1971 lines
75 KiB
Rust
1971 lines
75 KiB
Rust
// This is a part of Chrono.
|
|
// See README.md and LICENSE.txt for details.
|
|
|
|
//! ISO 8601 date and time without timezone.
|
|
|
|
use std::{str, fmt, hash};
|
|
use std::ops::{Add, Sub, AddAssign, SubAssign};
|
|
use num_traits::ToPrimitive;
|
|
use oldtime::Duration as OldDuration;
|
|
|
|
use {Weekday, Timelike, Datelike};
|
|
use div::div_mod_floor;
|
|
use naive::{NaiveTime, NaiveDate, IsoWeek};
|
|
use format::{Item, Numeric, Pad, Fixed};
|
|
use format::{parse, Parsed, ParseError, ParseResult, DelayedFormat, StrftimeItems};
|
|
|
|
/// The tight upper bound guarantees that a duration with `|Duration| >= 2^MAX_SECS_BITS`
|
|
/// will always overflow the addition with any date and time type.
|
|
///
|
|
/// So why is this needed? `Duration::seconds(rhs)` may overflow, and we don't have
|
|
/// an alternative returning `Option` or `Result`. Thus we need some early bound to avoid
|
|
/// touching that call when we are already sure that it WILL overflow...
|
|
const MAX_SECS_BITS: usize = 44;
|
|
|
|
/// ISO 8601 combined date and time without timezone.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// `NaiveDateTime` is commonly created from [`NaiveDate`](./struct.NaiveDate.html).
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::{NaiveDate, NaiveDateTime};
|
|
///
|
|
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2016, 7, 8).and_hms(9, 10, 11);
|
|
/// # let _ = dt;
|
|
/// ~~~~
|
|
///
|
|
/// You can use typical [date-like](../trait.Datelike.html) and
|
|
/// [time-like](../trait.Timelike.html) methods,
|
|
/// provided that relevant traits are in the scope.
|
|
///
|
|
/// ~~~~
|
|
/// # use chrono::{NaiveDate, NaiveDateTime};
|
|
/// # let dt: NaiveDateTime = NaiveDate::from_ymd(2016, 7, 8).and_hms(9, 10, 11);
|
|
/// use chrono::{Datelike, Timelike, Weekday};
|
|
///
|
|
/// assert_eq!(dt.weekday(), Weekday::Fri);
|
|
/// assert_eq!(dt.num_seconds_from_midnight(), 33011);
|
|
/// ~~~~
|
|
#[derive(PartialEq, Eq, PartialOrd, Ord, Copy, Clone)]
|
|
pub struct NaiveDateTime {
|
|
date: NaiveDate,
|
|
time: NaiveTime,
|
|
}
|
|
|
|
impl NaiveDateTime {
|
|
/// Makes a new `NaiveDateTime` from date and time components.
|
|
/// Equivalent to [`date.and_time(time)`](./struct.NaiveDate.html#method.and_time)
|
|
/// and many other helper constructors on `NaiveDate`.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::{NaiveDate, NaiveTime, NaiveDateTime};
|
|
///
|
|
/// let d = NaiveDate::from_ymd(2015, 6, 3);
|
|
/// let t = NaiveTime::from_hms_milli(12, 34, 56, 789);
|
|
///
|
|
/// let dt = NaiveDateTime::new(d, t);
|
|
/// assert_eq!(dt.date(), d);
|
|
/// assert_eq!(dt.time(), t);
|
|
/// ~~~~
|
|
#[inline]
|
|
pub fn new(date: NaiveDate, time: NaiveTime) -> NaiveDateTime {
|
|
NaiveDateTime { date: date, time: time }
|
|
}
|
|
|
|
/// Makes a new `NaiveDateTime` corresponding to a UTC date and time,
|
|
/// from the number of non-leap seconds
|
|
/// since the midnight UTC on January 1, 1970 (aka "UNIX timestamp")
|
|
/// and the number of nanoseconds since the last whole non-leap second.
|
|
///
|
|
/// For a non-naive version of this function see
|
|
/// [`TimeZone::timestamp`](../offset/trait.TimeZone.html#method.timestamp).
|
|
///
|
|
/// The nanosecond part can exceed 1,000,000,000 in order to represent the
|
|
/// [leap second](./struct.NaiveTime.html#leap-second-handling). (The true "UNIX
|
|
/// timestamp" cannot represent a leap second unambiguously.)
|
|
///
|
|
/// Panics on the out-of-range number of seconds and/or invalid nanosecond.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::{NaiveDateTime, NaiveDate};
|
|
///
|
|
/// let dt = NaiveDateTime::from_timestamp(0, 42_000_000);
|
|
/// assert_eq!(dt, NaiveDate::from_ymd(1970, 1, 1).and_hms_milli(0, 0, 0, 42));
|
|
///
|
|
/// let dt = NaiveDateTime::from_timestamp(1_000_000_000, 0);
|
|
/// assert_eq!(dt, NaiveDate::from_ymd(2001, 9, 9).and_hms(1, 46, 40));
|
|
/// ~~~~
|
|
#[inline]
|
|
pub fn from_timestamp(secs: i64, nsecs: u32) -> NaiveDateTime {
|
|
let datetime = NaiveDateTime::from_timestamp_opt(secs, nsecs);
|
|
datetime.expect("invalid or out-of-range datetime")
|
|
}
|
|
|
|
/// Makes a new `NaiveDateTime` corresponding to a UTC date and time,
|
|
/// from the number of non-leap seconds
|
|
/// since the midnight UTC on January 1, 1970 (aka "UNIX timestamp")
|
|
/// and the number of nanoseconds since the last whole non-leap second.
|
|
///
|
|
/// The nanosecond part can exceed 1,000,000,000
|
|
/// in order to represent the [leap second](./struct.NaiveTime.html#leap-second-handling).
|
|
/// (The true "UNIX timestamp" cannot represent a leap second unambiguously.)
|
|
///
|
|
/// Returns `None` on the out-of-range number of seconds and/or invalid nanosecond.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::{NaiveDateTime, NaiveDate};
|
|
/// use std::i64;
|
|
///
|
|
/// let from_timestamp_opt = NaiveDateTime::from_timestamp_opt;
|
|
///
|
|
/// assert!(from_timestamp_opt(0, 0).is_some());
|
|
/// assert!(from_timestamp_opt(0, 999_999_999).is_some());
|
|
/// assert!(from_timestamp_opt(0, 1_500_000_000).is_some()); // leap second
|
|
/// assert!(from_timestamp_opt(0, 2_000_000_000).is_none());
|
|
/// assert!(from_timestamp_opt(i64::MAX, 0).is_none());
|
|
/// ~~~~
|
|
#[inline]
|
|
pub fn from_timestamp_opt(secs: i64, nsecs: u32) -> Option<NaiveDateTime> {
|
|
let (days, secs) = div_mod_floor(secs, 86_400);
|
|
let date = days.to_i32().and_then(|days| days.checked_add(719_163))
|
|
.and_then(NaiveDate::from_num_days_from_ce_opt);
|
|
let time = NaiveTime::from_num_seconds_from_midnight_opt(secs as u32, nsecs);
|
|
match (date, time) {
|
|
(Some(date), Some(time)) => Some(NaiveDateTime { date: date, time: time }),
|
|
(_, _) => None,
|
|
}
|
|
}
|
|
|
|
/// Parses a string with the specified format string and returns a new `NaiveDateTime`.
|
|
/// See the [`format::strftime` module](../format/strftime/index.html)
|
|
/// on the supported escape sequences.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::{NaiveDateTime, NaiveDate};
|
|
///
|
|
/// let parse_from_str = NaiveDateTime::parse_from_str;
|
|
///
|
|
/// assert_eq!(parse_from_str("2015-09-05 23:56:04", "%Y-%m-%d %H:%M:%S"),
|
|
/// Ok(NaiveDate::from_ymd(2015, 9, 5).and_hms(23, 56, 4)));
|
|
/// assert_eq!(parse_from_str("5sep2015pm012345.6789", "%d%b%Y%p%I%M%S%.f"),
|
|
/// Ok(NaiveDate::from_ymd(2015, 9, 5).and_hms_micro(13, 23, 45, 678_900)));
|
|
/// ~~~~
|
|
///
|
|
/// Offset is ignored for the purpose of parsing.
|
|
///
|
|
/// ~~~~
|
|
/// # use chrono::{NaiveDateTime, NaiveDate};
|
|
/// # let parse_from_str = NaiveDateTime::parse_from_str;
|
|
/// assert_eq!(parse_from_str("2014-5-17T12:34:56+09:30", "%Y-%m-%dT%H:%M:%S%z"),
|
|
/// Ok(NaiveDate::from_ymd(2014, 5, 17).and_hms(12, 34, 56)));
|
|
/// ~~~~
|
|
///
|
|
/// [Leap seconds](./struct.NaiveTime.html#leap-second-handling) are correctly handled by
|
|
/// treating any time of the form `hh:mm:60` as a leap second.
|
|
/// (This equally applies to the formatting, so the round trip is possible.)
|
|
///
|
|
/// ~~~~
|
|
/// # use chrono::{NaiveDateTime, NaiveDate};
|
|
/// # let parse_from_str = NaiveDateTime::parse_from_str;
|
|
/// assert_eq!(parse_from_str("2015-07-01 08:59:60.123", "%Y-%m-%d %H:%M:%S%.f"),
|
|
/// Ok(NaiveDate::from_ymd(2015, 7, 1).and_hms_milli(8, 59, 59, 1_123)));
|
|
/// ~~~~
|
|
///
|
|
/// Missing seconds are assumed to be zero,
|
|
/// but out-of-bound times or insufficient fields are errors otherwise.
|
|
///
|
|
/// ~~~~
|
|
/// # use chrono::{NaiveDateTime, NaiveDate};
|
|
/// # let parse_from_str = NaiveDateTime::parse_from_str;
|
|
/// assert_eq!(parse_from_str("94/9/4 7:15", "%y/%m/%d %H:%M"),
|
|
/// Ok(NaiveDate::from_ymd(1994, 9, 4).and_hms(7, 15, 0)));
|
|
///
|
|
/// assert!(parse_from_str("04m33s", "%Mm%Ss").is_err());
|
|
/// assert!(parse_from_str("94/9/4 12", "%y/%m/%d %H").is_err());
|
|
/// assert!(parse_from_str("94/9/4 17:60", "%y/%m/%d %H:%M").is_err());
|
|
/// assert!(parse_from_str("94/9/4 24:00:00", "%y/%m/%d %H:%M:%S").is_err());
|
|
/// ~~~~
|
|
///
|
|
/// All parsed fields should be consistent to each other, otherwise it's an error.
|
|
///
|
|
/// ~~~~
|
|
/// # use chrono::NaiveDateTime;
|
|
/// # let parse_from_str = NaiveDateTime::parse_from_str;
|
|
/// let fmt = "%Y-%m-%d %H:%M:%S = UNIX timestamp %s";
|
|
/// assert!(parse_from_str("2001-09-09 01:46:39 = UNIX timestamp 999999999", fmt).is_ok());
|
|
/// assert!(parse_from_str("1970-01-01 00:00:00 = UNIX timestamp 1", fmt).is_err());
|
|
/// ~~~~
|
|
pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<NaiveDateTime> {
|
|
let mut parsed = Parsed::new();
|
|
try!(parse(&mut parsed, s, StrftimeItems::new(fmt)));
|
|
parsed.to_naive_datetime_with_offset(0) // no offset adjustment
|
|
}
|
|
|
|
/// Retrieves a date component.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::NaiveDate;
|
|
///
|
|
/// let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms(9, 10, 11);
|
|
/// assert_eq!(dt.date(), NaiveDate::from_ymd(2016, 7, 8));
|
|
/// ~~~~
|
|
#[inline]
|
|
pub fn date(&self) -> NaiveDate {
|
|
self.date
|
|
}
|
|
|
|
/// Retrieves a time component.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::{NaiveDate, NaiveTime};
|
|
///
|
|
/// let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms(9, 10, 11);
|
|
/// assert_eq!(dt.time(), NaiveTime::from_hms(9, 10, 11));
|
|
/// ~~~~
|
|
#[inline]
|
|
pub fn time(&self) -> NaiveTime {
|
|
self.time
|
|
}
|
|
|
|
/// Returns the number of non-leap seconds since the midnight on January 1, 1970.
|
|
///
|
|
/// Note that this does *not* account for the timezone!
|
|
/// The true "UNIX timestamp" would count seconds since the midnight *UTC* on the epoch.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::NaiveDate;
|
|
///
|
|
/// let dt = NaiveDate::from_ymd(1970, 1, 1).and_hms_milli(0, 0, 1, 980);
|
|
/// assert_eq!(dt.timestamp(), 1);
|
|
///
|
|
/// let dt = NaiveDate::from_ymd(2001, 9, 9).and_hms(1, 46, 40);
|
|
/// assert_eq!(dt.timestamp(), 1_000_000_000);
|
|
/// ~~~~
|
|
#[inline]
|
|
pub fn timestamp(&self) -> i64 {
|
|
let ndays = i64::from(self.date.num_days_from_ce());
|
|
let nseconds = i64::from(self.time.num_seconds_from_midnight());
|
|
(ndays - 719_163) * 86_400 + nseconds
|
|
}
|
|
|
|
/// Returns the number of non-leap *milliseconds* since midnight on January 1, 1970.
|
|
///
|
|
/// Note that this does *not* account for the timezone!
|
|
/// The true "UNIX timestamp" would count seconds since the midnight *UTC* on the epoch.
|
|
///
|
|
/// Note also that this does reduce the number of years that can be
|
|
/// represented from ~584 Billion to ~584 Million. (If this is a problem,
|
|
/// please file an issue to let me know what domain needs millisecond
|
|
/// precision over billions of years, I'm curious.)
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::NaiveDate;
|
|
///
|
|
/// let dt = NaiveDate::from_ymd(1970, 1, 1).and_hms_milli(0, 0, 1, 444);
|
|
/// assert_eq!(dt.timestamp_millis(), 1_444);
|
|
///
|
|
/// let dt = NaiveDate::from_ymd(2001, 9, 9).and_hms_milli(1, 46, 40, 555);
|
|
/// assert_eq!(dt.timestamp_millis(), 1_000_000_000_555);
|
|
/// ~~~~
|
|
#[inline]
|
|
pub fn timestamp_millis(&self) -> i64 {
|
|
let as_ms = self.timestamp() * 1000;
|
|
as_ms + i64::from(self.timestamp_subsec_millis())
|
|
}
|
|
|
|
/// Returns the number of milliseconds since the last whole non-leap second.
|
|
///
|
|
/// The return value ranges from 0 to 999,
|
|
/// or for [leap seconds](./struct.NaiveTime.html#leap-second-handling), to 1,999.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::NaiveDate;
|
|
///
|
|
/// let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms_nano(9, 10, 11, 123_456_789);
|
|
/// assert_eq!(dt.timestamp_subsec_millis(), 123);
|
|
///
|
|
/// let dt = NaiveDate::from_ymd(2015, 7, 1).and_hms_nano(8, 59, 59, 1_234_567_890);
|
|
/// assert_eq!(dt.timestamp_subsec_millis(), 1_234);
|
|
/// ~~~~
|
|
#[inline]
|
|
pub fn timestamp_subsec_millis(&self) -> u32 {
|
|
self.timestamp_subsec_nanos() / 1_000_000
|
|
}
|
|
|
|
/// Returns the number of microseconds since the last whole non-leap second.
|
|
///
|
|
/// The return value ranges from 0 to 999,999,
|
|
/// or for [leap seconds](./struct.NaiveTime.html#leap-second-handling), to 1,999,999.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::NaiveDate;
|
|
///
|
|
/// let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms_nano(9, 10, 11, 123_456_789);
|
|
/// assert_eq!(dt.timestamp_subsec_micros(), 123_456);
|
|
///
|
|
/// let dt = NaiveDate::from_ymd(2015, 7, 1).and_hms_nano(8, 59, 59, 1_234_567_890);
|
|
/// assert_eq!(dt.timestamp_subsec_micros(), 1_234_567);
|
|
/// ~~~~
|
|
#[inline]
|
|
pub fn timestamp_subsec_micros(&self) -> u32 {
|
|
self.timestamp_subsec_nanos() / 1_000
|
|
}
|
|
|
|
/// Returns the number of nanoseconds since the last whole non-leap second.
|
|
///
|
|
/// The return value ranges from 0 to 999,999,999,
|
|
/// or for [leap seconds](./struct.NaiveTime.html#leap-second-handling), to 1,999,999,999.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::NaiveDate;
|
|
///
|
|
/// let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms_nano(9, 10, 11, 123_456_789);
|
|
/// assert_eq!(dt.timestamp_subsec_nanos(), 123_456_789);
|
|
///
|
|
/// let dt = NaiveDate::from_ymd(2015, 7, 1).and_hms_nano(8, 59, 59, 1_234_567_890);
|
|
/// assert_eq!(dt.timestamp_subsec_nanos(), 1_234_567_890);
|
|
/// ~~~~
|
|
#[inline]
|
|
pub fn timestamp_subsec_nanos(&self) -> u32 {
|
|
self.time.nanosecond()
|
|
}
|
|
|
|
/// Adds given `Duration` to the current date and time.
|
|
///
|
|
/// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling),
|
|
/// the addition assumes that **there is no leap second ever**,
|
|
/// except when the `NaiveDateTime` itself represents a leap second
|
|
/// in which case the assumption becomes that **there is exactly a single leap second ever**.
|
|
///
|
|
/// Returns `None` when it will result in overflow.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// # extern crate chrono; extern crate time; fn main() {
|
|
/// use chrono::NaiveDate;
|
|
/// use time::Duration;
|
|
///
|
|
/// let from_ymd = NaiveDate::from_ymd;
|
|
///
|
|
/// let d = from_ymd(2016, 7, 8);
|
|
/// let hms = |h, m, s| d.and_hms(h, m, s);
|
|
/// assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::zero()),
|
|
/// Some(hms(3, 5, 7)));
|
|
/// assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(1)),
|
|
/// Some(hms(3, 5, 8)));
|
|
/// assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(-1)),
|
|
/// Some(hms(3, 5, 6)));
|
|
/// assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(3600 + 60)),
|
|
/// Some(hms(4, 6, 7)));
|
|
/// assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(86_400)),
|
|
/// Some(from_ymd(2016, 7, 9).and_hms(3, 5, 7)));
|
|
///
|
|
/// let hmsm = |h, m, s, milli| d.and_hms_milli(h, m, s, milli);
|
|
/// assert_eq!(hmsm(3, 5, 7, 980).checked_add_signed(Duration::milliseconds(450)),
|
|
/// Some(hmsm(3, 5, 8, 430)));
|
|
/// # }
|
|
/// ~~~~
|
|
///
|
|
/// Overflow returns `None`.
|
|
///
|
|
/// ~~~~
|
|
/// # extern crate chrono; extern crate time; fn main() {
|
|
/// # use chrono::NaiveDate;
|
|
/// # use time::Duration;
|
|
/// # let hms = |h, m, s| NaiveDate::from_ymd(2016, 7, 8).and_hms(h, m, s);
|
|
/// assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::days(1_000_000_000)), None);
|
|
/// # }
|
|
/// ~~~~
|
|
///
|
|
/// Leap seconds are handled,
|
|
/// but the addition assumes that it is the only leap second happened.
|
|
///
|
|
/// ~~~~
|
|
/// # extern crate chrono; extern crate time; fn main() {
|
|
/// # use chrono::NaiveDate;
|
|
/// # use time::Duration;
|
|
/// # let from_ymd = NaiveDate::from_ymd;
|
|
/// # let hmsm = |h, m, s, milli| from_ymd(2016, 7, 8).and_hms_milli(h, m, s, milli);
|
|
/// let leap = hmsm(3, 5, 59, 1_300);
|
|
/// assert_eq!(leap.checked_add_signed(Duration::zero()),
|
|
/// Some(hmsm(3, 5, 59, 1_300)));
|
|
/// assert_eq!(leap.checked_add_signed(Duration::milliseconds(-500)),
|
|
/// Some(hmsm(3, 5, 59, 800)));
|
|
/// assert_eq!(leap.checked_add_signed(Duration::milliseconds(500)),
|
|
/// Some(hmsm(3, 5, 59, 1_800)));
|
|
/// assert_eq!(leap.checked_add_signed(Duration::milliseconds(800)),
|
|
/// Some(hmsm(3, 6, 0, 100)));
|
|
/// assert_eq!(leap.checked_add_signed(Duration::seconds(10)),
|
|
/// Some(hmsm(3, 6, 9, 300)));
|
|
/// assert_eq!(leap.checked_add_signed(Duration::seconds(-10)),
|
|
/// Some(hmsm(3, 5, 50, 300)));
|
|
/// assert_eq!(leap.checked_add_signed(Duration::days(1)),
|
|
/// Some(from_ymd(2016, 7, 9).and_hms_milli(3, 5, 59, 300)));
|
|
/// # }
|
|
/// ~~~~
|
|
pub fn checked_add_signed(self, rhs: OldDuration) -> Option<NaiveDateTime> {
|
|
let (time, rhs) = self.time.overflowing_add_signed(rhs);
|
|
|
|
// early checking to avoid overflow in OldDuration::seconds
|
|
if rhs <= (-1 << MAX_SECS_BITS) || rhs >= (1 << MAX_SECS_BITS) {
|
|
return None;
|
|
}
|
|
|
|
let date = try_opt!(self.date.checked_add_signed(OldDuration::seconds(rhs)));
|
|
Some(NaiveDateTime { date: date, time: time })
|
|
}
|
|
|
|
/// Subtracts given `Duration` from the current date and time.
|
|
///
|
|
/// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling),
|
|
/// the subtraction assumes that **there is no leap second ever**,
|
|
/// except when the `NaiveDateTime` itself represents a leap second
|
|
/// in which case the assumption becomes that **there is exactly a single leap second ever**.
|
|
///
|
|
/// Returns `None` when it will result in overflow.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// # extern crate chrono; extern crate time; fn main() {
|
|
/// use chrono::NaiveDate;
|
|
/// use time::Duration;
|
|
///
|
|
/// let from_ymd = NaiveDate::from_ymd;
|
|
///
|
|
/// let d = from_ymd(2016, 7, 8);
|
|
/// let hms = |h, m, s| d.and_hms(h, m, s);
|
|
/// assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::zero()),
|
|
/// Some(hms(3, 5, 7)));
|
|
/// assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(1)),
|
|
/// Some(hms(3, 5, 6)));
|
|
/// assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(-1)),
|
|
/// Some(hms(3, 5, 8)));
|
|
/// assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(3600 + 60)),
|
|
/// Some(hms(2, 4, 7)));
|
|
/// assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(86_400)),
|
|
/// Some(from_ymd(2016, 7, 7).and_hms(3, 5, 7)));
|
|
///
|
|
/// let hmsm = |h, m, s, milli| d.and_hms_milli(h, m, s, milli);
|
|
/// assert_eq!(hmsm(3, 5, 7, 450).checked_sub_signed(Duration::milliseconds(670)),
|
|
/// Some(hmsm(3, 5, 6, 780)));
|
|
/// # }
|
|
/// ~~~~
|
|
///
|
|
/// Overflow returns `None`.
|
|
///
|
|
/// ~~~~
|
|
/// # extern crate chrono; extern crate time; fn main() {
|
|
/// # use chrono::NaiveDate;
|
|
/// # use time::Duration;
|
|
/// # let hms = |h, m, s| NaiveDate::from_ymd(2016, 7, 8).and_hms(h, m, s);
|
|
/// assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::days(1_000_000_000)), None);
|
|
/// # }
|
|
/// ~~~~
|
|
///
|
|
/// Leap seconds are handled,
|
|
/// but the subtraction assumes that it is the only leap second happened.
|
|
///
|
|
/// ~~~~
|
|
/// # extern crate chrono; extern crate time; fn main() {
|
|
/// # use chrono::NaiveDate;
|
|
/// # use time::Duration;
|
|
/// # let from_ymd = NaiveDate::from_ymd;
|
|
/// # let hmsm = |h, m, s, milli| from_ymd(2016, 7, 8).and_hms_milli(h, m, s, milli);
|
|
/// let leap = hmsm(3, 5, 59, 1_300);
|
|
/// assert_eq!(leap.checked_sub_signed(Duration::zero()),
|
|
/// Some(hmsm(3, 5, 59, 1_300)));
|
|
/// assert_eq!(leap.checked_sub_signed(Duration::milliseconds(200)),
|
|
/// Some(hmsm(3, 5, 59, 1_100)));
|
|
/// assert_eq!(leap.checked_sub_signed(Duration::milliseconds(500)),
|
|
/// Some(hmsm(3, 5, 59, 800)));
|
|
/// assert_eq!(leap.checked_sub_signed(Duration::seconds(60)),
|
|
/// Some(hmsm(3, 5, 0, 300)));
|
|
/// assert_eq!(leap.checked_sub_signed(Duration::days(1)),
|
|
/// Some(from_ymd(2016, 7, 7).and_hms_milli(3, 6, 0, 300)));
|
|
/// # }
|
|
/// ~~~~
|
|
pub fn checked_sub_signed(self, rhs: OldDuration) -> Option<NaiveDateTime> {
|
|
let (time, rhs) = self.time.overflowing_sub_signed(rhs);
|
|
|
|
// early checking to avoid overflow in OldDuration::seconds
|
|
if rhs <= (-1 << MAX_SECS_BITS) || rhs >= (1 << MAX_SECS_BITS) {
|
|
return None;
|
|
}
|
|
|
|
let date = try_opt!(self.date.checked_sub_signed(OldDuration::seconds(rhs)));
|
|
Some(NaiveDateTime { date: date, time: time })
|
|
}
|
|
|
|
/// Subtracts another `NaiveDateTime` from the current date and time.
|
|
/// This does not overflow or underflow at all.
|
|
///
|
|
/// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling),
|
|
/// the subtraction assumes that **there is no leap second ever**,
|
|
/// except when any of the `NaiveDateTime`s themselves represents a leap second
|
|
/// in which case the assumption becomes that
|
|
/// **there are exactly one (or two) leap second(s) ever**.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// # extern crate chrono; extern crate time; fn main() {
|
|
/// use chrono::NaiveDate;
|
|
/// use time::Duration;
|
|
///
|
|
/// let from_ymd = NaiveDate::from_ymd;
|
|
///
|
|
/// let d = from_ymd(2016, 7, 8);
|
|
/// assert_eq!(d.and_hms(3, 5, 7).signed_duration_since(d.and_hms(2, 4, 6)),
|
|
/// Duration::seconds(3600 + 60 + 1));
|
|
///
|
|
/// // July 8 is 190th day in the year 2016
|
|
/// let d0 = from_ymd(2016, 1, 1);
|
|
/// assert_eq!(d.and_hms_milli(0, 7, 6, 500).signed_duration_since(d0.and_hms(0, 0, 0)),
|
|
/// Duration::seconds(189 * 86_400 + 7 * 60 + 6) + Duration::milliseconds(500));
|
|
/// # }
|
|
/// ~~~~
|
|
///
|
|
/// Leap seconds are handled, but the subtraction assumes that
|
|
/// there were no other leap seconds happened.
|
|
///
|
|
/// ~~~~
|
|
/// # extern crate chrono; extern crate time; fn main() {
|
|
/// # use chrono::NaiveDate;
|
|
/// # use time::Duration;
|
|
/// # let from_ymd = NaiveDate::from_ymd;
|
|
/// let leap = from_ymd(2015, 6, 30).and_hms_milli(23, 59, 59, 1_500);
|
|
/// assert_eq!(leap.signed_duration_since(from_ymd(2015, 6, 30).and_hms(23, 0, 0)),
|
|
/// Duration::seconds(3600) + Duration::milliseconds(500));
|
|
/// assert_eq!(from_ymd(2015, 7, 1).and_hms(1, 0, 0).signed_duration_since(leap),
|
|
/// Duration::seconds(3600) - Duration::milliseconds(500));
|
|
/// # }
|
|
/// ~~~~
|
|
pub fn signed_duration_since(self, rhs: NaiveDateTime) -> OldDuration {
|
|
self.date.signed_duration_since(rhs.date) + self.time.signed_duration_since(rhs.time)
|
|
}
|
|
|
|
/// Formats the combined date and time with the specified formatting items.
|
|
/// Otherwise it is same to the ordinary [`format`](#method.format) method.
|
|
///
|
|
/// The `Iterator` of items should be `Clone`able,
|
|
/// since the resulting `DelayedFormat` value may be formatted multiple times.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::NaiveDate;
|
|
/// use chrono::format::strftime::StrftimeItems;
|
|
///
|
|
/// let fmt = StrftimeItems::new("%Y-%m-%d %H:%M:%S");
|
|
/// let dt = NaiveDate::from_ymd(2015, 9, 5).and_hms(23, 56, 4);
|
|
/// assert_eq!(dt.format_with_items(fmt.clone()).to_string(), "2015-09-05 23:56:04");
|
|
/// assert_eq!(dt.format("%Y-%m-%d %H:%M:%S").to_string(), "2015-09-05 23:56:04");
|
|
/// ~~~~
|
|
///
|
|
/// The resulting `DelayedFormat` can be formatted directly via the `Display` trait.
|
|
///
|
|
/// ~~~~
|
|
/// # use chrono::NaiveDate;
|
|
/// # use chrono::format::strftime::StrftimeItems;
|
|
/// # let fmt = StrftimeItems::new("%Y-%m-%d %H:%M:%S").clone();
|
|
/// # let dt = NaiveDate::from_ymd(2015, 9, 5).and_hms(23, 56, 4);
|
|
/// assert_eq!(format!("{}", dt.format_with_items(fmt)), "2015-09-05 23:56:04");
|
|
/// ~~~~
|
|
#[inline]
|
|
pub fn format_with_items<'a, I>(&self, items: I) -> DelayedFormat<I>
|
|
where I: Iterator<Item=Item<'a>> + Clone {
|
|
DelayedFormat::new(Some(self.date), Some(self.time), items)
|
|
}
|
|
|
|
/// Formats the combined date and time with the specified format string.
|
|
/// See the [`format::strftime` module](../format/strftime/index.html)
|
|
/// on the supported escape sequences.
|
|
///
|
|
/// This returns a `DelayedFormat`,
|
|
/// which gets converted to a string only when actual formatting happens.
|
|
/// You may use the `to_string` method to get a `String`,
|
|
/// or just feed it into `print!` and other formatting macros.
|
|
/// (In this way it avoids the redundant memory allocation.)
|
|
///
|
|
/// A wrong format string does *not* issue an error immediately.
|
|
/// Rather, converting or formatting the `DelayedFormat` fails.
|
|
/// You are recommended to immediately use `DelayedFormat` for this reason.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::NaiveDate;
|
|
///
|
|
/// let dt = NaiveDate::from_ymd(2015, 9, 5).and_hms(23, 56, 4);
|
|
/// assert_eq!(dt.format("%Y-%m-%d %H:%M:%S").to_string(), "2015-09-05 23:56:04");
|
|
/// assert_eq!(dt.format("around %l %p on %b %-d").to_string(), "around 11 PM on Sep 5");
|
|
/// ~~~~
|
|
///
|
|
/// The resulting `DelayedFormat` can be formatted directly via the `Display` trait.
|
|
///
|
|
/// ~~~~
|
|
/// # use chrono::NaiveDate;
|
|
/// # let dt = NaiveDate::from_ymd(2015, 9, 5).and_hms(23, 56, 4);
|
|
/// assert_eq!(format!("{}", dt.format("%Y-%m-%d %H:%M:%S")), "2015-09-05 23:56:04");
|
|
/// assert_eq!(format!("{}", dt.format("around %l %p on %b %-d")), "around 11 PM on Sep 5");
|
|
/// ~~~~
|
|
#[inline]
|
|
pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>> {
|
|
self.format_with_items(StrftimeItems::new(fmt))
|
|
}
|
|
}
|
|
|
|
impl Datelike for NaiveDateTime {
|
|
/// Returns the year number in the [calendar date](./index.html#calendar-date).
|
|
///
|
|
/// See also the [`NaiveDate::year`](./struct.NaiveDate.html#method.year) method.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::{NaiveDate, NaiveDateTime, Datelike};
|
|
///
|
|
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56);
|
|
/// assert_eq!(dt.year(), 2015);
|
|
/// ~~~~
|
|
#[inline]
|
|
fn year(&self) -> i32 {
|
|
self.date.year()
|
|
}
|
|
|
|
/// Returns the month number starting from 1.
|
|
///
|
|
/// The return value ranges from 1 to 12.
|
|
///
|
|
/// See also the [`NaiveDate::month`](./struct.NaiveDate.html#method.month) method.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::{NaiveDate, NaiveDateTime, Datelike};
|
|
///
|
|
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56);
|
|
/// assert_eq!(dt.month(), 9);
|
|
/// ~~~~
|
|
#[inline]
|
|
fn month(&self) -> u32 {
|
|
self.date.month()
|
|
}
|
|
|
|
/// Returns the month number starting from 0.
|
|
///
|
|
/// The return value ranges from 0 to 11.
|
|
///
|
|
/// See also the [`NaiveDate::month0`](./struct.NaiveDate.html#method.month0) method.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::{NaiveDate, NaiveDateTime, Datelike};
|
|
///
|
|
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56);
|
|
/// assert_eq!(dt.month0(), 8);
|
|
/// ~~~~
|
|
#[inline]
|
|
fn month0(&self) -> u32 {
|
|
self.date.month0()
|
|
}
|
|
|
|
/// Returns the day of month starting from 1.
|
|
///
|
|
/// The return value ranges from 1 to 31. (The last day of month differs by months.)
|
|
///
|
|
/// See also the [`NaiveDate::day`](./struct.NaiveDate.html#method.day) method.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::{NaiveDate, NaiveDateTime, Datelike};
|
|
///
|
|
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56);
|
|
/// assert_eq!(dt.day(), 25);
|
|
/// ~~~~
|
|
#[inline]
|
|
fn day(&self) -> u32 {
|
|
self.date.day()
|
|
}
|
|
|
|
/// Returns the day of month starting from 0.
|
|
///
|
|
/// The return value ranges from 0 to 30. (The last day of month differs by months.)
|
|
///
|
|
/// See also the [`NaiveDate::day0`](./struct.NaiveDate.html#method.day0) method.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::{NaiveDate, NaiveDateTime, Datelike};
|
|
///
|
|
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56);
|
|
/// assert_eq!(dt.day0(), 24);
|
|
/// ~~~~
|
|
#[inline]
|
|
fn day0(&self) -> u32 {
|
|
self.date.day0()
|
|
}
|
|
|
|
/// Returns the day of year starting from 1.
|
|
///
|
|
/// The return value ranges from 1 to 366. (The last day of year differs by years.)
|
|
///
|
|
/// See also the [`NaiveDate::ordinal`](./struct.NaiveDate.html#method.ordinal) method.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::{NaiveDate, NaiveDateTime, Datelike};
|
|
///
|
|
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56);
|
|
/// assert_eq!(dt.ordinal(), 268);
|
|
/// ~~~~
|
|
#[inline]
|
|
fn ordinal(&self) -> u32 {
|
|
self.date.ordinal()
|
|
}
|
|
|
|
/// Returns the day of year starting from 0.
|
|
///
|
|
/// The return value ranges from 0 to 365. (The last day of year differs by years.)
|
|
///
|
|
/// See also the [`NaiveDate::ordinal0`](./struct.NaiveDate.html#method.ordinal0) method.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::{NaiveDate, NaiveDateTime, Datelike};
|
|
///
|
|
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56);
|
|
/// assert_eq!(dt.ordinal0(), 267);
|
|
/// ~~~~
|
|
#[inline]
|
|
fn ordinal0(&self) -> u32 {
|
|
self.date.ordinal0()
|
|
}
|
|
|
|
/// Returns the day of week.
|
|
///
|
|
/// See also the [`NaiveDate::weekday`](./struct.NaiveDate.html#method.weekday) method.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::{NaiveDate, NaiveDateTime, Datelike, Weekday};
|
|
///
|
|
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56);
|
|
/// assert_eq!(dt.weekday(), Weekday::Fri);
|
|
/// ~~~~
|
|
#[inline]
|
|
fn weekday(&self) -> Weekday {
|
|
self.date.weekday()
|
|
}
|
|
|
|
#[inline]
|
|
fn iso_week(&self) -> IsoWeek {
|
|
self.date.iso_week()
|
|
}
|
|
|
|
/// Makes a new `NaiveDateTime` with the year number changed.
|
|
///
|
|
/// Returns `None` when the resulting `NaiveDateTime` would be invalid.
|
|
///
|
|
/// See also the
|
|
/// [`NaiveDate::with_year`](./struct.NaiveDate.html#method.with_year) method.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::{NaiveDate, NaiveDateTime, Datelike};
|
|
///
|
|
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56);
|
|
/// assert_eq!(dt.with_year(2016), Some(NaiveDate::from_ymd(2016, 9, 25).and_hms(12, 34, 56)));
|
|
/// assert_eq!(dt.with_year(-308), Some(NaiveDate::from_ymd(-308, 9, 25).and_hms(12, 34, 56)));
|
|
/// ~~~~
|
|
#[inline]
|
|
fn with_year(&self, year: i32) -> Option<NaiveDateTime> {
|
|
self.date.with_year(year).map(|d| NaiveDateTime { date: d, ..*self })
|
|
}
|
|
|
|
/// Makes a new `NaiveDateTime` with the month number (starting from 1) changed.
|
|
///
|
|
/// Returns `None` when the resulting `NaiveDateTime` would be invalid.
|
|
///
|
|
/// See also the
|
|
/// [`NaiveDate::with_month`](./struct.NaiveDate.html#method.with_month) method.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::{NaiveDate, NaiveDateTime, Datelike};
|
|
///
|
|
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 30).and_hms(12, 34, 56);
|
|
/// assert_eq!(dt.with_month(10), Some(NaiveDate::from_ymd(2015, 10, 30).and_hms(12, 34, 56)));
|
|
/// assert_eq!(dt.with_month(13), None); // no month 13
|
|
/// assert_eq!(dt.with_month(2), None); // no February 30
|
|
/// ~~~~
|
|
#[inline]
|
|
fn with_month(&self, month: u32) -> Option<NaiveDateTime> {
|
|
self.date.with_month(month).map(|d| NaiveDateTime { date: d, ..*self })
|
|
}
|
|
|
|
/// Makes a new `NaiveDateTime` with the month number (starting from 0) changed.
|
|
///
|
|
/// Returns `None` when the resulting `NaiveDateTime` would be invalid.
|
|
///
|
|
/// See also the
|
|
/// [`NaiveDate::with_month0`](./struct.NaiveDate.html#method.with_month0) method.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::{NaiveDate, NaiveDateTime, Datelike};
|
|
///
|
|
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 30).and_hms(12, 34, 56);
|
|
/// assert_eq!(dt.with_month0(9), Some(NaiveDate::from_ymd(2015, 10, 30).and_hms(12, 34, 56)));
|
|
/// assert_eq!(dt.with_month0(12), None); // no month 13
|
|
/// assert_eq!(dt.with_month0(1), None); // no February 30
|
|
/// ~~~~
|
|
#[inline]
|
|
fn with_month0(&self, month0: u32) -> Option<NaiveDateTime> {
|
|
self.date.with_month0(month0).map(|d| NaiveDateTime { date: d, ..*self })
|
|
}
|
|
|
|
/// Makes a new `NaiveDateTime` with the day of month (starting from 1) changed.
|
|
///
|
|
/// Returns `None` when the resulting `NaiveDateTime` would be invalid.
|
|
///
|
|
/// See also the
|
|
/// [`NaiveDate::with_day`](./struct.NaiveDate.html#method.with_day) method.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::{NaiveDate, NaiveDateTime, Datelike};
|
|
///
|
|
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms(12, 34, 56);
|
|
/// assert_eq!(dt.with_day(30), Some(NaiveDate::from_ymd(2015, 9, 30).and_hms(12, 34, 56)));
|
|
/// assert_eq!(dt.with_day(31), None); // no September 31
|
|
/// ~~~~
|
|
#[inline]
|
|
fn with_day(&self, day: u32) -> Option<NaiveDateTime> {
|
|
self.date.with_day(day).map(|d| NaiveDateTime { date: d, ..*self })
|
|
}
|
|
|
|
/// Makes a new `NaiveDateTime` with the day of month (starting from 0) changed.
|
|
///
|
|
/// Returns `None` when the resulting `NaiveDateTime` would be invalid.
|
|
///
|
|
/// See also the
|
|
/// [`NaiveDate::with_day0`](./struct.NaiveDate.html#method.with_day0) method.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::{NaiveDate, NaiveDateTime, Datelike};
|
|
///
|
|
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms(12, 34, 56);
|
|
/// assert_eq!(dt.with_day0(29), Some(NaiveDate::from_ymd(2015, 9, 30).and_hms(12, 34, 56)));
|
|
/// assert_eq!(dt.with_day0(30), None); // no September 31
|
|
/// ~~~~
|
|
#[inline]
|
|
fn with_day0(&self, day0: u32) -> Option<NaiveDateTime> {
|
|
self.date.with_day0(day0).map(|d| NaiveDateTime { date: d, ..*self })
|
|
}
|
|
|
|
/// Makes a new `NaiveDateTime` with the day of year (starting from 1) changed.
|
|
///
|
|
/// Returns `None` when the resulting `NaiveDateTime` would be invalid.
|
|
///
|
|
/// See also the
|
|
/// [`NaiveDate::with_ordinal`](./struct.NaiveDate.html#method.with_ordinal) method.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::{NaiveDate, NaiveDateTime, Datelike};
|
|
///
|
|
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms(12, 34, 56);
|
|
/// assert_eq!(dt.with_ordinal(60),
|
|
/// Some(NaiveDate::from_ymd(2015, 3, 1).and_hms(12, 34, 56)));
|
|
/// assert_eq!(dt.with_ordinal(366), None); // 2015 had only 365 days
|
|
///
|
|
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2016, 9, 8).and_hms(12, 34, 56);
|
|
/// assert_eq!(dt.with_ordinal(60),
|
|
/// Some(NaiveDate::from_ymd(2016, 2, 29).and_hms(12, 34, 56)));
|
|
/// assert_eq!(dt.with_ordinal(366),
|
|
/// Some(NaiveDate::from_ymd(2016, 12, 31).and_hms(12, 34, 56)));
|
|
/// ~~~~
|
|
#[inline]
|
|
fn with_ordinal(&self, ordinal: u32) -> Option<NaiveDateTime> {
|
|
self.date.with_ordinal(ordinal).map(|d| NaiveDateTime { date: d, ..*self })
|
|
}
|
|
|
|
/// Makes a new `NaiveDateTime` with the day of year (starting from 0) changed.
|
|
///
|
|
/// Returns `None` when the resulting `NaiveDateTime` would be invalid.
|
|
///
|
|
/// See also the
|
|
/// [`NaiveDate::with_ordinal0`](./struct.NaiveDate.html#method.with_ordinal0) method.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::{NaiveDate, NaiveDateTime, Datelike};
|
|
///
|
|
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms(12, 34, 56);
|
|
/// assert_eq!(dt.with_ordinal0(59),
|
|
/// Some(NaiveDate::from_ymd(2015, 3, 1).and_hms(12, 34, 56)));
|
|
/// assert_eq!(dt.with_ordinal0(365), None); // 2015 had only 365 days
|
|
///
|
|
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2016, 9, 8).and_hms(12, 34, 56);
|
|
/// assert_eq!(dt.with_ordinal0(59),
|
|
/// Some(NaiveDate::from_ymd(2016, 2, 29).and_hms(12, 34, 56)));
|
|
/// assert_eq!(dt.with_ordinal0(365),
|
|
/// Some(NaiveDate::from_ymd(2016, 12, 31).and_hms(12, 34, 56)));
|
|
/// ~~~~
|
|
#[inline]
|
|
fn with_ordinal0(&self, ordinal0: u32) -> Option<NaiveDateTime> {
|
|
self.date.with_ordinal0(ordinal0).map(|d| NaiveDateTime { date: d, ..*self })
|
|
}
|
|
}
|
|
|
|
impl Timelike for NaiveDateTime {
|
|
/// Returns the hour number from 0 to 23.
|
|
///
|
|
/// See also the [`NaiveTime::hour`](./struct.NaiveTime.html#method.hour) method.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::{NaiveDate, NaiveDateTime, Timelike};
|
|
///
|
|
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789);
|
|
/// assert_eq!(dt.hour(), 12);
|
|
/// ~~~~
|
|
#[inline]
|
|
fn hour(&self) -> u32 {
|
|
self.time.hour()
|
|
}
|
|
|
|
/// Returns the minute number from 0 to 59.
|
|
///
|
|
/// See also the [`NaiveTime::minute`](./struct.NaiveTime.html#method.minute) method.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::{NaiveDate, NaiveDateTime, Timelike};
|
|
///
|
|
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789);
|
|
/// assert_eq!(dt.minute(), 34);
|
|
/// ~~~~
|
|
#[inline]
|
|
fn minute(&self) -> u32 {
|
|
self.time.minute()
|
|
}
|
|
|
|
/// Returns the second number from 0 to 59.
|
|
///
|
|
/// See also the [`NaiveTime::second`](./struct.NaiveTime.html#method.second) method.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::{NaiveDate, NaiveDateTime, Timelike};
|
|
///
|
|
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789);
|
|
/// assert_eq!(dt.second(), 56);
|
|
/// ~~~~
|
|
#[inline]
|
|
fn second(&self) -> u32 {
|
|
self.time.second()
|
|
}
|
|
|
|
/// Returns the number of nanoseconds since the whole non-leap second.
|
|
/// The range from 1,000,000,000 to 1,999,999,999 represents
|
|
/// the [leap second](./struct.NaiveTime.html#leap-second-handling).
|
|
///
|
|
/// See also the
|
|
/// [`NaiveTime::nanosecond`](./struct.NaiveTime.html#method.nanosecond) method.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::{NaiveDate, NaiveDateTime, Timelike};
|
|
///
|
|
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789);
|
|
/// assert_eq!(dt.nanosecond(), 789_000_000);
|
|
/// ~~~~
|
|
#[inline]
|
|
fn nanosecond(&self) -> u32 {
|
|
self.time.nanosecond()
|
|
}
|
|
|
|
/// Makes a new `NaiveDateTime` with the hour number changed.
|
|
///
|
|
/// Returns `None` when the resulting `NaiveDateTime` would be invalid.
|
|
///
|
|
/// See also the
|
|
/// [`NaiveTime::with_hour`](./struct.NaiveTime.html#method.with_hour) method.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::{NaiveDate, NaiveDateTime, Timelike};
|
|
///
|
|
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789);
|
|
/// assert_eq!(dt.with_hour(7),
|
|
/// Some(NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(7, 34, 56, 789)));
|
|
/// assert_eq!(dt.with_hour(24), None);
|
|
/// ~~~~
|
|
#[inline]
|
|
fn with_hour(&self, hour: u32) -> Option<NaiveDateTime> {
|
|
self.time.with_hour(hour).map(|t| NaiveDateTime { time: t, ..*self })
|
|
}
|
|
|
|
/// Makes a new `NaiveDateTime` with the minute number changed.
|
|
///
|
|
/// Returns `None` when the resulting `NaiveDateTime` would be invalid.
|
|
///
|
|
/// See also the
|
|
/// [`NaiveTime::with_minute`](./struct.NaiveTime.html#method.with_minute) method.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::{NaiveDate, NaiveDateTime, Timelike};
|
|
///
|
|
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789);
|
|
/// assert_eq!(dt.with_minute(45),
|
|
/// Some(NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 45, 56, 789)));
|
|
/// assert_eq!(dt.with_minute(60), None);
|
|
/// ~~~~
|
|
#[inline]
|
|
fn with_minute(&self, min: u32) -> Option<NaiveDateTime> {
|
|
self.time.with_minute(min).map(|t| NaiveDateTime { time: t, ..*self })
|
|
}
|
|
|
|
/// Makes a new `NaiveDateTime` with the second number changed.
|
|
///
|
|
/// Returns `None` when the resulting `NaiveDateTime` would be invalid.
|
|
/// As with the [`second`](#method.second) method,
|
|
/// the input range is restricted to 0 through 59.
|
|
///
|
|
/// See also the
|
|
/// [`NaiveTime::with_second`](./struct.NaiveTime.html#method.with_second) method.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::{NaiveDate, NaiveDateTime, Timelike};
|
|
///
|
|
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789);
|
|
/// assert_eq!(dt.with_second(17),
|
|
/// Some(NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 17, 789)));
|
|
/// assert_eq!(dt.with_second(60), None);
|
|
/// ~~~~
|
|
#[inline]
|
|
fn with_second(&self, sec: u32) -> Option<NaiveDateTime> {
|
|
self.time.with_second(sec).map(|t| NaiveDateTime { time: t, ..*self })
|
|
}
|
|
|
|
/// Makes a new `NaiveDateTime` with nanoseconds since the whole non-leap second changed.
|
|
///
|
|
/// Returns `None` when the resulting `NaiveDateTime` would be invalid.
|
|
/// As with the [`nanosecond`](#method.nanosecond) method,
|
|
/// the input range can exceed 1,000,000,000 for leap seconds.
|
|
///
|
|
/// See also the
|
|
/// [`NaiveTime::with_nanosecond`](./struct.NaiveTime.html#method.with_nanosecond)
|
|
/// method.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::{NaiveDate, NaiveDateTime, Timelike};
|
|
///
|
|
/// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789);
|
|
/// assert_eq!(dt.with_nanosecond(333_333_333),
|
|
/// Some(NaiveDate::from_ymd(2015, 9, 8).and_hms_nano(12, 34, 56, 333_333_333)));
|
|
/// assert_eq!(dt.with_nanosecond(1_333_333_333), // leap second
|
|
/// Some(NaiveDate::from_ymd(2015, 9, 8).and_hms_nano(12, 34, 56, 1_333_333_333)));
|
|
/// assert_eq!(dt.with_nanosecond(2_000_000_000), None);
|
|
/// ~~~~
|
|
#[inline]
|
|
fn with_nanosecond(&self, nano: u32) -> Option<NaiveDateTime> {
|
|
self.time.with_nanosecond(nano).map(|t| NaiveDateTime { time: t, ..*self })
|
|
}
|
|
}
|
|
|
|
/// `NaiveDateTime` can be used as a key to the hash maps (in principle).
|
|
///
|
|
/// Practically this also takes account of fractional seconds, so it is not recommended.
|
|
/// (For the obvious reason this also distinguishes leap seconds from non-leap seconds.)
|
|
#[cfg_attr(feature = "cargo-clippy", allow(derive_hash_xor_eq))]
|
|
impl hash::Hash for NaiveDateTime {
|
|
fn hash<H: hash::Hasher>(&self, state: &mut H) {
|
|
self.date.hash(state);
|
|
self.time.hash(state);
|
|
}
|
|
}
|
|
|
|
/// An addition of `Duration` to `NaiveDateTime` yields another `NaiveDateTime`.
|
|
///
|
|
/// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling),
|
|
/// the addition assumes that **there is no leap second ever**,
|
|
/// except when the `NaiveDateTime` itself represents a leap second
|
|
/// in which case the assumption becomes that **there is exactly a single leap second ever**.
|
|
///
|
|
/// Panics on underflow or overflow.
|
|
/// Use [`NaiveDateTime::checked_add_signed`](#method.checked_add_signed) to detect that.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// # extern crate chrono; extern crate time; fn main() {
|
|
/// use chrono::NaiveDate;
|
|
/// use time::Duration;
|
|
///
|
|
/// let from_ymd = NaiveDate::from_ymd;
|
|
///
|
|
/// let d = from_ymd(2016, 7, 8);
|
|
/// let hms = |h, m, s| d.and_hms(h, m, s);
|
|
/// assert_eq!(hms(3, 5, 7) + Duration::zero(), hms(3, 5, 7));
|
|
/// assert_eq!(hms(3, 5, 7) + Duration::seconds(1), hms(3, 5, 8));
|
|
/// assert_eq!(hms(3, 5, 7) + Duration::seconds(-1), hms(3, 5, 6));
|
|
/// assert_eq!(hms(3, 5, 7) + Duration::seconds(3600 + 60), hms(4, 6, 7));
|
|
/// assert_eq!(hms(3, 5, 7) + Duration::seconds(86_400),
|
|
/// from_ymd(2016, 7, 9).and_hms(3, 5, 7));
|
|
/// assert_eq!(hms(3, 5, 7) + Duration::days(365),
|
|
/// from_ymd(2017, 7, 8).and_hms(3, 5, 7));
|
|
///
|
|
/// let hmsm = |h, m, s, milli| d.and_hms_milli(h, m, s, milli);
|
|
/// assert_eq!(hmsm(3, 5, 7, 980) + Duration::milliseconds(450), hmsm(3, 5, 8, 430));
|
|
/// # }
|
|
/// ~~~~
|
|
///
|
|
/// Leap seconds are handled,
|
|
/// but the addition assumes that it is the only leap second happened.
|
|
///
|
|
/// ~~~~
|
|
/// # extern crate chrono; extern crate time; fn main() {
|
|
/// # use chrono::NaiveDate;
|
|
/// # use time::Duration;
|
|
/// # let from_ymd = NaiveDate::from_ymd;
|
|
/// # let hmsm = |h, m, s, milli| from_ymd(2016, 7, 8).and_hms_milli(h, m, s, milli);
|
|
/// let leap = hmsm(3, 5, 59, 1_300);
|
|
/// assert_eq!(leap + Duration::zero(), hmsm(3, 5, 59, 1_300));
|
|
/// assert_eq!(leap + Duration::milliseconds(-500), hmsm(3, 5, 59, 800));
|
|
/// assert_eq!(leap + Duration::milliseconds(500), hmsm(3, 5, 59, 1_800));
|
|
/// assert_eq!(leap + Duration::milliseconds(800), hmsm(3, 6, 0, 100));
|
|
/// assert_eq!(leap + Duration::seconds(10), hmsm(3, 6, 9, 300));
|
|
/// assert_eq!(leap + Duration::seconds(-10), hmsm(3, 5, 50, 300));
|
|
/// assert_eq!(leap + Duration::days(1),
|
|
/// from_ymd(2016, 7, 9).and_hms_milli(3, 5, 59, 300));
|
|
/// # }
|
|
/// ~~~~
|
|
impl Add<OldDuration> for NaiveDateTime {
|
|
type Output = NaiveDateTime;
|
|
|
|
#[inline]
|
|
fn add(self, rhs: OldDuration) -> NaiveDateTime {
|
|
self.checked_add_signed(rhs).expect("`NaiveDateTime + Duration` overflowed")
|
|
}
|
|
}
|
|
|
|
impl AddAssign<OldDuration> for NaiveDateTime {
|
|
#[inline]
|
|
fn add_assign(&mut self, rhs: OldDuration) {
|
|
*self = self.add(rhs);
|
|
}
|
|
}
|
|
|
|
/// A subtraction of `Duration` from `NaiveDateTime` yields another `NaiveDateTime`.
|
|
/// It is same to the addition with a negated `Duration`.
|
|
///
|
|
/// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling),
|
|
/// the addition assumes that **there is no leap second ever**,
|
|
/// except when the `NaiveDateTime` itself represents a leap second
|
|
/// in which case the assumption becomes that **there is exactly a single leap second ever**.
|
|
///
|
|
/// Panics on underflow or overflow.
|
|
/// Use [`NaiveDateTime::checked_sub_signed`](#method.checked_sub_signed) to detect that.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// # extern crate chrono; extern crate time; fn main() {
|
|
/// use chrono::NaiveDate;
|
|
/// use time::Duration;
|
|
///
|
|
/// let from_ymd = NaiveDate::from_ymd;
|
|
///
|
|
/// let d = from_ymd(2016, 7, 8);
|
|
/// let hms = |h, m, s| d.and_hms(h, m, s);
|
|
/// assert_eq!(hms(3, 5, 7) - Duration::zero(), hms(3, 5, 7));
|
|
/// assert_eq!(hms(3, 5, 7) - Duration::seconds(1), hms(3, 5, 6));
|
|
/// assert_eq!(hms(3, 5, 7) - Duration::seconds(-1), hms(3, 5, 8));
|
|
/// assert_eq!(hms(3, 5, 7) - Duration::seconds(3600 + 60), hms(2, 4, 7));
|
|
/// assert_eq!(hms(3, 5, 7) - Duration::seconds(86_400),
|
|
/// from_ymd(2016, 7, 7).and_hms(3, 5, 7));
|
|
/// assert_eq!(hms(3, 5, 7) - Duration::days(365),
|
|
/// from_ymd(2015, 7, 9).and_hms(3, 5, 7));
|
|
///
|
|
/// let hmsm = |h, m, s, milli| d.and_hms_milli(h, m, s, milli);
|
|
/// assert_eq!(hmsm(3, 5, 7, 450) - Duration::milliseconds(670), hmsm(3, 5, 6, 780));
|
|
/// # }
|
|
/// ~~~~
|
|
///
|
|
/// Leap seconds are handled,
|
|
/// but the subtraction assumes that it is the only leap second happened.
|
|
///
|
|
/// ~~~~
|
|
/// # extern crate chrono; extern crate time; fn main() {
|
|
/// # use chrono::NaiveDate;
|
|
/// # use time::Duration;
|
|
/// # let from_ymd = NaiveDate::from_ymd;
|
|
/// # let hmsm = |h, m, s, milli| from_ymd(2016, 7, 8).and_hms_milli(h, m, s, milli);
|
|
/// let leap = hmsm(3, 5, 59, 1_300);
|
|
/// assert_eq!(leap - Duration::zero(), hmsm(3, 5, 59, 1_300));
|
|
/// assert_eq!(leap - Duration::milliseconds(200), hmsm(3, 5, 59, 1_100));
|
|
/// assert_eq!(leap - Duration::milliseconds(500), hmsm(3, 5, 59, 800));
|
|
/// assert_eq!(leap - Duration::seconds(60), hmsm(3, 5, 0, 300));
|
|
/// assert_eq!(leap - Duration::days(1),
|
|
/// from_ymd(2016, 7, 7).and_hms_milli(3, 6, 0, 300));
|
|
/// # }
|
|
/// ~~~~
|
|
impl Sub<OldDuration> for NaiveDateTime {
|
|
type Output = NaiveDateTime;
|
|
|
|
#[inline]
|
|
fn sub(self, rhs: OldDuration) -> NaiveDateTime {
|
|
self.checked_sub_signed(rhs).expect("`NaiveDateTime - Duration` overflowed")
|
|
}
|
|
}
|
|
|
|
impl SubAssign<OldDuration> for NaiveDateTime {
|
|
#[inline]
|
|
fn sub_assign(&mut self, rhs: OldDuration) {
|
|
*self = self.sub(rhs);
|
|
}
|
|
}
|
|
|
|
/// The `Debug` output of the naive date and time `dt` is same to
|
|
/// [`dt.format("%Y-%m-%dT%H:%M:%S%.f")`](../format/strftime/index.html).
|
|
///
|
|
/// The string printed can be readily parsed via the `parse` method on `str`.
|
|
///
|
|
/// It should be noted that, for leap seconds not on the minute boundary,
|
|
/// it may print a representation not distinguishable from non-leap seconds.
|
|
/// This doesn't matter in practice, since such leap seconds never happened.
|
|
/// (By the time of the first leap second on 1972-06-30,
|
|
/// every time zone offset around the world has standardized to the 5-minute alignment.)
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::NaiveDate;
|
|
///
|
|
/// let dt = NaiveDate::from_ymd(2016, 11, 15).and_hms(7, 39, 24);
|
|
/// assert_eq!(format!("{:?}", dt), "2016-11-15T07:39:24");
|
|
/// ~~~~
|
|
///
|
|
/// Leap seconds may also be used.
|
|
///
|
|
/// ~~~~
|
|
/// # use chrono::NaiveDate;
|
|
/// let dt = NaiveDate::from_ymd(2015, 6, 30).and_hms_milli(23, 59, 59, 1_500);
|
|
/// assert_eq!(format!("{:?}", dt), "2015-06-30T23:59:60.500");
|
|
/// ~~~~
|
|
impl fmt::Debug for NaiveDateTime {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(f, "{:?}T{:?}", self.date, self.time)
|
|
}
|
|
}
|
|
|
|
/// The `Debug` output of the naive date and time `dt` is same to
|
|
/// [`dt.format("%Y-%m-%d %H:%M:%S%.f")`](../format/strftime/index.html).
|
|
///
|
|
/// It should be noted that, for leap seconds not on the minute boundary,
|
|
/// it may print a representation not distinguishable from non-leap seconds.
|
|
/// This doesn't matter in practice, since such leap seconds never happened.
|
|
/// (By the time of the first leap second on 1972-06-30,
|
|
/// every time zone offset around the world has standardized to the 5-minute alignment.)
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::NaiveDate;
|
|
///
|
|
/// let dt = NaiveDate::from_ymd(2016, 11, 15).and_hms(7, 39, 24);
|
|
/// assert_eq!(format!("{}", dt), "2016-11-15 07:39:24");
|
|
/// ~~~~
|
|
///
|
|
/// Leap seconds may also be used.
|
|
///
|
|
/// ~~~~
|
|
/// # use chrono::NaiveDate;
|
|
/// let dt = NaiveDate::from_ymd(2015, 6, 30).and_hms_milli(23, 59, 59, 1_500);
|
|
/// assert_eq!(format!("{}", dt), "2015-06-30 23:59:60.500");
|
|
/// ~~~~
|
|
impl fmt::Display for NaiveDateTime {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(f, "{} {}", self.date, self.time)
|
|
}
|
|
}
|
|
|
|
/// Parsing a `str` into a `NaiveDateTime` uses the same format,
|
|
/// [`%Y-%m-%dT%H:%M:%S%.f`](../format/strftime/index.html), as in `Debug`.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ~~~~
|
|
/// use chrono::{NaiveDateTime, NaiveDate};
|
|
///
|
|
/// let dt = NaiveDate::from_ymd(2015, 9, 18).and_hms(23, 56, 4);
|
|
/// assert_eq!("2015-09-18T23:56:04".parse::<NaiveDateTime>(), Ok(dt));
|
|
///
|
|
/// let dt = NaiveDate::from_ymd(12345, 6, 7).and_hms_milli(7, 59, 59, 1_500); // leap second
|
|
/// assert_eq!("+12345-6-7T7:59:60.5".parse::<NaiveDateTime>(), Ok(dt));
|
|
///
|
|
/// assert!("foo".parse::<NaiveDateTime>().is_err());
|
|
/// ~~~~
|
|
impl str::FromStr for NaiveDateTime {
|
|
type Err = ParseError;
|
|
|
|
fn from_str(s: &str) -> ParseResult<NaiveDateTime> {
|
|
const ITEMS: &'static [Item<'static>] = &[
|
|
Item::Space(""), Item::Numeric(Numeric::Year, Pad::Zero),
|
|
Item::Space(""), Item::Literal("-"),
|
|
Item::Space(""), Item::Numeric(Numeric::Month, Pad::Zero),
|
|
Item::Space(""), Item::Literal("-"),
|
|
Item::Space(""), Item::Numeric(Numeric::Day, Pad::Zero),
|
|
Item::Space(""), Item::Literal("T"), // XXX shouldn't this be case-insensitive?
|
|
Item::Space(""), Item::Numeric(Numeric::Hour, Pad::Zero),
|
|
Item::Space(""), Item::Literal(":"),
|
|
Item::Space(""), Item::Numeric(Numeric::Minute, Pad::Zero),
|
|
Item::Space(""), Item::Literal(":"),
|
|
Item::Space(""), Item::Numeric(Numeric::Second, Pad::Zero),
|
|
Item::Fixed(Fixed::Nanosecond), Item::Space(""),
|
|
];
|
|
|
|
let mut parsed = Parsed::new();
|
|
try!(parse(&mut parsed, s, ITEMS.iter().cloned()));
|
|
parsed.to_naive_datetime_with_offset(0)
|
|
}
|
|
}
|
|
|
|
#[cfg(all(test, any(feature = "rustc-serialize", feature = "serde")))]
|
|
fn test_encodable_json<F, E>(to_string: F)
|
|
where F: Fn(&NaiveDateTime) -> Result<String, E>, E: ::std::fmt::Debug
|
|
{
|
|
use naive::{MIN_DATE, MAX_DATE};
|
|
|
|
assert_eq!(
|
|
to_string(&NaiveDate::from_ymd(2016, 7, 8).and_hms_milli(9, 10, 48, 90)).ok(),
|
|
Some(r#""2016-07-08T09:10:48.090""#.into()));
|
|
assert_eq!(
|
|
to_string(&NaiveDate::from_ymd(2014, 7, 24).and_hms(12, 34, 6)).ok(),
|
|
Some(r#""2014-07-24T12:34:06""#.into()));
|
|
assert_eq!(
|
|
to_string(&NaiveDate::from_ymd(0, 1, 1).and_hms_milli(0, 0, 59, 1_000)).ok(),
|
|
Some(r#""0000-01-01T00:00:60""#.into()));
|
|
assert_eq!(
|
|
to_string(&NaiveDate::from_ymd(-1, 12, 31).and_hms_nano(23, 59, 59, 7)).ok(),
|
|
Some(r#""-0001-12-31T23:59:59.000000007""#.into()));
|
|
assert_eq!(
|
|
to_string(&MIN_DATE.and_hms(0, 0, 0)).ok(),
|
|
Some(r#""-262144-01-01T00:00:00""#.into()));
|
|
assert_eq!(
|
|
to_string(&MAX_DATE.and_hms_nano(23, 59, 59, 1_999_999_999)).ok(),
|
|
Some(r#""+262143-12-31T23:59:60.999999999""#.into()));
|
|
}
|
|
|
|
#[cfg(all(test, any(feature = "rustc-serialize", feature = "serde")))]
|
|
fn test_decodable_json<F, E>(from_str: F)
|
|
where F: Fn(&str) -> Result<NaiveDateTime, E>, E: ::std::fmt::Debug
|
|
{
|
|
use naive::{MIN_DATE, MAX_DATE};
|
|
|
|
assert_eq!(
|
|
from_str(r#""2016-07-08T09:10:48.090""#).ok(),
|
|
Some(NaiveDate::from_ymd(2016, 7, 8).and_hms_milli(9, 10, 48, 90)));
|
|
assert_eq!(
|
|
from_str(r#""2016-7-8T9:10:48.09""#).ok(),
|
|
Some(NaiveDate::from_ymd(2016, 7, 8).and_hms_milli(9, 10, 48, 90)));
|
|
assert_eq!(
|
|
from_str(r#""2014-07-24T12:34:06""#).ok(),
|
|
Some(NaiveDate::from_ymd(2014, 7, 24).and_hms(12, 34, 6)));
|
|
assert_eq!(
|
|
from_str(r#""0000-01-01T00:00:60""#).ok(),
|
|
Some(NaiveDate::from_ymd(0, 1, 1).and_hms_milli(0, 0, 59, 1_000)));
|
|
assert_eq!(
|
|
from_str(r#""0-1-1T0:0:60""#).ok(),
|
|
Some(NaiveDate::from_ymd(0, 1, 1).and_hms_milli(0, 0, 59, 1_000)));
|
|
assert_eq!(
|
|
from_str(r#""-0001-12-31T23:59:59.000000007""#).ok(),
|
|
Some(NaiveDate::from_ymd(-1, 12, 31).and_hms_nano(23, 59, 59, 7)));
|
|
assert_eq!(
|
|
from_str(r#""-262144-01-01T00:00:00""#).ok(),
|
|
Some(MIN_DATE.and_hms(0, 0, 0)));
|
|
assert_eq!(
|
|
from_str(r#""+262143-12-31T23:59:60.999999999""#).ok(),
|
|
Some(MAX_DATE.and_hms_nano(23, 59, 59, 1_999_999_999)));
|
|
assert_eq!(
|
|
from_str(r#""+262143-12-31T23:59:60.9999999999997""#).ok(), // excess digits are ignored
|
|
Some(MAX_DATE.and_hms_nano(23, 59, 59, 1_999_999_999)));
|
|
|
|
// bad formats
|
|
assert!(from_str(r#""""#).is_err());
|
|
assert!(from_str(r#""2016-07-08""#).is_err());
|
|
assert!(from_str(r#""09:10:48.090""#).is_err());
|
|
assert!(from_str(r#""20160708T091048.090""#).is_err());
|
|
assert!(from_str(r#""2000-00-00T00:00:00""#).is_err());
|
|
assert!(from_str(r#""2000-02-30T00:00:00""#).is_err());
|
|
assert!(from_str(r#""2001-02-29T00:00:00""#).is_err());
|
|
assert!(from_str(r#""2002-02-28T24:00:00""#).is_err());
|
|
assert!(from_str(r#""2002-02-28T23:60:00""#).is_err());
|
|
assert!(from_str(r#""2002-02-28T23:59:61""#).is_err());
|
|
assert!(from_str(r#""2016-07-08T09:10:48,090""#).is_err());
|
|
assert!(from_str(r#""2016-07-08 09:10:48.090""#).is_err());
|
|
assert!(from_str(r#""2016-007-08T09:10:48.090""#).is_err());
|
|
assert!(from_str(r#""yyyy-mm-ddThh:mm:ss.fffffffff""#).is_err());
|
|
assert!(from_str(r#"20160708000000"#).is_err());
|
|
assert!(from_str(r#"{}"#).is_err());
|
|
// pre-0.3.0 rustc-serialize format is now invalid
|
|
assert!(from_str(r#"{"date":{"ymdf":20},"time":{"secs":0,"frac":0}}"#).is_err());
|
|
assert!(from_str(r#"null"#).is_err());
|
|
}
|
|
|
|
|
|
#[cfg(all(test, feature = "rustc-serialize"))]
|
|
fn test_decodable_json_timestamp<F, E>(from_str: F)
|
|
where F: Fn(&str) -> Result<rustc_serialize::TsSeconds, E>, E: ::std::fmt::Debug
|
|
{
|
|
assert_eq!(
|
|
*from_str("0").unwrap(),
|
|
NaiveDate::from_ymd(1970, 1, 1).and_hms(0, 0, 0),
|
|
"should parse integers as timestamps"
|
|
);
|
|
assert_eq!(
|
|
*from_str("-1").unwrap(),
|
|
NaiveDate::from_ymd(1969, 12, 31).and_hms(23, 59, 59),
|
|
"should parse integers as timestamps"
|
|
);
|
|
}
|
|
|
|
#[cfg(feature = "rustc-serialize")]
|
|
pub mod rustc_serialize {
|
|
use std::ops::Deref;
|
|
use super::NaiveDateTime;
|
|
use rustc_serialize::{Encodable, Encoder, Decodable, Decoder};
|
|
|
|
impl Encodable for NaiveDateTime {
|
|
fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
|
|
format!("{:?}", self).encode(s)
|
|
}
|
|
}
|
|
|
|
impl Decodable for NaiveDateTime {
|
|
fn decode<D: Decoder>(d: &mut D) -> Result<NaiveDateTime, D::Error> {
|
|
d.read_str()?.parse().map_err(|_| d.error("invalid date time string"))
|
|
}
|
|
}
|
|
|
|
/// A `DateTime` that can be deserialized from a seconds-based timestamp
|
|
#[derive(Debug)]
|
|
#[deprecated(since = "1.4.2",
|
|
note = "RustcSerialize will be removed before chrono 1.0, use Serde instead")]
|
|
pub struct TsSeconds(NaiveDateTime);
|
|
|
|
#[allow(deprecated)]
|
|
impl From<TsSeconds> for NaiveDateTime {
|
|
/// Pull the internal NaiveDateTime out
|
|
#[allow(deprecated)]
|
|
fn from(obj: TsSeconds) -> NaiveDateTime {
|
|
obj.0
|
|
}
|
|
}
|
|
|
|
#[allow(deprecated)]
|
|
impl Deref for TsSeconds {
|
|
type Target = NaiveDateTime;
|
|
|
|
#[allow(deprecated)]
|
|
fn deref(&self) -> &Self::Target {
|
|
&self.0
|
|
}
|
|
}
|
|
|
|
#[allow(deprecated)]
|
|
impl Decodable for TsSeconds {
|
|
#[allow(deprecated)]
|
|
fn decode<D: Decoder>(d: &mut D) -> Result<TsSeconds, D::Error> {
|
|
Ok(TsSeconds(
|
|
NaiveDateTime::from_timestamp_opt(d.read_i64()?, 0)
|
|
.ok_or_else(|| d.error("invalid timestamp"))?))
|
|
}
|
|
}
|
|
|
|
#[cfg(test)] use rustc_serialize::json;
|
|
|
|
#[test]
|
|
fn test_encodable() {
|
|
super::test_encodable_json(json::encode);
|
|
}
|
|
|
|
#[test]
|
|
fn test_decodable() {
|
|
super::test_decodable_json(json::decode);
|
|
}
|
|
|
|
#[test]
|
|
fn test_decodable_timestamps() {
|
|
super::test_decodable_json_timestamp(json::decode);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/// Tools to help serializing/deserializing `NaiveDateTime`s
|
|
#[cfg(feature = "serde")]
|
|
pub mod serde {
|
|
use std::fmt;
|
|
use super::{NaiveDateTime};
|
|
use serdelib::{ser, de};
|
|
|
|
/// Serialize a `NaiveDateTime` as an RFC 3339 string
|
|
///
|
|
/// See [the `serde` module](./serde/index.html) for alternate
|
|
/// serialization formats.
|
|
impl ser::Serialize for NaiveDateTime {
|
|
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
|
where S: ser::Serializer
|
|
{
|
|
struct FormatWrapped<'a, D: 'a> {
|
|
inner: &'a D
|
|
}
|
|
|
|
impl<'a, D: fmt::Debug> fmt::Display for FormatWrapped<'a, D> {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
self.inner.fmt(f)
|
|
}
|
|
}
|
|
|
|
serializer.collect_str(&FormatWrapped { inner: &self })
|
|
}
|
|
}
|
|
|
|
struct NaiveDateTimeVisitor;
|
|
|
|
impl<'de> de::Visitor<'de> for NaiveDateTimeVisitor {
|
|
type Value = NaiveDateTime;
|
|
|
|
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result
|
|
{
|
|
write!(formatter, "a formatted date and time string")
|
|
}
|
|
|
|
fn visit_str<E>(self, value: &str) -> Result<NaiveDateTime, E>
|
|
where E: de::Error
|
|
{
|
|
value.parse().map_err(|err| E::custom(format!("{}", err)))
|
|
}
|
|
}
|
|
|
|
impl<'de> de::Deserialize<'de> for NaiveDateTime {
|
|
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
|
|
where D: de::Deserializer<'de>
|
|
{
|
|
deserializer.deserialize_str(NaiveDateTimeVisitor)
|
|
}
|
|
}
|
|
|
|
/// Used to serialize/deserialize from second-precision timestamps
|
|
///
|
|
/// # Example:
|
|
///
|
|
/// ```rust
|
|
/// # // We mark this ignored so that we can test on 1.13 (which does not
|
|
/// # // support custom derive), and run tests with --ignored on beta and
|
|
/// # // nightly to actually trigger these.
|
|
/// #
|
|
/// # #[macro_use] extern crate serde_derive;
|
|
/// # extern crate serde_json;
|
|
/// # extern crate serde;
|
|
/// # extern crate chrono;
|
|
/// # use chrono::{TimeZone, NaiveDate, NaiveDateTime, Utc};
|
|
/// use chrono::naive::serde::ts_seconds;
|
|
/// #[derive(Deserialize, Serialize)]
|
|
/// struct S {
|
|
/// #[serde(with = "ts_seconds")]
|
|
/// time: NaiveDateTime
|
|
/// }
|
|
///
|
|
/// # fn example() -> Result<S, serde_json::Error> {
|
|
/// let time = NaiveDate::from_ymd(2015, 5, 15).and_hms(10, 0, 0);
|
|
/// let my_s = S {
|
|
/// time: time.clone(),
|
|
/// };
|
|
///
|
|
/// let as_string = serde_json::to_string(&my_s)?;
|
|
/// assert_eq!(as_string, r#"{"time":1431684000}"#);
|
|
/// let my_s: S = serde_json::from_str(&as_string)?;
|
|
/// assert_eq!(my_s.time, time);
|
|
/// # Ok(my_s)
|
|
/// # }
|
|
/// # fn main() { example().unwrap(); }
|
|
/// ```
|
|
pub mod ts_seconds {
|
|
use std::fmt;
|
|
use serdelib::{ser, de};
|
|
|
|
use NaiveDateTime;
|
|
|
|
/// Deserialize a `DateTime` from a seconds timestamp
|
|
///
|
|
/// Intended for use with `serde`s `deserialize_with` attribute.
|
|
///
|
|
/// # Example:
|
|
///
|
|
/// ```rust
|
|
/// # // We mark this ignored so that we can test on 1.13 (which does not
|
|
/// # // support custom derive), and run tests with --ignored on beta and
|
|
/// # // nightly to actually trigger these.
|
|
/// #
|
|
/// # #[macro_use] extern crate serde_derive;
|
|
/// # #[macro_use] extern crate serde_json;
|
|
/// # extern crate serde;
|
|
/// # extern crate chrono;
|
|
/// # use chrono::{NaiveDateTime, Utc};
|
|
/// # use serde::Deserialize;
|
|
/// use chrono::naive::serde::ts_seconds::deserialize as from_ts;
|
|
/// #[derive(Deserialize)]
|
|
/// struct S {
|
|
/// #[serde(deserialize_with = "from_ts")]
|
|
/// time: NaiveDateTime
|
|
/// }
|
|
///
|
|
/// # fn example() -> Result<S, serde_json::Error> {
|
|
/// let my_s: S = serde_json::from_str(r#"{ "time": 1431684000 }"#)?;
|
|
/// # Ok(my_s)
|
|
/// # }
|
|
/// # fn main() { example().unwrap(); }
|
|
/// ```
|
|
pub fn deserialize<'de, D>(d: D) -> Result<NaiveDateTime, D::Error>
|
|
where D: de::Deserializer<'de>
|
|
{
|
|
Ok(try!(d.deserialize_i64(NaiveDateTimeFromSecondsVisitor)))
|
|
}
|
|
|
|
/// Serialize a UTC datetime into an integer number of seconds since the epoch
|
|
///
|
|
/// Intended for use with `serde`s `serialize_with` attribute.
|
|
///
|
|
/// # Example:
|
|
///
|
|
/// ```rust
|
|
/// # // We mark this ignored so that we can test on 1.13 (which does not
|
|
/// # // support custom derive), and run tests with --ignored on beta and
|
|
/// # // nightly to actually trigger these.
|
|
/// #
|
|
/// # #[macro_use] extern crate serde_derive;
|
|
/// # #[macro_use] extern crate serde_json;
|
|
/// # #[macro_use] extern crate serde;
|
|
/// # extern crate chrono;
|
|
/// # use chrono::{TimeZone, NaiveDate, NaiveDateTime, Utc};
|
|
/// # use serde::Serialize;
|
|
/// use chrono::naive::serde::ts_seconds::serialize as to_ts;
|
|
/// #[derive(Serialize)]
|
|
/// struct S {
|
|
/// #[serde(serialize_with = "to_ts")]
|
|
/// time: NaiveDateTime
|
|
/// }
|
|
///
|
|
/// # fn example() -> Result<String, serde_json::Error> {
|
|
/// let my_s = S {
|
|
/// time: NaiveDate::from_ymd(2015, 5, 15).and_hms(10, 0, 0),
|
|
/// };
|
|
/// let as_string = serde_json::to_string(&my_s)?;
|
|
/// assert_eq!(as_string, r#"{"time":1431684000}"#);
|
|
/// # Ok(as_string)
|
|
/// # }
|
|
/// # fn main() { example().unwrap(); }
|
|
/// ```
|
|
pub fn serialize<S>(dt: &NaiveDateTime, serializer: S) -> Result<S::Ok, S::Error>
|
|
where S: ser::Serializer
|
|
{
|
|
serializer.serialize_i64(dt.timestamp())
|
|
}
|
|
|
|
struct NaiveDateTimeFromSecondsVisitor;
|
|
|
|
impl<'de> de::Visitor<'de> for NaiveDateTimeFromSecondsVisitor {
|
|
type Value = NaiveDateTime;
|
|
|
|
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result
|
|
{
|
|
write!(formatter, "a unix timestamp")
|
|
}
|
|
|
|
fn visit_i64<E>(self, value: i64) -> Result<NaiveDateTime, E>
|
|
where E: de::Error
|
|
{
|
|
NaiveDateTime::from_timestamp_opt(value, 0)
|
|
.ok_or_else(|| E::custom(format!("value is not a legal timestamp: {}", value)))
|
|
}
|
|
|
|
fn visit_u64<E>(self, value: u64) -> Result<NaiveDateTime, E>
|
|
where E: de::Error
|
|
{
|
|
NaiveDateTime::from_timestamp_opt(value as i64, 0)
|
|
.ok_or_else(|| E::custom(format!("value is not a legal timestamp: {}", value)))
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
#[cfg(test)] extern crate serde_json;
|
|
#[cfg(test)] extern crate bincode;
|
|
|
|
#[test]
|
|
fn test_serde_serialize() {
|
|
super::test_encodable_json(self::serde_json::to_string);
|
|
}
|
|
|
|
#[test]
|
|
fn test_serde_deserialize() {
|
|
super::test_decodable_json(|input| self::serde_json::from_str(&input));
|
|
}
|
|
|
|
#[test]
|
|
fn test_serde_bincode() {
|
|
// Bincode is relevant to test separately from JSON because
|
|
// it is not self-describing.
|
|
use naive::NaiveDate;
|
|
use self::bincode::{Infinite, serialize, deserialize};
|
|
|
|
let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms_milli(9, 10, 48, 90);
|
|
let encoded = serialize(&dt, Infinite).unwrap();
|
|
let decoded: NaiveDateTime = deserialize(&encoded).unwrap();
|
|
assert_eq!(dt, decoded);
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::NaiveDateTime;
|
|
use Datelike;
|
|
use naive::{NaiveDate, MIN_DATE, MAX_DATE};
|
|
use std::i64;
|
|
use oldtime::Duration;
|
|
|
|
#[test]
|
|
fn test_datetime_from_timestamp() {
|
|
let from_timestamp = |secs| NaiveDateTime::from_timestamp_opt(secs, 0);
|
|
let ymdhms = |y,m,d,h,n,s| NaiveDate::from_ymd(y,m,d).and_hms(h,n,s);
|
|
assert_eq!(from_timestamp(-1), Some(ymdhms(1969, 12, 31, 23, 59, 59)));
|
|
assert_eq!(from_timestamp(0), Some(ymdhms(1970, 1, 1, 0, 0, 0)));
|
|
assert_eq!(from_timestamp(1), Some(ymdhms(1970, 1, 1, 0, 0, 1)));
|
|
assert_eq!(from_timestamp(1_000_000_000), Some(ymdhms(2001, 9, 9, 1, 46, 40)));
|
|
assert_eq!(from_timestamp(0x7fffffff), Some(ymdhms(2038, 1, 19, 3, 14, 7)));
|
|
assert_eq!(from_timestamp(i64::MIN), None);
|
|
assert_eq!(from_timestamp(i64::MAX), None);
|
|
}
|
|
|
|
#[test]
|
|
fn test_datetime_add() {
|
|
fn check((y,m,d,h,n,s): (i32,u32,u32,u32,u32,u32), rhs: Duration,
|
|
result: Option<(i32,u32,u32,u32,u32,u32)>) {
|
|
let lhs = NaiveDate::from_ymd(y, m, d).and_hms(h, n, s);
|
|
let sum = result.map(|(y,m,d,h,n,s)| NaiveDate::from_ymd(y, m, d).and_hms(h, n, s));
|
|
assert_eq!(lhs.checked_add_signed(rhs), sum);
|
|
assert_eq!(lhs.checked_sub_signed(-rhs), sum);
|
|
};
|
|
|
|
check((2014,5,6, 7,8,9), Duration::seconds(3600 + 60 + 1), Some((2014,5,6, 8,9,10)));
|
|
check((2014,5,6, 7,8,9), Duration::seconds(-(3600 + 60 + 1)), Some((2014,5,6, 6,7,8)));
|
|
check((2014,5,6, 7,8,9), Duration::seconds(86399), Some((2014,5,7, 7,8,8)));
|
|
check((2014,5,6, 7,8,9), Duration::seconds(86_400 * 10), Some((2014,5,16, 7,8,9)));
|
|
check((2014,5,6, 7,8,9), Duration::seconds(-86_400 * 10), Some((2014,4,26, 7,8,9)));
|
|
check((2014,5,6, 7,8,9), Duration::seconds(86_400 * 10), Some((2014,5,16, 7,8,9)));
|
|
|
|
// overflow check
|
|
// assumes that we have correct values for MAX/MIN_DAYS_FROM_YEAR_0 from `naive::date`.
|
|
// (they are private constants, but the equivalence is tested in that module.)
|
|
let max_days_from_year_0 = MAX_DATE.signed_duration_since(NaiveDate::from_ymd(0,1,1));
|
|
check((0,1,1, 0,0,0), max_days_from_year_0, Some((MAX_DATE.year(),12,31, 0,0,0)));
|
|
check((0,1,1, 0,0,0), max_days_from_year_0 + Duration::seconds(86399),
|
|
Some((MAX_DATE.year(),12,31, 23,59,59)));
|
|
check((0,1,1, 0,0,0), max_days_from_year_0 + Duration::seconds(86_400), None);
|
|
check((0,1,1, 0,0,0), Duration::max_value(), None);
|
|
|
|
let min_days_from_year_0 = MIN_DATE.signed_duration_since(NaiveDate::from_ymd(0,1,1));
|
|
check((0,1,1, 0,0,0), min_days_from_year_0, Some((MIN_DATE.year(),1,1, 0,0,0)));
|
|
check((0,1,1, 0,0,0), min_days_from_year_0 - Duration::seconds(1), None);
|
|
check((0,1,1, 0,0,0), Duration::min_value(), None);
|
|
}
|
|
|
|
#[test]
|
|
fn test_datetime_sub() {
|
|
let ymdhms = |y,m,d,h,n,s| NaiveDate::from_ymd(y,m,d).and_hms(h,n,s);
|
|
let since = NaiveDateTime::signed_duration_since;
|
|
assert_eq!(since(ymdhms(2014, 5, 6, 7, 8, 9), ymdhms(2014, 5, 6, 7, 8, 9)),
|
|
Duration::zero());
|
|
assert_eq!(since(ymdhms(2014, 5, 6, 7, 8, 10), ymdhms(2014, 5, 6, 7, 8, 9)),
|
|
Duration::seconds(1));
|
|
assert_eq!(since(ymdhms(2014, 5, 6, 7, 8, 9), ymdhms(2014, 5, 6, 7, 8, 10)),
|
|
Duration::seconds(-1));
|
|
assert_eq!(since(ymdhms(2014, 5, 7, 7, 8, 9), ymdhms(2014, 5, 6, 7, 8, 10)),
|
|
Duration::seconds(86399));
|
|
assert_eq!(since(ymdhms(2001, 9, 9, 1, 46, 39), ymdhms(1970, 1, 1, 0, 0, 0)),
|
|
Duration::seconds(999_999_999));
|
|
}
|
|
|
|
#[test]
|
|
fn test_datetime_addassignment() {
|
|
let ymdhms = |y,m,d,h,n,s| NaiveDate::from_ymd(y,m,d).and_hms(h,n,s);
|
|
let mut date = ymdhms(2016, 10, 1, 10, 10, 10);
|
|
date += Duration::minutes(10_000_000);
|
|
assert_eq!(date, ymdhms(2035, 10, 6, 20, 50, 10));
|
|
date += Duration::days(10);
|
|
assert_eq!(date, ymdhms(2035, 10, 16, 20, 50, 10));
|
|
}
|
|
|
|
#[test]
|
|
fn test_datetime_subassignment() {
|
|
let ymdhms = |y,m,d,h,n,s| NaiveDate::from_ymd(y,m,d).and_hms(h,n,s);
|
|
let mut date = ymdhms(2016, 10, 1, 10, 10, 10);
|
|
date -= Duration::minutes(10_000_000);
|
|
assert_eq!(date, ymdhms(1997, 9, 26, 23, 30, 10));
|
|
date -= Duration::days(10);
|
|
assert_eq!(date, ymdhms(1997, 9, 16, 23, 30, 10));
|
|
}
|
|
|
|
#[test]
|
|
fn test_datetime_timestamp() {
|
|
let to_timestamp = |y,m,d,h,n,s| NaiveDate::from_ymd(y,m,d).and_hms(h,n,s).timestamp();
|
|
assert_eq!(to_timestamp(1969, 12, 31, 23, 59, 59), -1);
|
|
assert_eq!(to_timestamp(1970, 1, 1, 0, 0, 0), 0);
|
|
assert_eq!(to_timestamp(1970, 1, 1, 0, 0, 1), 1);
|
|
assert_eq!(to_timestamp(2001, 9, 9, 1, 46, 40), 1_000_000_000);
|
|
assert_eq!(to_timestamp(2038, 1, 19, 3, 14, 7), 0x7fffffff);
|
|
}
|
|
|
|
#[test]
|
|
fn test_datetime_from_str() {
|
|
// valid cases
|
|
let valid = [
|
|
"2015-2-18T23:16:9.15",
|
|
"-77-02-18T23:16:09",
|
|
" +82701 - 05 - 6 T 15 : 9 : 60.898989898989 ",
|
|
];
|
|
for &s in &valid {
|
|
let d = match s.parse::<NaiveDateTime>() {
|
|
Ok(d) => d,
|
|
Err(e) => panic!("parsing `{}` has failed: {}", s, e)
|
|
};
|
|
let s_ = format!("{:?}", d);
|
|
// `s` and `s_` may differ, but `s.parse()` and `s_.parse()` must be same
|
|
let d_ = match s_.parse::<NaiveDateTime>() {
|
|
Ok(d) => d,
|
|
Err(e) => panic!("`{}` is parsed into `{:?}`, but reparsing that has failed: {}",
|
|
s, d, e)
|
|
};
|
|
assert!(d == d_, "`{}` is parsed into `{:?}`, but reparsed result \
|
|
`{:?}` does not match", s, d, d_);
|
|
}
|
|
|
|
// some invalid cases
|
|
// since `ParseErrorKind` is private, all we can do is to check if there was an error
|
|
assert!("".parse::<NaiveDateTime>().is_err());
|
|
assert!("x".parse::<NaiveDateTime>().is_err());
|
|
assert!("15".parse::<NaiveDateTime>().is_err());
|
|
assert!("15:8:9".parse::<NaiveDateTime>().is_err());
|
|
assert!("15-8-9".parse::<NaiveDateTime>().is_err());
|
|
assert!("2015-15-15T15:15:15".parse::<NaiveDateTime>().is_err());
|
|
assert!("2012-12-12T12:12:12x".parse::<NaiveDateTime>().is_err());
|
|
assert!("2012-123-12T12:12:12".parse::<NaiveDateTime>().is_err());
|
|
assert!("+ 82701-123-12T12:12:12".parse::<NaiveDateTime>().is_err());
|
|
assert!("+802701-123-12T12:12:12".parse::<NaiveDateTime>().is_err()); // out-of-bound
|
|
}
|
|
|
|
#[test]
|
|
fn test_datetime_parse_from_str() {
|
|
let ymdhms = |y,m,d,h,n,s| NaiveDate::from_ymd(y,m,d).and_hms(h,n,s);
|
|
let ymdhmsn =
|
|
|y,m,d,h,n,s,nano| NaiveDate::from_ymd(y, m, d).and_hms_nano(h, n, s, nano);
|
|
assert_eq!(NaiveDateTime::parse_from_str("2014-5-7T12:34:56+09:30", "%Y-%m-%dT%H:%M:%S%z"),
|
|
Ok(ymdhms(2014, 5, 7, 12, 34, 56))); // ignore offset
|
|
assert_eq!(NaiveDateTime::parse_from_str("2015-W06-1 000000", "%G-W%V-%u%H%M%S"),
|
|
Ok(ymdhms(2015, 2, 2, 0, 0, 0)));
|
|
assert_eq!(NaiveDateTime::parse_from_str("Fri, 09 Aug 2013 23:54:35 GMT",
|
|
"%a, %d %b %Y %H:%M:%S GMT"),
|
|
Ok(ymdhms(2013, 8, 9, 23, 54, 35)));
|
|
assert!(NaiveDateTime::parse_from_str("Sat, 09 Aug 2013 23:54:35 GMT",
|
|
"%a, %d %b %Y %H:%M:%S GMT").is_err());
|
|
assert!(NaiveDateTime::parse_from_str("2014-5-7 12:3456", "%Y-%m-%d %H:%M:%S").is_err());
|
|
assert!(NaiveDateTime::parse_from_str("12:34:56", "%H:%M:%S").is_err()); // insufficient
|
|
assert_eq!(NaiveDateTime::parse_from_str("1441497364", "%s"),
|
|
Ok(ymdhms(2015, 9, 5, 23, 56, 4)));
|
|
assert_eq!(NaiveDateTime::parse_from_str("1283929614.1234", "%s.%f"),
|
|
Ok(ymdhmsn(2010, 9, 8, 7, 6, 54, 1234)));
|
|
assert_eq!(NaiveDateTime::parse_from_str("1441497364.649", "%s%.3f"),
|
|
Ok(ymdhmsn(2015, 9, 5, 23, 56, 4, 649000000)));
|
|
assert_eq!(NaiveDateTime::parse_from_str("1497854303.087654", "%s%.6f"),
|
|
Ok(ymdhmsn(2017, 6, 19, 6, 38, 23, 87654000)));
|
|
assert_eq!(NaiveDateTime::parse_from_str("1437742189.918273645", "%s%.9f"),
|
|
Ok(ymdhmsn(2015, 7, 24, 12, 49, 49, 918273645)));
|
|
}
|
|
|
|
#[test]
|
|
fn test_datetime_format() {
|
|
let dt = NaiveDate::from_ymd(2010, 9, 8).and_hms_milli(7, 6, 54, 321);
|
|
assert_eq!(dt.format("%c").to_string(), "Wed Sep 8 07:06:54 2010");
|
|
assert_eq!(dt.format("%s").to_string(), "1283929614");
|
|
assert_eq!(dt.format("%t%n%%%n%t").to_string(), "\t\n%\n\t");
|
|
|
|
// a horror of leap second: coming near to you.
|
|
let dt = NaiveDate::from_ymd(2012, 6, 30).and_hms_milli(23, 59, 59, 1_000);
|
|
assert_eq!(dt.format("%c").to_string(), "Sat Jun 30 23:59:60 2012");
|
|
assert_eq!(dt.format("%s").to_string(), "1341100799"); // not 1341100800, it's intentional.
|
|
}
|
|
|
|
#[test]
|
|
fn test_datetime_add_sub_invariant() { // issue #37
|
|
let base = NaiveDate::from_ymd(2000, 1, 1).and_hms(0, 0, 0);
|
|
let t = -946684799990000;
|
|
let time = base + Duration::microseconds(t);
|
|
assert_eq!(t, time.signed_duration_since(base).num_microseconds().unwrap());
|
|
}
|
|
}
|