32768 // The buffered size of the flush "kick" channel flushChanSize = 1024 // Default server pool size srvPoolSize = 4 // Channel size for the async callback handler. asyncCBChanSize = 32 // NUID size nuidSize = 22 ) // A Conn represents a bare connection to a nats-server. // It can send and receive []byte payloads. type Conn struct { // Keep all members for which we use atomic at the beginning of the // struct and make sure they are all 64bits (or use padding if necessary). // atomic.* functions crash on 32bit machines if operand is not aligned // at 64bit. See https://github.com/golang/go/issues/599 Statistics mu sync.Mutex Opts Options wg *sync.WaitGroup url *url.URL conn net.Conn srvPool []*srv urls map[string]struct{} // Keep track of all known URLs (used by processInfo) bw *bufio.Writer pending *bytes.Buffer fch chan struct{} info serverInfo ssid int64 subsMu sync.RWMutex subs map[int64]*Subscription ach chan asyncCB pongs []chan struct{} scratch [scratchSize]byte status Status initc bool // true if the connection is performing the initial connect err error ps *parseState ptmr *time.Timer pout int // New style response handler respSub string // The wildcard subject respMux *Subscription // A single response subscription respMap map[string]chan *Msg // Request map for the response msg channels respSetup sync.Once // Ensures response subscription occurs once } // A Subscription represents interest in a given subject. type Subscription struct { mu sync.Mutex sid int64 // Subject that represents this subscription. This can be different // than the received subject inside a Msg if this is a wildcard. Subject string // Optional queue group name. If present, all subscriptions with the // same name will form a distributed queue, and each message will // only be processed by one member of the group. Queue string delivered uint64 max uint64 conn *Conn mcb MsgHandler mch chan *Msg closed bool sc bool connClosed bool // Type of Subscription typ SubscriptionType // Async linked list pHead *Msg pTail *Msg pCond *sync.Cond // Pending stats, async subscriptions, high-speed etc. pMsgs int pBytes int pMsgsMax int pBytesMax int pMsgsLimit int pBytesLimit int dropped int } // Msg is a structure used by Subscribers and PublishMsg(). type Msg struct { Subject string Reply string Data []byte Sub *Subscription next *Msg } // Tracks various stats received and sent on this connection, // including counts for messages and bytes. type Statistics struct { InMsgs uint64 OutMsgs uint64 InBytes uint64 OutBytes uint64 Reconnects uint64 } // Tracks individual backend servers. type srv struct { url *url.URL didConnect bool reconnects int lastAttempt time.Time isImplicit bool } type serverInfo struct { Id string `json:"server_id"` Host string `json:"host"` Port uint `json:"port"` Version string `json:"version"` AuthRequired bool `json:"auth_required"` TLSRequired bool `json:"tls_required"` MaxPayload int64 `json:"max_payload"` ConnectURLs []string `json:"connect_urls,omitempty"` } const ( // clientProtoZero is the original client protocol from 2009. // http://nats.io/documentation/internals/nats-protocol/ /* clientProtoZero */ _ = iota // clientProtoInfo signals a client can receive more then the original INFO block. // This can be used to update clients on other cluster members, etc. clientProtoInfo ) type connectInfo struct { Verbose bool `json:"verbose"` Pedantic bool `json:"pedantic"` User string `json:"user,omitempty"` Pass string `json:"pass,omitempty"` Token string `json:"auth_token,omitempty"` TLS bool `json:"tls_required"` Name string `json:"name"` Lang string `json:"lang"` Version string `json:"version"` Protocol int `json:"protocol"` } // MsgHandler is a callback function that processes messages delivered to // asynchronous subscribers. type MsgHandler func(msg *Msg) // Connect will attempt to connect to the NATS system. // The url can contain username/password semantics. e.g. nats://derek:pass@localhost:4222 // Comma separated arrays are also supported, e.g. urlA, urlB. // Options start with the defaults but can be overridden. func Connect(url string, options ...Option) (*Conn, error) { opts := GetDefaultOptions() opts.Servers = processUrlString(url) for _, opt := range options { if err := opt(&opts); err != nil { return nil, err } } return opts.Connect() } // Options that can be passed to Connect. // Name is an Option to set the client name. func Name(name string) Option { return func(o *Options) error { o.Name = name return nil } } // Secure is an Option to enable TLS secure connections that skip server verification by default. // Pass a TLS Configuration for proper TLS. func Secure(tls ...*tls.Config) Option { return func(o *Options) error { o.Secure = true // Use of variadic just simplifies testing scenarios. We only take the first one. // fixme(DLC) - Could panic if more than one. Could also do TLS option. if len(tls) > 1 { return ErrMultipleTLSConfigs } if len(tls) == 1 { o.TLSConfig = tls[0] } return nil } } // RootCAs is a helper option to provide the RootCAs pool from a list of filenames. If Secure is // not already set this will set it as well. func RootCAs(file ...string) Option { return func(o *Options) error { pool := x509.NewCertPool() for _, f := range file { rootPEM, err := ioutil.ReadFile(f) if err != nil || rootPEM == nil { return fmt.Errorf("nats: error loading or parsing rootCA file: %v", err) } ok := pool.AppendCertsFromPEM([]byte(rootPEM)) if !ok { return fmt.Errorf("nats: failed to parse root certificate from %q", f) } } if o.TLSConfig == nil { o.TLSConfig = &tls.Config{MinVersion: tls.VersionTLS12} } o.TLSConfig.RootCAs = pool o.Secure = true return nil } } // ClientCert is a helper option to provide the client certificate from a file. If Secure is // not already set this will set it as well func ClientCert(certFile, keyFile string) Option { return func(o *Options) error { cert, err := tls.LoadX509KeyPair(certFile, keyFile) if err != nil { return fmt.Errorf("nats: error loading client certificate: %v", err) } cert.Leaf, err = x509.ParseCertificate(cert.Certificate[0]) if err != nil { return fmt.Errorf("nats: error parsing client certificate: %v", err) } if o.TLSConfig == nil { o.TLSConfig = &tls.Config{MinVersion: tls.VersionTLS12} } o.TLSConfig.Certificates = []tls.Certificate{cert} o.Secure = true return nil } } // NoReconnect is an Option to turn off reconnect behavior. func NoReconnect() Option { return func(o *Options) error { o.AllowReconnect = false return nil } } // DontRandomize is an Option to turn off randomizing the server pool. func DontRandomize() Option { return func(o *Options) error { o.NoRandomize = true return nil } } // ReconnectWait is an Option to set the wait time between reconnect attempts. func ReconnectWait(t time.Duration) Option { return func(o *Options) error { o.ReconnectWait = t return nil } } // MaxReconnects is an Option to set the maximum number of reconnect attempts. func MaxReconnects(max int) Option { return func(o *Options) error { o.MaxReconnect = max return nil } } // Timeout is an Option to set the timeout for Dial on a connection. func Timeout(t time.Duration) Option { return func(o *Options) error { o.Timeout = t return nil } } // DisconnectHandler is an Option to set the disconnected handler. func DisconnectHandler(cb ConnHandler) Option { return func(o *Options) error { o.DisconnectedCB = cb return nil } } // ReconnectHandler is an Option to set the reconnected handler. func ReconnectHandler(cb ConnHandler) Option { return func(o *Options) error { o.ReconnectedCB = cb return nil } } // ClosedHandler is an Option to set the closed handler. func ClosedHandler(cb ConnHandler) Option { return func(o *Options) error { o.ClosedCB = cb return nil } } // DiscoveredServersHandler is an Option to set the new servers handler. func DiscoveredServersHandler(cb ConnHandler) Option { return func(o *Options) error { o.DiscoveredServersCB = cb return nil } } // ErrHandler is an Option to set the async error handler. func ErrorHandler(cb ErrHandler) Option { return func(o *Options) error { o.AsyncErrorCB = cb return nil } } // UserInfo is an Option to set the username and password to // use when not included directly in the URLs. func UserInfo(user, password string) Option { return func(o *Options) error { o.User = user o.Password = password return nil } } // Token is an Option to set the token to use when not included // directly in the URLs. func Token(token string) Option { return func(o *Options) error { o.Token = token return nil } } // Dialer is an Option to set the dialer which will be used when // attempting to establish a connection. func Dialer(dialer *net.Dialer) Option { return func(o *Options) error { o.Dialer = dialer return nil } } // UseOldRequestyStyle is an Option to force usage of the old Request style. func UseOldRequestStyle() Option { return func(o *Options) error { o.UseOldRequestStyle = true return nil } } // Handler processing // SetDisconnectHandler will set the disconnect event handler. func (nc *Conn) SetDisconnectHandler(dcb ConnHandler) { if nc == nil { return } nc.mu.Lock() defer nc.mu.Unlock() nc.Opts.DisconnectedCB = dcb } // SetReconnectHandler will set the reconnect event handler. func (nc *Conn) SetReconnectHandler(rcb ConnHandler) { if nc == nil { return } nc.mu.Lock() defer nc.mu.Unlock() nc.Opts.ReconnectedCB = rcb } // SetDiscoveredServersHandler will set the discovered servers handler. func (nc *Conn) SetDiscoveredServersHandler(dscb ConnHandler) { if nc == nil { return } nc.mu.Lock() defer nc.mu.Unlock() nc.Opts.DiscoveredServersCB = dscb } // SetClosedHandler will set the reconnect event handler. func (nc *Conn) SetClosedHandler(cb ConnHandler) { if nc == nil { return } nc.mu.Lock() defer nc.mu.Unlock() nc.Opts.ClosedCB = cb } // SetErrHandler will set the async error handler. func (nc *Conn) SetErrorHandler(cb ErrHandler) { if nc == nil { return } nc.mu.Lock() defer nc.mu.Unlock() nc.Opts.AsyncErrorCB = cb } // Process the url string argument to Connect. Return an array of // urls, even if only one. func processUrlString(url string) []string { urls := strings.Split(url, ",") for i, s := range urls { urls[i] = strings.TrimSpace(s) } return urls } // Connect will attempt to connect to a NATS server with multiple options. func (o Options) Connect() (*Conn, error) { nc := &Conn{Opts: o} // Some default options processing. if nc.Opts.MaxPingsOut == 0 { nc.Opts.MaxPingsOut = DefaultMaxPingOut } // Allow old default for channel length to work correctly. if nc.Opts.SubChanLen == 0 { nc.Opts.SubChanLen = DefaultMaxChanLen } // Default ReconnectBufSize if nc.Opts.ReconnectBufSize == 0 { nc.Opts.ReconnectBufSize = DefaultReconnectBufSize } // Ensure that Timeout is not 0 if nc.Opts.Timeout == 0 { nc.Opts.Timeout = DefaultTimeout } // Allow custom Dialer for connecting using DialTimeout by default if nc.Opts.Dialer == nil { nc.Opts.Dialer = &net.Dialer{ Timeout: nc.Opts.Timeout, } } if err := nc.setupServerPool(); err != nil { return nil, err } // Create the async callback channel. nc.ach = make(chan asyncCB, asyncCBChanSize) if err := nc.connect(); err != nil { return nil, err } // Spin up the async cb dispatcher on success go nc.asyncDispatch() return nc, nil } const ( _CRLF_ = "\r\n" _EMPTY_ = "" _SPC_ = " " _PUB_P_ = "PUB " ) const ( _OK_OP_ = "+OK" _ERR_OP_ = "-ERR" _PONG_OP_ = "PONG" _INFO_OP_ = "INFO" ) const ( conProto = "CONNECT %s" + _CRLF_ pingProto = "PING" + _CRLF_ pongProto = "PONG" + _CRLF_ subProto = "SUB %s %s %d" + _CRLF_ unsubProto = "UNSUB %d %s" + _CRLF_ okProto = _OK_OP_ + _CRLF_ ) // Return the currently selected server func (nc *Conn) currentServer() (int, *srv) { for i, s := range nc.srvPool { if s == nil { continue } if s.url == nc.url { return i, s } } return -1, nil } // Pop the current server and put onto the end of the list. Select head of list as long // as number of reconnect attempts under MaxReconnect. func (nc *Conn) selectNextServer() (*srv, error) { i, s := nc.currentServer() if i < 0 { return nil, ErrNoServers } sp := nc.srvPool num := len(sp) copy(sp[i:num-1], sp[i+1:num]) maxReconnect := nc.Opts.MaxReconnect if maxReconnect < 0 || s.reconnects < maxReconnect { nc.srvPool[num-1] = s } else { nc.srvPool = sp[0 : num-1] } if len(nc.srvPool) <= 0 { nc.url = nil return nil, ErrNoServers } nc.url = nc.srvPool[0].url return nc.srvPool[0], nil } // Will assign the correct server to the nc.Url func (nc *Conn) pickServer() error { nc.url = nil if len(nc.srvPool) <= 0 { return ErrNoServers } for _, s := range nc.srvPool { if s != nil { nc.url = s.url return nil } } return ErrNoServers } const tlsScheme = "tls" // Create the server pool using the options given. // We will place a Url option first, followed by any // Server Options. We will randomize the server pool unlesss // the NoRandomize flag is set. func (nc *Conn) setupServerPool() error { nc.srvPool = make([]*srv, 0, srvPoolSize) nc.urls = make(map[string]struct{}, srvPoolSize) // Create srv objects from each url string in nc.Opts.Servers // and add them to the pool for _, urlString := range nc.Opts.Servers { if err := nc.addURLToPool(urlString, false); err != nil { return err } } // Randomize if allowed to if !nc.Opts.NoRandomize { nc.shufflePool() } // Normally, if this one is set, Options.Servers should not be, // but we always allowed that, so continue to do so. if nc.Opts.Url != _EMPTY_ { // Add to the end of the array if err := nc.addURLToPool(nc.Opts.Url, false); err != nil { return err } // Then swap it with first to guarantee that Options.Url is tried first. last := len(nc.srvPool) - 1 if last > 0 { nc.srvPool[0], nc.srvPool[last] = nc.srvPool[last], nc.srvPool[0] } } else if len(nc.srvPool) <= 0 { // Place default URL if pool is empty. if err := nc.addURLToPool(DefaultURL, false); err != nil { return err } } // Check for Scheme hint to move to TLS mode. for _, srv := range nc.srvPool { if srv.url.Scheme == tlsScheme { // FIXME(dlc), this is for all in the pool, should be case by case. nc.Opts.Secure = true if nc.Opts.TLSConfig == nil { nc.Opts.TLSConfig = &tls.Config{MinVersion: tls.VersionTLS12} } } } return nc.pickServer() } // addURLToPool adds an entry to the server pool func (nc *Conn) addURLToPool(sURL string, implicit bool) error { u, err := url.Parse(sURL) if err != nil { return err } s := &srv{url: u, isImplicit: implicit} nc.srvPool = append(nc.srvPool, s) nc.urls[u.Host] = struct{}{} return nil } // shufflePool swaps randomly elements in the server pool func (nc *Conn) shufflePool() { if len(nc.srvPool) <= 1 { return } source := rand.NewSource(time.Now().UnixNano()) r := rand.New(source) for i := range nc.srvPool { j := r.Intn(i + 1) nc.srvPool[i], nc.srvPool[j] = nc.srvPool[j], nc.srvPool[i] } } // createConn will connect to the server and wrap the appropriate // bufio structures. It will do the right thing when an existing // connection is in place. func (nc *Conn) createConn() (err error) { if nc.Opts.Timeout < 0 { return ErrBadTimeout } if _, cur := nc.currentServer(); cur == nil { return ErrNoServers } else { cur.lastAttempt = time.Now() } dialer := nc.Opts.Dialer nc.conn, err = dialer.Dial("tcp", nc.url.Host) if err != nil { return err } // No clue why, but this stalls and kills performance on Mac (Mavericks). // https://code.google.com/p/go/issues/detail?id=6930 //if ip, ok := nc.conn.(*net.TCPConn); ok { // ip.SetReadBuffer(defaultBufSize) //} if nc.pending != nil && nc.bw != nil { // Move to pending buffer. nc.bw.Flush() } nc.bw = bufio.NewWriterSize(nc.conn, defaultBufSize) return nil } // makeTLSConn will wrap an existing Conn using TLS func (nc *Conn) makeTLSConn() { // Allow the user to configure their own tls.Config structure, otherwise // default to InsecureSkipVerify. // TODO(dlc) - We should make the more secure version the default. if nc.Opts.TLSConfig != nil { tlsCopy := util.CloneTLSConfig(nc.Opts.TLSConfig) // If its blank we will override it with the current host if tlsCopy.ServerName == _EMPTY_ { h, _, _ := net.SplitHostPort(nc.url.Host) tlsCopy.ServerName = h } nc.conn = tls.Client(nc.conn, tlsCopy) } else { nc.conn = tls.Client(nc.conn, &tls.Config{InsecureSkipVerify: true}) } conn := nc.conn.(*tls.Conn) conn.Handshake() nc.bw = bufio.NewWriterSize(nc.conn, defaultBufSize) } // waitForExits will wait for all socket watcher Go routines to // be shutdown before proceeding. func (nc *Conn) waitForExits(wg *sync.WaitGroup) { // Kick old flusher forcefully. select { case nc.fch <- struct{}{}: default: } // Wait for any previous go routines. if wg != nil { wg.Wait() } } // spinUpGoRoutines will launch the Go routines responsible for // reading and writing to the socket. This will be launched via a // go routine itself to release any locks that may be held. // We also use a WaitGroup to make sure we only start them on a // reconnect when the previous ones have exited. func (nc *Conn) spinUpGoRoutines() { // Make sure everything has exited. nc.waitForExits(nc.wg) // Create a new waitGroup instance for this run. nc.wg = &sync.WaitGroup{} // We will wait on both. nc.wg.Add(2) // Spin up the readLoop and the socket flusher. go nc.readLoop(nc.wg) go nc.flusher(nc.wg) nc.mu.Lock() if nc.Opts.PingInterval > 0 { if nc.ptmr == nil { nc.ptmr = time.AfterFunc(nc.Opts.PingInterval, nc.processPingTimer) } else { nc.ptmr.Reset(nc.Opts.PingInterval) } } nc.mu.Unlock() } // Report the connected server's Url func (nc *Conn) ConnectedUrl() string { if nc == nil { return _EMPTY_ } nc.mu.Lock() defer nc.mu.Unlock() if nc.status != CONNECTED { return _EMPTY_ } return nc.url.String() } // Report the connected server's Id func (nc *Conn) ConnectedServerId() string { if nc == nil { return _EMPTY_ } nc.mu.Lock() defer nc.mu.Unlock() if nc.status != CONNECTED { return _EMPTY_ } return nc.info.Id } // Low level setup for structs, etc func (nc *Conn) setup() { nc.subs = make(map[int64]*Subscription) nc.pongs = make([]chan struct{}, 0, 8) nc.fch = make(chan struct{}, flushChanSize) // Setup scratch outbound buffer for PUB pub := nc.scratch[:len(_PUB_P_)] copy(pub, _PUB_P_) } // Process a connected connection and initialize properly. func (nc *Conn) processConnectInit() error { // Set out deadline for the whole connect process nc.conn.SetDeadline(time.Now().Add(nc.Opts.Timeout)) defer nc.conn.SetDeadline(time.Time{}) // Set our status to connecting. nc.status = CONNECTING // Process the INFO protocol received from the server err := nc.processExpectedInfo() if err != nil { return err } // Send the CONNECT protocol along with the initial PING protocol. // Wait for the PONG response (or any error that we get from the server). err = nc.sendConnect() if err != nil { return err } // Reset the number of PING sent out nc.pout = 0 go nc.spinUpGoRoutines() return nil } // Main connect function. Will connect to the nats-server func (nc *Conn) connect() error { var returnedErr error // Create actual socket connection // For first connect we walk all servers in the pool and try // to connect immediately. nc.mu.Lock() nc.initc = true // The pool may change inside theloop iteration due to INFO protocol. for i := 0; i < len(nc.srvPool); i++ { nc.url = nc.srvPool[i].url if err := nc.createConn(); err == nil { // This was moved out of processConnectInit() because // that function is now invoked from doReconnect() too. nc.setup() err = nc.processConnectInit() if err == nil { nc.srvPool[i].didConnect = true nc.srvPool[i].reconnects = 0 returnedErr = nil break } else { returnedErr = err nc.mu.Unlock() nc.close(DISCONNECTED, false) nc.mu.Lock() nc.url = nil } } else { // Cancel out default connection refused, will trigger the // No servers error conditional if matched, _ := regexp.Match(`connection refused`, []byte(err.Error())); matched { returnedErr = nil } } } nc.initc = false defer nc.mu.Unlock() if returnedErr == nil && nc.status != CONNECTED { returnedErr = ErrNoServers } return returnedErr } // This will check to see if the connection should be // secure. This can be dictated from either end and should // only be called after the INIT protocol has been received. func (nc *Conn) checkForSecure() error { // Check to see if we need to engage TLS o := nc.Opts // Check for mismatch in setups if o.Secure && !nc.info.TLSRequired { return ErrSecureConnWanted } else if nc.info.TLSRequired && !o.Secure { return ErrSecureConnRequired } // Need to rewrap with bufio if o.Secure { nc.makeTLSConn() } return nil } // processExpectedInfo will look for the expected first INFO message // sent when a connection is established. The lock should be held entering. func (nc *Conn) processExpectedInfo() error { c := &control{} // Read the protocol err := nc.readOp(c) if err != nil { return err } // The nats protocol should send INFO first always. if c.op != _INFO_OP_ { return ErrNoInfoReceived } // Parse the protocol if err := nc.processInfo(c.args); err != nil { return err } return nc.checkForSecure() } // Sends a protocol control message by queuing into the bufio writer // and kicking the flush Go routine. These writes are protected. func (nc *Conn) sendProto(proto string) { nc.mu.Lock() nc.bw.WriteString(proto) nc.kickFlusher() nc.mu.Unlock() } // Generate a connect protocol message, issuing user/password if // applicable. The lock is assumed to be held upon entering. func (nc *Conn) connectProto() (string, error) { o := nc.Opts var user, pass, token string u := nc.url.User if u != nil { // if no password, assume username is authToken if _, ok := u.Password(); !ok { token = u.Username() } else { user = u.Username() pass, _ = u.Password() } } else { // Take from options (pssibly all empty strings) user = nc.Opts.User pass = nc.Opts.Password token = nc.Opts.Token } cinfo := connectInfo{o.Verbose, o.Pedantic, user, pass, token, o.Secure, o.Name, LangString, Version, clientProtoInfo} b, err := json.Marshal(cinfo) if err != nil { return _EMPTY_, ErrJsonParse } return fmt.Sprintf(conProto, b), nil } // normalizeErr removes the prefix -ERR, trim spaces and remove the quotes. func normalizeErr(line string) string { s := strings.ToLower(strings.TrimSpace(strings.TrimPrefix(line, _ERR_OP_))) s = strings.TrimLeft(strings.TrimRight(s, "'"), "'") return s } // Send a connect protocol message to the server, issue user/password if // applicable. Will wait for a flush to return from the server for error // processing. func (nc *Conn) sendConnect() error { // Construct the CONNECT protocol string cProto, err := nc.connectProto() if err != nil { return err } // Write the protocol into the buffer _, err = nc.bw.WriteString(cProto) if err != nil { return err } // Add to the buffer the PING protocol _, err = nc.bw.WriteString(pingProto) if err != nil { return err } // Flush the buffer err = nc.bw.Flush() if err != nil { return err } // Now read the response from the server. br := bufio.NewReaderSize(nc.conn, defaultBufSize) line, err := br.ReadString('\n') if err != nil { return err } // If opts.Verbose is set, handle +OK if nc.Opts.Verbose && line == okProto { // Read the rest now... line, err = br.ReadString('\n') if err != nil { return err } } // We expect a PONG if line != pongProto { // But it could be something else, like -ERR // Since we no longer use ReadLine(), trim the trailing "\r\n" line = strings.TrimRight(line, "\r\n") // If it's a server error... if strings.HasPrefix(line, _ERR_OP_) { // Remove -ERR, trim spaces and quotes, and convert to lower case. line = normalizeErr(line) return errors.New("nats: " + line) } // Notify that we got an unexpected protocol. return fmt.Errorf("nats: expected '%s', got '%s'", _PONG_OP_, line) } // This is where we are truly connected. nc.status = CONNECTED return nil } // A control protocol line. type control struct { op, args string } // Read a control line and process the intended op. func (nc *Conn) readOp(c *control) error { br := bufio.NewReaderSize(nc.conn, defaultBufSize) line, err := br.ReadString('\n') if err != nil { return err } parseControl(line, c) return nil } // Parse a control line from the server. func parseControl(line string, c *control) { toks := strings.SplitN(line, _SPC_, 2) if len(toks) == 1 { c.op = strings.TrimSpace(toks[0]) c.args = _EMPTY_ } else if len(toks) == 2 { c.op, c.args = strings.TrimSpace(toks[0]), strings.TrimSpace(toks[1]) } else { c.op = _EMPTY_ } } // flushReconnectPending will push the pending items that were // gathered while we were in a RECONNECTING state to the socket. func (nc *Conn) flushReconnectPendingItems() { if nc.pending == nil { return } if nc.pending.Len() > 0 { nc.bw.Write(nc.pending.Bytes()) } } // Try to reconnect using the option parameters. // This function assumes we are allowed to reconnect. func (nc *Conn) doReconnect() { // We want to make sure we have the other watchers shutdown properly // here before we proceed past this point. nc.mu.Lock() wg := nc.wg nc.mu.Unlock() nc.waitForExits(wg) // FIXME(dlc) - We have an issue here if we have // outstanding flush points (pongs) and they were not // sent out, but are still in the pipe. // Hold the lock manually and release where needed below, // can't do defer here. nc.mu.Lock() // Clear any queued pongs, e.g. pending flush calls. nc.clearPendingFlushCalls() // Clear any errors. nc.err = nil // Perform appropriate callback if needed for a disconnect. if nc.Opts.DisconnectedCB != nil { nc.ach <- func() { nc.Opts.DisconnectedCB(nc) } } for len(nc.srvPool) > 0 { cur, err := nc.selectNextServer() if err != nil { nc.err = err break } sleepTime := int64(0) // Sleep appropriate amount of time before the // connection attempt if connecting to same server // we just got disconnected from.. if time.Since(cur.lastAttempt) < nc.Opts.ReconnectWait { sleepTime = int64(nc.Opts.ReconnectWait - time.Since(cur.lastAttempt)) } // On Windows, createConn() will take more than a second when no // server is running at that address. So it could be that the // time elapsed between reconnect attempts is always > than // the set option. Release the lock to give a chance to a parallel // nc.Close() to break the loop. nc.mu.Unlock() if sleepTime <= 0 { runtime.Gosched() } else { time.Sleep(time.Duration(sleepTime)) } nc.mu.Lock() // Check if we have been closed first. if nc.isClosed() { break } // Mark that we tried a reconnect cur.reconnects++ // Try to create a new connection err = nc.createConn() // Not yet connected, retry... // Continue to hold the lock if err != nil { nc.err = nil continue } // We are reconnected nc.Reconnects++ // Process connect logic if nc.err = nc.processConnectInit(); nc.err != nil { nc.status = RECONNECTING continue } // Clear out server stats for the server we connected to.. cur.didConnect = true cur.reconnects = 0 // Send existing subscription state nc.resendSubscriptions() // Now send off and clear pending buffer nc.flushReconnectPendingItems() // Flush the buffer nc.err = nc.bw.Flush() if nc.err != nil { nc.status = RECONNECTING continue } // Done with the pending buffer nc.pending = nil // This is where we are truly connected. nc.status = CONNECTED // Queue up the reconnect callback. if nc.Opts.ReconnectedCB != nil { nc.ach <- func() { nc.Opts.ReconnectedCB(nc) } } // Release lock here, we will return below. nc.mu.Unlock() // Make sure to flush everything nc.Flush() return } // Call into close.. We have no servers left.. if nc.err == nil { nc.err = ErrNoServers } nc.mu.Unlock() nc.Close() } // processOpErr handles errors from reading or parsing the protocol. // The lock should not be held entering this function. func (nc *Conn) processOpErr(err error) { nc.mu.Lock() if nc.isConnecting() || nc.isClosed() || nc.isReconnecting() { nc.mu.Unlock() return } if nc.Opts.AllowReconnect && nc.status == CONNECTED { // Set our new status nc.status = RECONNECTING if nc.ptmr != nil { nc.ptmr.Stop() } if nc.conn != nil { nc.bw.Flush() nc.conn.Close() nc.conn = nil } // Create a new pending buffer to underpin the bufio Writer while // we are reconnecting. nc.pending = &bytes.Buffer{} nc.bw = bufio.NewWriterSize(nc.pending, nc.Opts.ReconnectBufSize) go nc.doReconnect() nc.mu.Unlock() return } nc.status = DISCONNECTED nc.err = err nc.mu.Unlock() nc.Close() } // Marker to close the channel to kick out the Go routine. func (nc *Conn) closeAsyncFunc() asyncCB { return func() { nc.mu.Lock() if nc.ach != nil { close(nc.ach) nc.ach = nil } nc.mu.Unlock() } } // asyncDispatch is responsible for calling any async callbacks func (nc *Conn) asyncDispatch() { // snapshot since they can change from underneath of us. nc.mu.Lock() ach := nc.ach nc.mu.Unlock() // Loop on the channel and process async callbacks. for { if f, ok := <-ach; !ok { return } else { f() } } } // readLoop() will sit on the socket reading and processing the // protocol from the server. It will dispatch appropriately based // on the op type. func (nc *Conn) readLoop(wg *sync.WaitGroup) { // Release the wait group on exit defer wg.Done() // Create a parseState if needed. nc.mu.Lock() if nc.ps == nil { nc.ps = &parseState{} } nc.mu.Unlock() // Stack based buffer. b := make([]byte, defaultBufSize) for { // FIXME(dlc): RWLock here? nc.mu.Lock() sb := nc.isClosed() || nc.isReconnecting() if sb { nc.ps = &parseState{} } conn := nc.conn nc.mu.Unlock() if sb || conn == nil { break } n, err := conn.Read(b) if err != nil { nc.processOpErr(err) break } if err := nc.parse(b[:n]); err != nil { nc.processOpErr(err) break } } // Clear the parseState here.. nc.mu.Lock() nc.ps = nil nc.mu.Unlock() } // waitForMsgs waits on the conditional shared with readLoop and processMsg. // It is used to deliver messages to asynchronous subscribers. func (nc *Conn) waitForMsgs(s *Subscription) { var closed bool var delivered, max uint64 for { s.mu.Lock() if s.pHead == nil && !s.closed { s.pCond.Wait() } // Pop the msg off the list m := s.pHead if m != nil { s.pHead = m.next if s.pHead == nil { s.pTail = nil } s.pMsgs-- s.pBytes -= len(m.Data) } mcb := s.mcb max = s.max closed = s.closed if !s.closed { s.delivered++ delivered = s.delivered } s.mu.Unlock() if closed { break } // Deliver the message. if m != nil && (max == 0 || delivered <= max) { mcb(m) } // If we have hit the max for delivered msgs, remove sub. if max > 0 && delivered >= max { nc.mu.Lock() nc.removeSub(s) nc.mu.Unlock() break } } } // processMsg is called by parse and will place the msg on the // appropriate channel/pending queue for processing. If the channel is full, // or the pending queue is over the pending limits, the connection is // considered a slow consumer. func (nc *Conn) processMsg(data []byte) { // Don't lock the connection to avoid server cutting us off if the // flusher is holding the connection lock, trying to send to the server // that is itself trying to send data to us. nc.subsMu.RLock() // Stats nc.InMsgs++ nc.InBytes += uint64(len(data)) sub := nc.subs[nc.ps.ma.sid] if sub == nil { nc.subsMu.RUnlock() return } // Copy them into string subj := string(nc.ps.ma.subject) reply := string(nc.ps.ma.reply) // Doing message create outside of the sub's lock to reduce contention. // It's possible that we end-up not using the message, but that's ok. // FIXME(dlc): Need to copy, should/can do COW? msgPayload := make([]byte, len(data)) copy(msgPayload, data) // FIXME(dlc): Should we recycle these containers? m := &Msg{Data: msgPayload, Subject: subj, Reply: reply, Sub: sub} sub.mu.Lock() // Subscription internal stats (applicable only for non ChanSubscription's) if sub.typ != ChanSubscription { sub.pMsgs++ if sub.pMsgs > sub.pMsgsMax { sub.pMsgsMax = sub.pMsgs } sub.pBytes += len(m.Data) if sub.pBytes > sub.pBytesMax { sub.pBytesMax = sub.pBytes } // Check for a Slow Consumer if (sub.pMsgsLimit > 0 && sub.pMsgs > sub.pMsgsLimit) || (sub.pBytesLimit > 0 && sub.pBytes > sub.pBytesLimit) { goto slowConsumer } } // We have two modes of delivery. One is the channel, used by channel // subscribers and syncSubscribers, the other is a linked list for async. if sub.mch != nil { select { case sub.mch <- m: default: goto slowConsumer } } else { // Push onto the async pList if sub.pHead == nil { sub.pHead = m sub.pTail = m sub.pCond.Signal() } else { sub.pTail.next = m sub.pTail = m } } // Clear SlowConsumer status. sub.sc = false sub.mu.Unlock() nc.subsMu.RUnlock() return slowConsumer: sub.dropped++ sc := !sub.sc sub.sc = true // Undo stats from above if sub.typ != ChanSubscription { sub.pMsgs-- sub.pBytes -= len(m.Data) } sub.mu.Unlock() nc.subsMu.RUnlock() if sc { // Now we need connection's lock and we may end-up in the situation // that we were trying to avoid, except that in this case, the client // is already experiencing client-side slow consumer situation. nc.mu.Lock() nc.err = ErrSlowConsumer if nc.Opts.AsyncErrorCB != nil { nc.ach <- func() { nc.Opts.AsyncErrorCB(nc, sub, ErrSlowConsumer) } } nc.mu.Unlock() } } // processPermissionsViolation is called when the server signals a subject // permissions violation on either publish or subscribe. func (nc *Conn) processPermissionsViolation(err string) { nc.mu.Lock() nc.err = errors.New("nats: " + err) if nc.Opts.AsyncErrorCB != nil { nc.ach <- func() { nc.Opts.AsyncErrorCB(nc, nil, nc.err) } } nc.mu.Unlock() } // processAuthorizationViolation is called when the server signals a user // authorization violation. func (nc *Conn) processAuthorizationViolation(err string) { nc.mu.Lock() nc.err = ErrAuthorization if nc.Opts.AsyncErrorCB != nil { nc.ach <- func() { nc.Opts.AsyncErrorCB(nc, nil, ErrAuthorization) } } nc.mu.Unlock() } // flusher is a separate Go routine that will process flush requests for the write // bufio. This allows coalescing of writes to the underlying socket. func (nc *Conn) flusher(wg *sync.WaitGroup) { // Release the wait group defer wg.Done() // snapshot the bw and conn since they can change from underneath of us. nc.mu.Lock() bw := nc.bw conn := nc.conn fch := nc.fch flusherTimeout := nc.Opts.FlusherTimeout nc.mu.Unlock() if conn == nil || bw == nil { return } for { if _, ok := <-fch; !ok { return } nc.mu.Lock() // Check to see if we should bail out. if !nc.isConnected() || nc.isConnecting() || bw != nc.bw || conn != nc.conn { nc.mu.Unlock() return } if bw.Buffered() > 0 { // Allow customizing how long we should wait for a flush to be done // to prevent unhealthy connections blocking the client for too long. if flusherTimeout > 0 { conn.SetWriteDeadline(time.Now().Add(flusherTimeout)) } if err := bw.Flush(); err != nil { if nc.err == nil { nc.err = err } } conn.SetWriteDeadline(time.Time{}) } nc.mu.Unlock() } } // processPing will send an immediate pong protocol response to the // server. The server uses this mechanism to detect dead clients. func (nc *Conn) processPing() { nc.sendProto(pongProto) } // processPong is used to process responses to the client's ping // messages. We use pings for the flush mechanism as well. func (nc *Conn) processPong() { var ch chan struct{} nc.mu.Lock() if len(nc.pongs) > 0 { ch = nc.pongs[0] nc.pongs = nc.pongs[1:] } nc.pout = 0 nc.mu.Unlock() if ch != nil { ch <- struct{}{} } } // processOK is a placeholder for processing OK messages. func (nc *Conn) processOK() { // do nothing } // processInfo is used to parse the info messages sent // from the server. // This function may update the server pool. func (nc *Conn) processInfo(info string) error { if info == _EMPTY_ { return nil } if err := json.Unmarshal([]byte(info), &nc.info); err != nil { return err } urls := nc.info.ConnectURLs if len(urls) > 0 { added := false // If randomization is allowed, shuffle the received array, not the // entire pool. We want to preserve the pool's order up to this point // (this would otherwise be problematic for the (re)connect loop). if !nc.Opts.NoRandomize { for i := range urls { j := rand.Intn(i + 1) urls[i], urls[j] = urls[j], urls[i] } } for _, curl := range urls { if _, present := nc.urls[curl]; !present { if err := nc.addURLToPool(fmt.Sprintf("nats://%s", curl), true); err != nil { continue } added = true } } if added && !nc.initc && nc.Opts.DiscoveredServersCB != nil { nc.ach <- func() { nc.Opts.DiscoveredServersCB(nc) } } } return nil } // processAsyncInfo does the same than processInfo, but is called // from the parser. Calls processInfo under connection's lock // protection. func (nc *Conn) processAsyncInfo(info []byte) { nc.mu.Lock() // Ignore errors, we will simply not update the server pool... nc.processInfo(string(info)) nc.mu.Unlock() } // LastError reports the last error encountered via the connection. // It can be used reliably within ClosedCB in order to find out reason // why connection was closed for example. func (nc *Conn) LastError() error { if nc == nil { return ErrInvalidConnection } nc.mu.Lock() err := nc.err nc.mu.Unlock() return err } // processErr processes any error messages from the server and // sets the connection's lastError. func (nc *Conn) processErr(e string) { // Trim, remove quotes, convert to lower case. e = normalizeErr(e) // FIXME(dlc) - process Slow Consumer signals special. if e == STALE_CONNECTION { nc.processOpErr(ErrStaleConnection) } else if strings.HasPrefix(e, PERMISSIONS_ERR) { nc.processPermissionsViolation(e) } else if strings.HasPrefix(e, AUTHORIZATION_ERR) { nc.processAuthorizationViolation(e) } else { nc.mu.Lock() nc.err = errors.New("nats: " + e) nc.mu.Unlock() nc.Close() } } // kickFlusher will send a bool on a channel to kick the // flush Go routine to flush data to the server. func (nc *Conn) kickFlusher() { if nc.bw != nil { select { case nc.fch <- struct{}{}: default: } } } // Publish publishes the data argument to the given subject. The data // argument is left untouched and needs to be correctly interpreted on // the receiver. func (nc *Conn) Publish(subj string, data []byte) error { return nc.publish(subj, _EMPTY_, data) } // PublishMsg publishes the Msg structure, which includes the // Subject, an optional Reply and an optional Data field. func (nc *Conn) PublishMsg(m *Msg) error { if m == nil { return ErrInvalidMsg } return nc.publish(m.Subject, m.Reply, m.Data) } // PublishRequest will perform a Publish() excpecting a response on the // reply subject. Use Request() for automatically waiting for a response // inline. func (nc *Conn) PublishRequest(subj, reply string, data []byte) error { return nc.publish(subj, reply, data) } // Used for handrolled itoa const digits = "0123456789" // publish is the internal function to publish messages to a nats-server. // Sends a protocol data message by queuing into the bufio writer // and kicking the flush go routine. These writes should be protected. func (nc *Conn) publish(subj, reply string, data []byte) error { if nc == nil { return ErrInvalidConnection } if subj == "" { return ErrBadSubject } nc.mu.Lock() // Proactively reject payloads over the threshold set by server. msgSize := int64(len(data)) if msgSize > nc.info.MaxPayload { nc.mu.Unlock() return ErrMaxPayload } if nc.isClosed() { nc.mu.Unlock() return ErrConnectionClosed } // Check if we are reconnecting, and if so check if // we have exceeded our reconnect outbound buffer limits. if nc.isReconnecting() { // Flush to underlying buffer. nc.bw.Flush() // Check if we are over if nc.pending.Len() >= nc.Opts.ReconnectBufSize { nc.mu.Unlock() return ErrReconnectBufExceeded } } msgh := nc.scratch[:len(_PUB_P_)] msgh = append(msgh, subj...) msgh = append(msgh, ' ') if reply != "" { msgh = append(msgh, reply...) msgh = append(msgh, ' ') } // We could be smarter here, but simple loop is ok, // just avoid strconv in fast path // FIXME(dlc) - Find a better way here. // msgh = strconv.AppendInt(msgh, int64(len(data)), 10) var b [12]byte var i = len(b) if len(data) > 0 { for l := len(data); l > 0; l /= 10 { i -= 1 b[i] = digits[l%10] } } else { i -= 1 b[i] = digits[0] } msgh = append(msgh, b[i:]...) msgh = append(msgh, _CRLF_...) _, err := nc.bw.Write(msgh) if err == nil { _, err = nc.bw.Write(data) } if err == nil { _, err = nc.bw.WriteString(_CRLF_) } if err != nil { nc.mu.Unlock() return err } nc.OutMsgs++ nc.OutBytes += uint64(len(data)) if len(nc.fch) == 0 { nc.kickFlusher() } nc.mu.Unlock() return nil } // respHandler is the global response handler. It will look up // the appropriate channel based on the last token and place // the message on the channel if possible. func (nc *Conn) respHandler(m *Msg) { rt := respToken(m.Subject) nc.mu.Lock() // Just return if closed. if nc.isClosed() { nc.mu.Unlock() return } // Grab mch mch := nc.respMap[rt] // Delete the key regardless, one response only. // FIXME(dlc) - should we track responses past 1 // just statistics wise? delete(nc.respMap, rt) nc.mu.Unlock() // Don't block, let Request timeout instead, mch is // buffered and we should delete the key before a // second response is processed. select { case mch <- m: default: return } } // Create the response subscription we will use for all // new style responses. This will be on an _INBOX with an // additional terminal token. The subscription will be on // a wildcard. Caller is responsible for ensuring this is // only called once. func (nc *Conn) createRespMux(respSub string) error { s, err := nc.Subscribe(respSub, nc.respHandler) if err != nil { return err } nc.mu.Lock() nc.respMux = s nc.mu.Unlock() return nil } // Request will send a request payload and deliver the response message, // or an error, including a timeout if no message was received properly. func (nc *Conn) Request(subj string, data []byte, timeout time.Duration) (*Msg, error) { if nc == nil { return nil, ErrInvalidConnection } nc.mu.Lock() // If user wants the old style. if nc.Opts.UseOldRequestStyle { nc.mu.Unlock() return nc.oldRequest(subj, data, timeout) } // Do setup for the new style. if nc.respMap == nil { // _INBOX wildcard nc.respSub = fmt.Sprintf("%s.*", NewInbox()) nc.respMap = make(map[string]chan *Msg) } // Create literal Inbox and map to a chan msg. mch := make(chan *Msg, RequestChanLen) respInbox := nc.newRespInbox() token := respToken(respInbox) nc.respMap[token] = mch createSub := nc.respMux == nil ginbox := nc.respSub nc.mu.Unlock() if createSub { // Make sure scoped subscription is setup only once. var err error nc.respSetup.Do(func() { err = nc.createRespMux(ginbox) }) if err != nil { return nil, err } } if err := nc.PublishRequest(subj, respInbox, data); err != nil { return nil, err } t := globalTimerPool.Get(timeout) defer globalTimerPool.Put(t) var ok bool var msg *Msg select { case msg, ok = <-mch: if !ok { return nil, ErrConnectionClosed } case <-t.C: nc.mu.Lock() delete(nc.respMap, token) nc.mu.Unlock() return nil, ErrTimeout } return msg, nil } // oldRequest will create an Inbox and perform a Request() call // with the Inbox reply and return the first reply received. // This is optimized for the case of multiple responses. func (nc *Conn) oldRequest(subj string, data []byte, timeout time.Duration) (*Msg, error) { inbox := NewInbox() ch := make(chan *Msg, RequestChanLen) s, err := nc.subscribe(inbox, _EMPTY_, nil, ch) if err != nil { return nil, err } s.AutoUnsubscribe(1) defer s.Unsubscribe() err = nc.PublishRequest(subj, inbox, data) if err != nil { return nil, err } return s.NextMsg(timeout) } // InboxPrefix is the prefix for all inbox subjects. const InboxPrefix = "_INBOX." const inboxPrefixLen = len(InboxPrefix) const respInboxPrefixLen = inboxPrefixLen + nuidSize + 1 // NewInbox will return an inbox string which can be used for directed replies from // subscribers. These are guaranteed to be unique, but can be shared and subscribed // to by others. func NewInbox() string { var b [inboxPrefixLen + nuidSize]byte pres := b[:inboxPrefixLen] copy(pres, InboxPrefix) ns := b[inboxPrefixLen:] copy(ns, nuid.Next()) return string(b[:]) } // Creates a new literal response subject that will trigger // the global subscription handler. func (nc *Conn) newRespInbox() string { var b [inboxPrefixLen + (2 * nuidSize) + 1]byte pres := b[:respInboxPrefixLen] copy(pres, nc.respSub) ns := b[respInboxPrefixLen:] copy(ns, nuid.Next()) return string(b[:]) } // respToken will return the last token of a literal response inbox // which we use for the message channel lookup. func respToken(respInbox string) string { return respInbox[respInboxPrefixLen:] } // Subscribe will express interest in the given subject. The subject // can have wildcards (partial:*, full:>). Messages will be delivered // to the associated MsgHandler. If no MsgHandler is given, the // subscription is a synchronous subscription and can be polled via // Subscription.NextMsg(). func (nc *Conn) Subscribe(subj string, cb MsgHandler) (*Subscription, error) { return nc.subscribe(subj, _EMPTY_, cb, nil) } // ChanSubscribe will place all messages received on the channel. // You should not close the channel until sub.Unsubscribe() has been called. func (nc *Conn) ChanSubscribe(subj string, ch chan *Msg) (*Subscription, error) { return nc.subscribe(subj, _EMPTY_, nil, ch) } // ChanQueueSubscribe will place all messages received on the channel. // You should not close the channel until sub.Unsubscribe() has been called. func (nc *Conn) ChanQueueSubscribe(subj, group string, ch chan *Msg) (*Subscription, error) { return nc.subscribe(subj, group, nil, ch) } // SubscribeSync is syntactic sugar for Subscribe(subject, nil). func (nc *Conn) SubscribeSync(subj string) (*Subscription, error) { if nc == nil { return nil, ErrInvalidConnection } mch := make(chan *Msg, nc.Opts.SubChanLen) s, e := nc.subscribe(subj, _EMPTY_, nil, mch) if s != nil { s.typ = SyncSubscription } return s, e } // QueueSubscribe creates an asynchronous queue subscriber on the given subject. // All subscribers with the same queue name will form the queue group and // only one member of the group will be selected to receive any given // message asynchronously. func (nc *Conn) QueueSubscribe(subj, queue string, cb MsgHandler) (*Subscription, error) { return nc.subscribe(subj, queue, cb, nil) } // QueueSubscribeSync creates a synchronous queue subscriber on the given // subject. All subscribers with the same queue name will form the queue // group and only one member of the group will be selected to receive any // given message synchronously. func (nc *Conn) QueueSubscribeSync(subj, queue string) (*Subscription, error) { mch := make(chan *Msg, nc.Opts.SubChanLen) s, e := nc.subscribe(subj, queue, nil, mch) if s != nil { s.typ = SyncSubscription } return s, e } // QueueSubscribeSyncWithChan is syntactic sugar for ChanQueueSubscribe(subject, group, ch). func (nc *Conn) QueueSubscribeSyncWithChan(subj, queue string, ch chan *Msg) (*Subscription, error) { return nc.subscribe(subj, queue, nil, ch) } // subscribe is the internal subscribe function that indicates interest in a subject. func (nc *Conn) subscribe(subj, queue string, cb MsgHandler, ch chan *Msg) (*Subscription, error) { if nc == nil { return nil, ErrInvalidConnection } nc.mu.Lock() // ok here, but defer is generally expensive defer nc.mu.Unlock() defer nc.kickFlusher() // Check for some error conditions. if nc.isClosed() { return nil, ErrConnectionClosed } if cb == nil && ch == nil { return nil, ErrBadSubscription } sub := &Subscription{Subject: subj, Queue: queue, mcb: cb, conn: nc} // Set pending limits. sub.pMsgsLimit = DefaultSubPendingMsgsLimit sub.pBytesLimit = DefaultSubPendingBytesLimit // If we have an async callback, start up a sub specific // Go routine to deliver the messages. if cb != nil { sub.typ = AsyncSubscription sub.pCond = sync.NewCond(&sub.mu) go nc.waitForMsgs(sub) } else { sub.typ = ChanSubscription sub.mch = ch } nc.subsMu.Lock() nc.ssid++ sub.sid = nc.ssid nc.subs[sub.sid] = sub nc.subsMu.Unlock() // We will send these for all subs when we reconnect // so that we can suppress here. if !nc.isReconnecting() { nc.bw.WriteString(fmt.Sprintf(subProto, subj, queue, sub.sid)) } return sub, nil } // Lock for nc should be held here upon entry func (nc *Conn) removeSub(s *Subscription) { nc.subsMu.Lock() delete(nc.subs, s.sid) nc.subsMu.Unlock() s.mu.Lock() defer s.mu.Unlock() // Release callers on NextMsg for SyncSubscription only if s.mch != nil && s.typ == SyncSubscription { close(s.mch) } s.mch = nil // Mark as invalid s.conn = nil s.closed = true if s.pCond != nil { s.pCond.Broadcast() } } // SubscriptionType is the type of the Subscription. type SubscriptionType int // The different types of subscription types. const ( AsyncSubscription = SubscriptionType(iota) SyncSubscription ChanSubscription NilSubscription ) // Type returns the type of Subscription. func (s *Subscription) Type() SubscriptionType { if s == nil { return NilSubscription } s.mu.Lock() defer s.mu.Unlock() return s.typ } // IsValid returns a boolean indicating whether the subscription // is still active. This will return false if the subscription has // already been closed. func (s *Subscription) IsValid() bool { if s == nil { return false } s.mu.Lock() defer s.mu.Unlock() return s.conn != nil } // Unsubscribe will remove interest in the given subject. func (s *Subscription) Unsubscribe() error { if s == nil { return ErrBadSubscription } s.mu.Lock() conn := s.conn s.mu.Unlock() if conn == nil { return ErrBadSubscription } return conn.unsubscribe(s, 0) } // AutoUnsubscribe will issue an automatic Unsubscribe that is // processed by the server when max messages have been received. // This can be useful when sending a request to an unknown number // of subscribers. Request() uses this functionality. func (s *Subscription) AutoUnsubscribe(max int) error { if s == nil { return ErrBadSubscription } s.mu.Lock() conn := s.conn s.mu.Unlock() if conn == nil { return ErrBadSubscription } return conn.unsubscribe(s, max) } // unsubscribe performs the low level unsubscribe to the server. // Use Subscription.Unsubscribe() func (nc *Conn) unsubscribe(sub *Subscription, max int) error { nc.mu.Lock() // ok here, but defer is expensive defer nc.mu.Unlock() defer nc.kickFlusher() if nc.isClosed() { return ErrConnectionClosed } nc.subsMu.RLock() s := nc.subs[sub.sid] nc.subsMu.RUnlock() // Already unsubscribed if s == nil { return nil } maxStr := _EMPTY_ if max > 0 { s.max = uint64(max) maxStr = strconv.Itoa(max) } else { nc.removeSub(s) } // We will send these for all subs when we reconnect // so that we can suppress here. if !nc.isReconnecting() { nc.bw.WriteString(fmt.Sprintf(unsubProto, s.sid, maxStr)) } return nil } // NextMsg will return the next message available to a synchronous subscriber // or block until one is available. A timeout can be used to return when no // message has been delivered. func (s *Subscription) NextMsg(timeout time.Duration) (*Msg, error) { if s == nil { return nil, ErrBadSubscription } s.mu.Lock() err := s.validateNextMsgState() if err != nil { s.mu.Unlock() return nil, err } // snapshot mch := s.mch s.mu.Unlock() var ok bool var msg *Msg t := globalTimerPool.Get(timeout) defer globalTimerPool.Put(t) select { case msg, ok = <-mch: if !ok { return nil, ErrConnectionClosed } err := s.processNextMsgDelivered(msg) if err != nil { return nil, err } case <-t.C: return nil, ErrTimeout } return msg, nil } // validateNextMsgState checks whether the subscription is in a valid // state to call NextMsg and be delivered another message synchronously. // This should be called while holding the lock. func (s *Subscription) validateNextMsgState() error { if s.connClosed { return ErrConnectionClosed } if s.mch == nil { if s.max > 0 && s.delivered >= s.max { return ErrMaxMessages } else if s.closed { return ErrBadSubscription } } if s.mcb != nil { return ErrSyncSubRequired } if s.sc { s.sc = false return ErrSlowConsumer } return nil } // processNextMsgDelivered takes a message and applies the needed // accounting to the stats from the subscription, returning an // error in case we have the maximum number of messages have been // delivered already. It should not be called while holding the lock. func (s *Subscription) processNextMsgDelivered(msg *Msg) error { s.mu.Lock() nc := s.conn max := s.max // Update some stats. s.delivered++ delivered := s.delivered if s.typ == SyncSubscription { s.pMsgs-- s.pBytes -= len(msg.Data) } s.mu.Unlock() if max > 0 { if delivered > max { return ErrMaxMessages } // Remove subscription if we have reached max. if delivered == max { nc.mu.Lock() nc.removeSub(s) nc.mu.Unlock() } } return nil } // Queued returns the number of queued messages in the client for this subscription. // DEPRECATED: Use Pending() func (s *Subscription) QueuedMsgs() (int, error) { m, _, err := s.Pending() return int(m), err } // Pending returns the number of queued messages and queued bytes in the client for this subscription. func (s *Subscription) Pending() (int, int, error) { if s == nil { return -1, -1, ErrBadSubscription } s.mu.Lock() defer s.mu.Unlock() if s.conn == nil { return -1, -1, ErrBadSubscription } if s.typ == ChanSubscription { return -1, -1, ErrTypeSubscription } return s.pMsgs, s.pBytes, nil } // MaxPending returns the maximum number of queued messages and queued bytes seen so far. func (s *Subscription) MaxPending() (int, int, error) { if s == nil { return -1, -1, ErrBadSubscription } s.mu.Lock() defer s.mu.Unlock() if s.conn == nil { return -1, -1, ErrBadSubscription } if s.typ == ChanSubscription { return -1, -1, ErrTypeSubscription } return s.pMsgsMax, s.pBytesMax, nil } // ClearMaxPending resets the maximums seen so far. func (s *Subscription) ClearMaxPending() error { if s == nil { return ErrBadSubscription } s.mu.Lock() defer s.mu.Unlock() if s.conn == nil { return ErrBadSubscription } if s.typ == ChanSubscription { return ErrTypeSubscription } s.pMsgsMax, s.pBytesMax = 0, 0 return nil } // Pending Limits const ( DefaultSubPendingMsgsLimit = 65536 DefaultSubPendingBytesLimit = 65536 * 1024 ) // PendingLimits returns the current limits for this subscription. // If no error is returned, a negative value indicates that the // given metric is not limited. func (s *Subscription) PendingLimits() (int, int, error) { if s == nil { return -1, -1, ErrBadSubscription } s.mu.Lock() defer s.mu.Unlock() if s.conn == nil { return -1, -1, ErrBadSubscription } if s.typ == ChanSubscription { return -1, -1, ErrTypeSubscription } return s.pMsgsLimit, s.pBytesLimit, nil } // SetPendingLimits sets the limits for pending msgs and bytes for this subscription. // Zero is not allowed. Any negative value means that the given metric is not limited. func (s *Subscription) SetPendingLimits(msgLimit, bytesLimit int) error { if s == nil { return ErrBadSubscription } s.mu.Lock() defer s.mu.Unlock() if s.conn == nil { return ErrBadSubscription } if s.typ == ChanSubscription { return ErrTypeSubscription } if msgLimit == 0 || bytesLimit == 0 { return ErrInvalidArg } s.pMsgsLimit, s.pBytesLimit = msgLimit, bytesLimit return nil } // Delivered returns the number of delivered messages for this subscription. func (s *Subscription) Delivered() (int64, error) { if s == nil { return -1, ErrBadSubscription } s.mu.Lock() defer s.mu.Unlock() if s.conn == nil { return -1, ErrBadSubscription } return int64(s.delivered), nil } // Dropped returns the number of known dropped messages for this subscription. // This will correspond to messages dropped by violations of PendingLimits. If // the server declares the connection a SlowConsumer, this number may not be // valid. func (s *Subscription) Dropped() (int, error) { if s == nil { return -1, ErrBadSubscription } s.mu.Lock() defer s.mu.Unlock() if s.conn == nil { return -1, ErrBadSubscription } return s.dropped, nil } // FIXME: This is a hack // removeFlushEntry is needed when we need to discard queued up responses // for our pings as part of a flush call. This happens when we have a flush // call outstanding and we call close. func (nc *Conn) removeFlushEntry(ch chan struct{}) bool { nc.mu.Lock() defer nc.mu.Unlock() if nc.pongs == nil { return false } for i, c := range nc.pongs { if c == ch { nc.pongs[i] = nil return true } } return false } // The lock must be held entering this function. func (nc *Conn) sendPing(ch chan struct{}) { nc.pongs = append(nc.pongs, ch) nc.bw.WriteString(pingProto) // Flush in place. nc.bw.Flush() } // This will fire periodically and send a client origin // ping to the server. Will also check that we have received // responses from the server. func (nc *Conn) processPingTimer() { nc.mu.Lock() if nc.status != CONNECTED { nc.mu.Unlock() return } // Check for violation nc.pout++ if nc.pout > nc.Opts.MaxPingsOut { nc.mu.Unlock() nc.processOpErr(ErrStaleConnection) return } nc.sendPing(nil) nc.ptmr.Reset(nc.Opts.PingInterval) nc.mu.Unlock() } // FlushTimeout allows a Flush operation to have an associated timeout. func (nc *Conn) FlushTimeout(timeout time.Duration) (err error) { if nc == nil { return ErrInvalidConnection } if timeout <= 0 { return ErrBadTimeout } nc.mu.Lock() if nc.isClosed() { nc.mu.Unlock() return ErrConnectionClosed } t := globalTimerPool.Get(timeout) defer globalTimerPool.Put(t) ch := make(chan struct{}) nc.sendPing(ch) nc.mu.Unlock() select { case _, ok := <-ch: if !ok { err = ErrConnectionClosed } else { close(ch) } case <-t.C: err = ErrTimeout } if err != nil { nc.removeFlushEntry(ch) } return } // Flush will perform a round trip to the server and return when it // receives the internal reply. func (nc *Conn) Flush() error { return nc.FlushTimeout(60 * time.Second) } // Buffered will return the number of bytes buffered to be sent to the server. // FIXME(dlc) take into account disconnected state. func (nc *Conn) Buffered() (int, error) { nc.mu.Lock() defer nc.mu.Unlock() if nc.isClosed() || nc.bw == nil { return -1, ErrConnectionClosed } return nc.bw.Buffered(), nil } // resendSubscriptions will send our subscription state back to the // server. Used in reconnects func (nc *Conn) resendSubscriptions() { // Since we are going to send protocols to the server, we don't want to // be holding the subsMu lock (which is used in processMsg). So copy // the subscriptions in a temporary array. nc.subsMu.RLock() subs := make([]*Subscription, 0, len(nc.subs)) for _, s := range nc.subs { subs = append(subs, s) } nc.subsMu.RUnlock() for _, s := range subs { adjustedMax := uint64(0) s.mu.Lock() if s.max > 0 { if s.delivered < s.max { adjustedMax = s.max - s.delivered } // adjustedMax could be 0 here if the number of delivered msgs // reached the max, if so unsubscribe. if adjustedMax == 0 { s.mu.Unlock() nc.bw.WriteString(fmt.Sprintf(unsubProto, s.sid, _EMPTY_)) continue } } s.mu.Unlock() nc.bw.WriteString(fmt.Sprintf(subProto, s.Subject, s.Queue, s.sid)) if adjustedMax > 0 { maxStr := strconv.Itoa(int(adjustedMax)) nc.bw.WriteString(fmt.Sprintf(unsubProto, s.sid, maxStr)) } } } // This will clear any pending flush calls and release pending calls. // Lock is assumed to be held by the caller. func (nc *Conn) clearPendingFlushCalls() { // Clear any queued pongs, e.g. pending flush calls. for _, ch := range nc.pongs { if ch != nil { close(ch) } } nc.pongs = nil } // This will clear any pending Request calls. // Lock is assumed to be held by the caller. func (nc *Conn) clearPendingRequestCalls() { if nc.respMap == nil { return } for key, ch := range nc.respMap { if ch != nil { close(ch) delete(nc.respMap, key) } } } // Low level close call that will do correct cleanup and set // desired status. Also controls whether user defined callbacks // will be triggered. The lock should not be held entering this // function. This function will handle the locking manually. func (nc *Conn) close(status Status, doCBs bool) { nc.mu.Lock() if nc.isClosed() { nc.status = status nc.mu.Unlock() return } nc.status = CLOSED // Kick the Go routines so they fall out. nc.kickFlusher() nc.mu.Unlock() nc.mu.Lock() // Clear any queued pongs, e.g. pending flush calls. nc.clearPendingFlushCalls() // Clear any queued and blocking Requests. nc.clearPendingRequestCalls() if nc.ptmr != nil { nc.ptmr.Stop() } // Go ahead and make sure we have flushed the outbound if nc.conn != nil { nc.bw.Flush() defer nc.conn.Close() } // Close sync subscriber channels and release any // pending NextMsg() calls. nc.subsMu.Lock() for _, s := range nc.subs { s.mu.Lock() // Release callers on NextMsg for SyncSubscription only if s.mch != nil && s.typ == SyncSubscription { close(s.mch) } s.mch = nil // Mark as invalid, for signaling to deliverMsgs s.closed = true // Mark connection closed in subscription s.connClosed = true // If we have an async subscription, signals it to exit if s.typ == AsyncSubscription && s.pCond != nil { s.pCond.Signal() } s.mu.Unlock() } nc.subs = nil nc.subsMu.Unlock() // Perform appropriate callback if needed for a disconnect. if doCBs { if nc.Opts.DisconnectedCB != nil && nc.conn != nil { nc.ach <- func() { nc.Opts.DisconnectedCB(nc) } } if nc.Opts.ClosedCB != nil { nc.ach <- func() { nc.Opts.ClosedCB(nc) } } nc.ach <- nc.closeAsyncFunc() } nc.status = status nc.mu.Unlock() } // Close will close the connection to the server. This call will release // all blocking calls, such as Flush() and NextMsg() func (nc *Conn) Close() { nc.close(CLOSED, true) } // IsClosed tests if a Conn has been closed. func (nc *Conn) IsClosed() bool { nc.mu.Lock() defer nc.mu.Unlock() return nc.isClosed() } // IsReconnecting tests if a Conn is reconnecting. func (nc *Conn) IsReconnecting() bool { nc.mu.Lock() defer nc.mu.Unlock() return nc.isReconnecting() } // IsConnected tests if a Conn is connected. func (nc *Conn) IsConnected() bool { nc.mu.Lock() defer nc.mu.Unlock() return nc.isConnected() } // caller must lock func (nc *Conn) getServers(implicitOnly bool) []string { poolSize := len(nc.srvPool) var servers = make([]string, 0) for i := 0; i < poolSize; i++ { if implicitOnly && !nc.srvPool[i].isImplicit { continue } url := nc.srvPool[i].url servers = append(servers, fmt.Sprintf("%s://%s", url.Scheme, url.Host)) } return servers } // Servers returns the list of known server urls, including additional // servers discovered after a connection has been established. If // authentication is enabled, use UserInfo or Token when connecting with // these urls. func (nc *Conn) Servers() []string { nc.mu.Lock() defer nc.mu.Unlock() return nc.getServers(false) } // DiscoveredServers returns only the server urls that have been discovered // after a connection has been established. If authentication is enabled, // use UserInfo or Token when connecting with these urls. func (nc *Conn) DiscoveredServers() []string { nc.mu.Lock() defer nc.mu.Unlock() return nc.getServers(true) } // Status returns the current state of the connection. func (nc *Conn) Status() Status { nc.mu.Lock() defer nc.mu.Unlock() return nc.status } // Test if Conn has been closed Lock is assumed held. func (nc *Conn) isClosed() bool { return nc.status == CLOSED } // Test if Conn is in the process of connecting func (nc *Conn) isConnecting() bool { return nc.status == CONNECTING } // Test if Conn is being reconnected. func (nc *Conn) isReconnecting() bool { return nc.status == RECONNECTING } // Test if Conn is connected or connecting. func (nc *Conn) isConnected() bool { return nc.status == CONNECTED } // Stats will return a race safe copy of the Statistics section for the connection. func (nc *Conn) Stats() Statistics { // Stats are updated either under connection's mu or subsMu mutexes. // Lock both to safely get them. nc.mu.Lock() nc.subsMu.RLock() stats := Statistics{ InMsgs: nc.InMsgs, InBytes: nc.InBytes, OutMsgs: nc.OutMsgs, OutBytes: nc.OutBytes, Reconnects: nc.Reconnects, } nc.subsMu.RUnlock() nc.mu.Unlock() return stats } // MaxPayload returns the size limit that a message payload can have. // This is set by the server configuration and delivered to the client // upon connect. func (nc *Conn) MaxPayload() int64 { nc.mu.Lock() defer nc.mu.Unlock() return nc.info.MaxPayload } // AuthRequired will return if the connected server requires authorization. func (nc *Conn) AuthRequired() bool { nc.mu.Lock() defer nc.mu.Unlock() return nc.info.AuthRequired } // TLSRequired will return if the connected server requires TLS connections. func (nc *Conn) TLSRequired() bool { nc.mu.Lock() defer nc.mu.Unlock() return nc.info.TLSRequired }