// This is a part of rust-chrono. // Copyright (c) 2014, Kang Seonghoon. // See README.md and LICENSE.txt for details. /*! * ISO 8601 time without timezone. */ use std::fmt; use std::num::Int; use Timelike; use div::div_mod_floor; use offset::Offset; use duration::Duration; use format::DelayedFormat; /// ISO 8601 time without timezone. /// Allows for the nanosecond precision and optional leap second representation. #[deriving(PartialEq, Eq, PartialOrd, Ord, Clone, Hash)] pub struct NaiveTime { secs: u32, frac: u32, } impl NaiveTime { /// Makes a new `NaiveTime` from hour, minute and second. /// /// Fails on invalid hour, minute and/or second. #[inline] pub fn from_hms(hour: u32, min: u32, sec: u32) -> NaiveTime { NaiveTime::from_hms_opt(hour, min, sec).expect("invalid time") } /// Makes a new `NaiveTime` from hour, minute and second. /// /// Returns `None` on invalid hour, minute and/or second. #[inline] pub fn from_hms_opt(hour: u32, min: u32, sec: u32) -> Option { NaiveTime::from_hms_nano_opt(hour, min, sec, 0) } /// Makes a new `NaiveTime` from hour, minute, second and millisecond. /// The millisecond part can exceed 1,000 in order to represent the leap second. /// /// Fails on invalid hour, minute, second and/or millisecond. #[inline] pub fn from_hms_milli(hour: u32, min: u32, sec: u32, milli: u32) -> NaiveTime { NaiveTime::from_hms_milli_opt(hour, min, sec, milli).expect("invalid time") } /// Makes a new `NaiveTime` from hour, minute, second and millisecond. /// The millisecond part can exceed 1,000 in order to represent the leap second. /// /// Returns `None` on invalid hour, minute, second and/or millisecond. #[inline] pub fn from_hms_milli_opt(hour: u32, min: u32, sec: u32, milli: u32) -> Option { milli.checked_mul(1_000_000) .and_then(|nano| NaiveTime::from_hms_nano_opt(hour, min, sec, nano)) } /// Makes a new `NaiveTime` from hour, minute, second and microsecond. /// The microsecond part can exceed 1,000,000 in order to represent the leap second. /// /// Fails on invalid hour, minute, second and/or microsecond. #[inline] pub fn from_hms_micro(hour: u32, min: u32, sec: u32, micro: u32) -> NaiveTime { NaiveTime::from_hms_micro_opt(hour, min, sec, micro).expect("invalid time") } /// Makes a new `NaiveTime` from hour, minute, second and microsecond. /// The microsecond part can exceed 1,000,000 in order to represent the leap second. /// /// Returns `None` on invalid hour, minute, second and/or microsecond. #[inline] pub fn from_hms_micro_opt(hour: u32, min: u32, sec: u32, micro: u32) -> Option { micro.checked_mul(1_000) .and_then(|nano| NaiveTime::from_hms_nano_opt(hour, min, sec, nano)) } /// Makes a new `NaiveTime` from hour, minute, second and nanosecond. /// The nanosecond part can exceed 1,000,000,000 in order to represent the leap second. /// /// Fails on invalid hour, minute, second and/or nanosecond. #[inline] pub fn from_hms_nano(hour: u32, min: u32, sec: u32, nano: u32) -> NaiveTime { NaiveTime::from_hms_nano_opt(hour, min, sec, nano).expect("invalid time") } /// Makes a new `NaiveTime` from hour, minute, second and nanosecond. /// The nanosecond part can exceed 1,000,000,000 in order to represent the leap second. /// /// Returns `None` on invalid hour, minute, second and/or nanosecond. #[inline] pub fn from_hms_nano_opt(hour: u32, min: u32, sec: u32, nano: u32) -> Option { if hour >= 24 || min >= 60 || sec >= 60 || nano >= 2_000_000_000 { return None; } let secs = hour * 3600 + min * 60 + sec; Some(NaiveTime { secs: secs, frac: nano }) } /// Makes a new `NaiveTime` from the number of seconds since midnight and nanosecond. /// The nanosecond part can exceed 1,000,000,000 in order to represent the leap second. /// /// Fails on invalid number of seconds and/or nanosecond. #[inline] pub fn from_num_seconds_from_midnight(secs: u32, nano: u32) -> NaiveTime { NaiveTime::from_num_seconds_from_midnight_opt(secs, nano).expect("invalid time") } /// Makes a new `NaiveTime` from the number of seconds since midnight and nanosecond. /// The nanosecond part can exceed 1,000,000,000 in order to represent the leap second. /// /// Returns `None` on invalid number of seconds and/or nanosecond. #[inline] pub fn from_num_seconds_from_midnight_opt(secs: u32, nano: u32) -> Option { if secs >= 86400 || nano >= 2_000_000_000 { return None; } Some(NaiveTime { secs: secs, frac: nano }) } /// Formats the time in the specified format string. /// See the `format` module on the supported escape sequences. #[inline] pub fn format<'a>(&'a self, fmt: &'a str) -> DelayedFormat<'a> { DelayedFormat::new(None, Some(self.clone()), fmt) } /// Returns a triple of the hour, minute and second numbers. fn hms(&self) -> (u32, u32, u32) { let (mins, sec) = div_mod_floor(self.secs, 60); let (hour, min) = div_mod_floor(mins, 60); (hour, min, sec) } } impl Timelike for NaiveTime { #[inline] fn hour(&self) -> u32 { self.hms().val0() } #[inline] fn minute(&self) -> u32 { self.hms().val1() } #[inline] fn second(&self) -> u32 { self.hms().val2() } #[inline] fn nanosecond(&self) -> u32 { self.frac } #[inline] fn with_hour(&self, hour: u32) -> Option { if hour >= 24 { return None; } let secs = hour * 3600 + self.secs % 3600; Some(NaiveTime { secs: secs, ..*self }) } #[inline] fn with_minute(&self, min: u32) -> Option { if min >= 60 { return None; } let secs = self.secs / 3600 * 3600 + min * 60 + self.secs % 60; Some(NaiveTime { secs: secs, ..*self }) } #[inline] fn with_second(&self, sec: u32) -> Option { if sec >= 60 { return None; } let secs = self.secs / 60 * 60 + sec; Some(NaiveTime { secs: secs, ..*self }) } #[inline] fn with_nanosecond(&self, nano: u32) -> Option { if nano >= 2_000_000_000 { return None; } Some(NaiveTime { frac: nano, ..*self }) } #[inline] fn num_seconds_from_midnight(&self) -> u32 { self.secs // do not repeat the calculation! } } impl Add for NaiveTime { fn add(&self, rhs: &Duration) -> NaiveTime { // there is no direct interface in `Duration` to get only the nanosecond part, // so we need to do the additional calculation here. let rhs2 = *rhs - Duration::seconds(rhs.num_seconds()); let mut secs = self.secs + (rhs.num_seconds() % 86400 + 86400) as u32; let mut nanos = self.frac + rhs2.num_nanoseconds().unwrap() as u32; // always ignore leap seconds after the current whole second let maxnanos = if self.frac >= 1_000_000_000 {2_000_000_000} else {1_000_000_000}; if nanos >= maxnanos { nanos -= maxnanos; secs += 1; } NaiveTime { secs: secs % 86400, frac: nanos } } } impl Add for Duration { #[inline] fn add(&self, rhs: &NaiveTime) -> NaiveTime { rhs.add(self) } } impl Sub for NaiveTime { fn sub(&self, rhs: &NaiveTime) -> Duration { // the number of whole non-leap seconds let secs = self.secs as i64 - rhs.secs as i64 - 1; // the fractional second from the rhs to the next non-leap second let maxnanos = if rhs.frac >= 1_000_000_000 {2_000_000_000} else {1_000_000_000}; let nanos1 = maxnanos - rhs.frac; // the fractional second from the last leap or non-leap second to the lhs let lastfrac = if self.frac >= 1_000_000_000 {1_000_000_000} else {0}; let nanos2 = self.frac - lastfrac; Duration::seconds(secs) + Duration::nanoseconds(nanos1 as i64 + nanos2 as i64) } } impl fmt::Show for NaiveTime { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let (hour, min, sec) = self.hms(); let (sec, nano) = if self.frac >= 1_000_000_000 { (sec + 1, self.frac - 1_000_000_000) } else { (sec, self.frac) }; try!(write!(f, "{:02}:{:02}:{:02}", hour, min, sec)); if nano == 0 { Ok(()) } else if nano % 1_000_000 == 0 { write!(f, ".{:03}", nano / 1_000_000) } else if nano % 1_000 == 0 { write!(f, ".{:06}", nano / 1_000) } else { write!(f, ".{:09}", nano) } } } #[cfg(test)] mod tests { use super::NaiveTime; use Timelike; use duration::Duration; use std::u32; #[test] fn test_time_from_hms_milli() { assert_eq!(NaiveTime::from_hms_milli_opt(3, 5, 7, 0), Some(NaiveTime::from_hms_nano(3, 5, 7, 0))); assert_eq!(NaiveTime::from_hms_milli_opt(3, 5, 7, 777), Some(NaiveTime::from_hms_nano(3, 5, 7, 777_000_000))); assert_eq!(NaiveTime::from_hms_milli_opt(3, 5, 7, 1_999), Some(NaiveTime::from_hms_nano(3, 5, 7, 1_999_000_000))); assert_eq!(NaiveTime::from_hms_milli_opt(3, 5, 7, 2_000), None); assert_eq!(NaiveTime::from_hms_milli_opt(3, 5, 7, 5_000), None); // overflow check assert_eq!(NaiveTime::from_hms_milli_opt(3, 5, 7, u32::MAX), None); } #[test] fn test_time_from_hms_micro() { assert_eq!(NaiveTime::from_hms_micro_opt(3, 5, 7, 0), Some(NaiveTime::from_hms_nano(3, 5, 7, 0))); assert_eq!(NaiveTime::from_hms_micro_opt(3, 5, 7, 333), Some(NaiveTime::from_hms_nano(3, 5, 7, 333_000))); assert_eq!(NaiveTime::from_hms_micro_opt(3, 5, 7, 777_777), Some(NaiveTime::from_hms_nano(3, 5, 7, 777_777_000))); assert_eq!(NaiveTime::from_hms_micro_opt(3, 5, 7, 1_999_999), Some(NaiveTime::from_hms_nano(3, 5, 7, 1_999_999_000))); assert_eq!(NaiveTime::from_hms_micro_opt(3, 5, 7, 2_000_000), None); assert_eq!(NaiveTime::from_hms_micro_opt(3, 5, 7, 5_000_000), None); // overflow check assert_eq!(NaiveTime::from_hms_micro_opt(3, 5, 7, u32::MAX), None); } #[test] fn test_time_hms() { assert_eq!(NaiveTime::from_hms(3, 5, 7).hour(), 3); assert_eq!(NaiveTime::from_hms(3, 5, 7).with_hour(0), Some(NaiveTime::from_hms(0, 5, 7))); assert_eq!(NaiveTime::from_hms(3, 5, 7).with_hour(23), Some(NaiveTime::from_hms(23, 5, 7))); assert_eq!(NaiveTime::from_hms(3, 5, 7).with_hour(24), None); assert_eq!(NaiveTime::from_hms(3, 5, 7).with_hour(u32::MAX), None); assert_eq!(NaiveTime::from_hms(3, 5, 7).minute(), 5); assert_eq!(NaiveTime::from_hms(3, 5, 7).with_minute(0), Some(NaiveTime::from_hms(3, 0, 7))); assert_eq!(NaiveTime::from_hms(3, 5, 7).with_minute(59), Some(NaiveTime::from_hms(3, 59, 7))); assert_eq!(NaiveTime::from_hms(3, 5, 7).with_minute(60), None); assert_eq!(NaiveTime::from_hms(3, 5, 7).with_minute(u32::MAX), None); assert_eq!(NaiveTime::from_hms(3, 5, 7).second(), 7); assert_eq!(NaiveTime::from_hms(3, 5, 7).with_second(0), Some(NaiveTime::from_hms(3, 5, 0))); assert_eq!(NaiveTime::from_hms(3, 5, 7).with_second(59), Some(NaiveTime::from_hms(3, 5, 59))); assert_eq!(NaiveTime::from_hms(3, 5, 7).with_second(60), None); assert_eq!(NaiveTime::from_hms(3, 5, 7).with_second(u32::MAX), None); } #[test] fn test_time_add() { fn check(lhs: NaiveTime, rhs: Duration, sum: NaiveTime) { assert_eq!(lhs + rhs, sum); assert_eq!(rhs + lhs, sum); } let hmsm = |h,m,s,mi| NaiveTime::from_hms_milli(h, m, s, mi); check(hmsm(3, 5, 7, 900), Duration::zero(), hmsm(3, 5, 7, 900)); check(hmsm(3, 5, 7, 900), Duration::milliseconds(100), hmsm(3, 5, 8, 0)); check(hmsm(3, 5, 7, 1_300), Duration::milliseconds(800), hmsm(3, 5, 8, 100)); check(hmsm(3, 5, 7, 900), Duration::seconds(86399), hmsm(3, 5, 6, 900)); // overwrap check(hmsm(3, 5, 7, 900), Duration::seconds(-86399), hmsm(3, 5, 8, 900)); check(hmsm(3, 5, 7, 900), Duration::days(12345), hmsm(3, 5, 7, 900)); } #[test] fn test_time_sub() { fn check(lhs: NaiveTime, rhs: NaiveTime, diff: Duration) { // `time1 - time2 = duration` is equivalent to `time2 - time1 = -duration` assert_eq!(lhs - rhs, diff); assert_eq!(rhs - lhs, -diff); } let hmsm = |h,m,s,mi| NaiveTime::from_hms_milli(h, m, s, mi); check(hmsm(3, 5, 7, 900), hmsm(3, 5, 7, 900), Duration::zero()); check(hmsm(3, 5, 7, 900), hmsm(3, 5, 7, 600), Duration::milliseconds(300)); check(hmsm(3, 5, 7, 200), hmsm(2, 4, 6, 200), Duration::seconds(3600 + 60 + 1)); check(hmsm(3, 5, 7, 200), hmsm(2, 4, 6, 300), Duration::seconds(3600 + 60) + Duration::milliseconds(900)); // treats the leap second as if it coincides with the prior non-leap second, // as required by `time1 - time2 = duration` and `time2 - time1 = -duration` equivalence. check(hmsm(3, 5, 7, 200), hmsm(3, 5, 6, 1_800), Duration::milliseconds(400)); check(hmsm(3, 5, 7, 1_200), hmsm(3, 5, 6, 1_800), Duration::milliseconds(400)); check(hmsm(3, 5, 7, 1_200), hmsm(3, 5, 6, 800), Duration::milliseconds(400)); // additional equality: `time1 + duration = time2` is equivalent to // `time2 - time1 = duration` IF AND ONLY IF `time2` represents a non-leap second. assert_eq!(hmsm(3, 5, 6, 800) + Duration::milliseconds(400), hmsm(3, 5, 7, 200)); assert_eq!(hmsm(3, 5, 6, 1_800) + Duration::milliseconds(400), hmsm(3, 5, 7, 200)); } #[test] fn test_time_fmt() { assert_eq!(NaiveTime::from_hms_milli(23, 59, 59, 999).to_string(), "23:59:59.999".to_string()); assert_eq!(NaiveTime::from_hms_milli(23, 59, 59, 1_000).to_string(), "23:59:60".to_string()); assert_eq!(NaiveTime::from_hms_milli(23, 59, 59, 1_001).to_string(), "23:59:60.001".to_string()); assert_eq!(NaiveTime::from_hms_micro(0, 0, 0, 43210).to_string(), "00:00:00.043210".to_string()); assert_eq!(NaiveTime::from_hms_nano(0, 0, 0, 6543210).to_string(), "00:00:00.006543210".to_string()); // the format specifier should have no effect on `NaiveTime` assert_eq!(format!("{:30}", NaiveTime::from_hms_milli(3, 5, 7, 9)), "03:05:07.009".to_string()); } #[test] fn test_time_format() { let t = NaiveTime::from_hms_nano(3, 5, 7, 98765432); assert_eq!(t.format("%H,%k,%I,%l,%P,%p").to_string(), "03, 3,03, 3,am,AM".to_string()); assert_eq!(t.format("%M").to_string(), "05".to_string()); assert_eq!(t.format("%S,%f").to_string(), "07,098765432".to_string()); assert_eq!(t.format("%R").to_string(), "03:05".to_string()); assert_eq!(t.format("%T,%X").to_string(), "03:05:07,03:05:07".to_string()); assert_eq!(t.format("%r").to_string(), "03:05:07 AM".to_string()); assert_eq!(t.format("%t%n%%%n%t").to_string(), "\t\n%\n\t".to_string()); // corner cases assert_eq!(NaiveTime::from_hms(13, 57, 9).format("%r").to_string(), "01:57:09 PM".to_string()); } }