Auto merge of #164 - rust-num:split-into-crates, r=cuviper
Move segments of library to separate crates Issue #102 - [x] traits - [x] bigint - [x] integer - [x] complex - [x] iter - [x] rational
This commit is contained in:
commit
095738e7de
|
@ -7,7 +7,7 @@ set -ex
|
|||
for toolchain in 1.0.0 beta nightly; do
|
||||
run="multirust run $toolchain"
|
||||
$run cargo build --verbose
|
||||
$run cargo test --verbose
|
||||
$run make test
|
||||
$run .travis/test_features.sh
|
||||
if [ $toolchain = nightly ]; then
|
||||
$run .travis/test_nightly.sh
|
||||
|
|
|
@ -6,11 +6,10 @@ rust:
|
|||
sudo: false
|
||||
script:
|
||||
- cargo build --verbose
|
||||
- cargo test --verbose
|
||||
- make test
|
||||
- .travis/test_features.sh
|
||||
- |
|
||||
[ $TRAVIS_RUST_VERSION != nightly ] ||
|
||||
.travis/test_nightly.sh
|
||||
[ $TRAVIS_RUST_VERSION != nightly ] || .travis/test_nightly.sh
|
||||
- cargo doc
|
||||
after_success: |
|
||||
[ $TRAVIS_BRANCH = master ] &&
|
||||
|
|
|
@ -4,6 +4,4 @@ set -ex
|
|||
|
||||
for feature in '' bigint rational complex; do
|
||||
cargo build --verbose --no-default-features --features="$feature"
|
||||
cargo test --verbose --no-default-features --features="$feature"
|
||||
done
|
||||
|
||||
|
|
|
@ -4,4 +4,4 @@ set -ex
|
|||
|
||||
cargo bench --verbose
|
||||
|
||||
cargo test --verbose --manifest-path=num-macros/Cargo.toml
|
||||
cargo test --verbose --manifest-path=macros/Cargo.toml
|
||||
|
|
83
Cargo.toml
83
Cargo.toml
|
@ -1,38 +1,63 @@
|
|||
[package]
|
||||
|
||||
authors = ["The Rust Project Developers"]
|
||||
description = "A collection of numeric types and traits for Rust, including bigint,\ncomplex, rational, range iterators, generic integers, and more!\n"
|
||||
documentation = "http://rust-num.github.io/num"
|
||||
homepage = "https://github.com/rust-num/num"
|
||||
keywords = ["mathematics", "numerics"]
|
||||
license = "MIT/Apache-2.0"
|
||||
repository = "https://github.com/rust-num/num"
|
||||
name = "num"
|
||||
version = "0.1.31"
|
||||
authors = ["The Rust Project Developers"]
|
||||
license = "MIT/Apache-2.0"
|
||||
homepage = "https://github.com/rust-num/num"
|
||||
repository = "https://github.com/rust-num/num"
|
||||
documentation = "http://rust-num.github.io/num"
|
||||
keywords = ["mathematics", "numerics"]
|
||||
description = """
|
||||
A collection of numeric types and traits for Rust, including bigint,
|
||||
complex, rational, range iterators, generic integers, and more!
|
||||
"""
|
||||
|
||||
[dependencies]
|
||||
rand = { version = "0.3.8", optional = true }
|
||||
rustc-serialize = { version = "0.3.13", optional = true }
|
||||
serde = { version = "^0.7.0", optional = true }
|
||||
|
||||
[dev-dependencies]
|
||||
# Some tests of non-rand functionality still use rand because the tests
|
||||
# themselves are randomized.
|
||||
rand = { version = "0.3.8" }
|
||||
|
||||
[features]
|
||||
|
||||
complex = []
|
||||
rational = []
|
||||
bigint = []
|
||||
default = ["bigint", "complex", "rand", "rational", "rustc-serialize"]
|
||||
|
||||
[[bench]]
|
||||
name = "bigint"
|
||||
|
||||
[[bench]]
|
||||
name = "shootout-pidigits"
|
||||
harness = false
|
||||
name = "shootout-pidigits"
|
||||
|
||||
[dependencies]
|
||||
|
||||
[dependencies.num-bigint]
|
||||
optional = true
|
||||
path = "bigint"
|
||||
|
||||
[dependencies.num-complex]
|
||||
optional = true
|
||||
path = "complex"
|
||||
|
||||
[dependencies.num-integer]
|
||||
path = "./integer"
|
||||
|
||||
[dependencies.num-iter]
|
||||
optional = false
|
||||
path = "iter"
|
||||
|
||||
[dependencies.num-rational]
|
||||
optional = true
|
||||
path = "rational"
|
||||
|
||||
[dependencies.num-traits]
|
||||
path = "./traits"
|
||||
|
||||
[dev-dependencies]
|
||||
|
||||
[dev-dependencies.rand]
|
||||
version = "0.3.8"
|
||||
|
||||
[features]
|
||||
bigint = ["num-bigint"]
|
||||
complex = ["num-complex"]
|
||||
rational = ["num-rational"]
|
||||
default = ["bigint", "complex", "rational", "rustc-serialize"]
|
||||
|
||||
serde = [
|
||||
"num-bigint/serde",
|
||||
"num-complex/serde",
|
||||
"num-rational/serde"
|
||||
]
|
||||
rustc-serialize = [
|
||||
"num-bigint/rustc-serialize",
|
||||
"num-complex/rustc-serialize",
|
||||
"num-rational/rustc-serialize"
|
||||
]
|
||||
|
|
|
@ -0,0 +1,14 @@
|
|||
CARGO_CMD ?= cargo
|
||||
|
||||
packages = bigint complex integer iter rational traits
|
||||
|
||||
test:
|
||||
$(MAKE) run-all TASK="test"
|
||||
|
||||
run-all: $(packages)
|
||||
$(CARGO_CMD) $(TASK)
|
||||
|
||||
$(packages):
|
||||
$(CARGO_CMD) $(TASK) --manifest-path $@/Cargo.toml
|
||||
|
||||
.PHONY: $(packages) test
|
|
@ -0,0 +1,33 @@
|
|||
[package]
|
||||
authors = ["The Rust Project Developers"]
|
||||
description = "Big integer implementation for Rust"
|
||||
documentation = "http://rust-num.github.io/num"
|
||||
homepage = "https://github.com/rust-num/num"
|
||||
keywords = ["mathematics", "numerics"]
|
||||
license = "MIT/Apache-2.0"
|
||||
name = "num-bigint"
|
||||
repository = "https://github.com/rust-num/num"
|
||||
version = "0.1.0"
|
||||
|
||||
[dependencies]
|
||||
|
||||
[dependencies.num-integer]
|
||||
path = "../integer"
|
||||
|
||||
[dependencies.num-traits]
|
||||
path = "../traits"
|
||||
|
||||
[dependencies.rand]
|
||||
optional = true
|
||||
version = "0.3.14"
|
||||
|
||||
[dependencies.rustc-serialize]
|
||||
optional = true
|
||||
version = "0.3.19"
|
||||
|
||||
[dependencies.serde]
|
||||
optional = true
|
||||
version = "0.7.0"
|
||||
|
||||
[features]
|
||||
default = ["rand", "rustc-serialize"]
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,28 @@
|
|||
[package]
|
||||
authors = ["The Rust Project Developers"]
|
||||
description = "Complex numbers implementation for Rust"
|
||||
documentation = "http://rust-num.github.io/num"
|
||||
homepage = "https://github.com/rust-num/num"
|
||||
keywords = ["mathematics", "numerics"]
|
||||
license = "MIT/Apache-2.0"
|
||||
name = "num-complex"
|
||||
repository = "https://github.com/rust-num/num"
|
||||
version = "0.1.0"
|
||||
|
||||
[dependencies]
|
||||
|
||||
[dependencies.num-traits]
|
||||
optional = false
|
||||
path = "../traits"
|
||||
|
||||
[dependencies.rustc-serialize]
|
||||
optional = true
|
||||
version = "0.3.19"
|
||||
|
||||
[dependencies.serde]
|
||||
optional = true
|
||||
version = "^0.7.0"
|
||||
|
||||
[features]
|
||||
default = ["rustc-serialize"]
|
||||
unstable = []
|
|
@ -8,16 +8,25 @@
|
|||
// option. This file may not be copied, modified, or distributed
|
||||
// except according to those terms.
|
||||
|
||||
|
||||
//! Complex numbers.
|
||||
|
||||
extern crate num_traits as traits;
|
||||
|
||||
#[cfg(feature = "rustc-serialize")]
|
||||
extern crate rustc_serialize;
|
||||
|
||||
#[cfg(feature = "serde")]
|
||||
extern crate serde;
|
||||
|
||||
use std::fmt;
|
||||
#[cfg(test)]
|
||||
use std::hash;
|
||||
use std::ops::{Add, Div, Mul, Neg, Sub};
|
||||
|
||||
#[cfg(feature = "serde")]
|
||||
use serde;
|
||||
|
||||
use {Zero, One, Num, Float};
|
||||
use traits::{Zero, One, Num, Float};
|
||||
|
||||
// FIXME #1284: handle complex NaN & infinity etc. This
|
||||
// probably doesn't map to C's _Complex correctly.
|
||||
|
@ -593,6 +602,14 @@ impl<T> serde::Deserialize for Complex<T> where
|
|||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
fn hash<T: hash::Hash>(x: &T) -> u64 {
|
||||
use std::hash::Hasher;
|
||||
let mut hasher = hash::SipHasher::new();
|
||||
x.hash(&mut hasher);
|
||||
hasher.finish()
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
#![allow(non_upper_case_globals)]
|
||||
|
@ -600,7 +617,7 @@ mod test {
|
|||
use super::{Complex64, Complex};
|
||||
use std::f64;
|
||||
|
||||
use {Zero, One, Float};
|
||||
use traits::{Zero, One, Float};
|
||||
|
||||
pub const _0_0i : Complex64 = Complex { re: 0.0, im: 0.0 };
|
||||
pub const _1_0i : Complex64 = Complex { re: 1.0, im: 0.0 };
|
||||
|
@ -993,7 +1010,7 @@ mod test {
|
|||
|
||||
mod complex_arithmetic {
|
||||
use super::{_0_0i, _1_0i, _1_1i, _0_1i, _neg1_1i, _05_05i, all_consts};
|
||||
use Zero;
|
||||
use traits::Zero;
|
||||
|
||||
#[test]
|
||||
fn test_add() {
|
|
@ -0,0 +1,13 @@
|
|||
[package]
|
||||
authors = ["The Rust Project Developers"]
|
||||
description = "Integer traits and functions"
|
||||
documentation = "http://rust-num.github.io/num"
|
||||
homepage = "https://github.com/rust-num/num"
|
||||
keywords = ["mathematics", "numerics"]
|
||||
license = "MIT/Apache-2.0"
|
||||
repository = "https://github.com/rust-num/num"
|
||||
name = "num-integer"
|
||||
version = "0.1.0"
|
||||
|
||||
[dependencies.num-traits]
|
||||
path = "../traits"
|
|
@ -10,17 +10,17 @@
|
|||
|
||||
//! Integer trait and functions.
|
||||
|
||||
use {Num, Signed};
|
||||
extern crate num_traits as traits;
|
||||
|
||||
pub trait Integer
|
||||
: Sized + Num + Ord
|
||||
{
|
||||
use traits::{Num, Signed};
|
||||
|
||||
pub trait Integer: Sized + Num + PartialOrd + Ord + Eq {
|
||||
/// Floored integer division.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ~~~
|
||||
/// # use num::Integer;
|
||||
/// # use num_integer::Integer;
|
||||
/// assert!(( 8).div_floor(& 3) == 2);
|
||||
/// assert!(( 8).div_floor(&-3) == -3);
|
||||
/// assert!((-8).div_floor(& 3) == -3);
|
||||
|
@ -36,7 +36,7 @@ pub trait Integer
|
|||
/// Floored integer modulo, satisfying:
|
||||
///
|
||||
/// ~~~
|
||||
/// # use num::Integer;
|
||||
/// # use num_integer::Integer;
|
||||
/// # let n = 1; let d = 1;
|
||||
/// assert!(n.div_floor(&d) * d + n.mod_floor(&d) == n)
|
||||
/// ~~~
|
||||
|
@ -44,7 +44,7 @@ pub trait Integer
|
|||
/// # Examples
|
||||
///
|
||||
/// ~~~
|
||||
/// # use num::Integer;
|
||||
/// # use num_integer::Integer;
|
||||
/// assert!(( 8).mod_floor(& 3) == 2);
|
||||
/// assert!(( 8).mod_floor(&-3) == -1);
|
||||
/// assert!((-8).mod_floor(& 3) == 1);
|
||||
|
@ -62,7 +62,7 @@ pub trait Integer
|
|||
/// # Examples
|
||||
///
|
||||
/// ~~~
|
||||
/// # use num::Integer;
|
||||
/// # use num_integer::Integer;
|
||||
/// assert_eq!(6.gcd(&8), 2);
|
||||
/// assert_eq!(7.gcd(&3), 1);
|
||||
/// ~~~
|
||||
|
@ -73,7 +73,7 @@ pub trait Integer
|
|||
/// # Examples
|
||||
///
|
||||
/// ~~~
|
||||
/// # use num::Integer;
|
||||
/// # use num_integer::Integer;
|
||||
/// assert_eq!(7.lcm(&3), 21);
|
||||
/// assert_eq!(2.lcm(&4), 4);
|
||||
/// ~~~
|
||||
|
@ -87,7 +87,7 @@ pub trait Integer
|
|||
/// # Examples
|
||||
///
|
||||
/// ~~~
|
||||
/// # use num::Integer;
|
||||
/// # use num_integer::Integer;
|
||||
/// assert_eq!(9.is_multiple_of(&3), true);
|
||||
/// assert_eq!(3.is_multiple_of(&9), false);
|
||||
/// ~~~
|
||||
|
@ -98,7 +98,7 @@ pub trait Integer
|
|||
/// # Examples
|
||||
///
|
||||
/// ~~~
|
||||
/// # use num::Integer;
|
||||
/// # use num_integer::Integer;
|
||||
/// assert_eq!(3.is_even(), false);
|
||||
/// assert_eq!(4.is_even(), true);
|
||||
/// ~~~
|
||||
|
@ -109,7 +109,7 @@ pub trait Integer
|
|||
/// # Examples
|
||||
///
|
||||
/// ~~~
|
||||
/// # use num::Integer;
|
||||
/// # use num_integer::Integer;
|
||||
/// assert_eq!(3.is_odd(), true);
|
||||
/// assert_eq!(4.is_odd(), false);
|
||||
/// ~~~
|
||||
|
@ -121,7 +121,7 @@ pub trait Integer
|
|||
/// # Examples
|
||||
///
|
||||
/// ~~~
|
||||
/// # use num::Integer;
|
||||
/// # use num_integer::Integer;
|
||||
/// assert_eq!(( 8).div_rem( &3), ( 2, 2));
|
||||
/// assert_eq!(( 8).div_rem(&-3), (-2, 2));
|
||||
/// assert_eq!((-8).div_rem( &3), (-2, -2));
|
||||
|
@ -141,7 +141,7 @@ pub trait Integer
|
|||
/// # Examples
|
||||
///
|
||||
/// ~~~
|
||||
/// # use num::Integer;
|
||||
/// # use num_integer::Integer;
|
||||
/// assert_eq!(( 8).div_mod_floor( &3), ( 2, 2));
|
||||
/// assert_eq!(( 8).div_mod_floor(&-3), (-3, -1));
|
||||
/// assert_eq!((-8).div_mod_floor( &3), (-3, 1));
|
||||
|
@ -158,26 +158,44 @@ pub trait Integer
|
|||
}
|
||||
|
||||
/// Simultaneous integer division and modulus
|
||||
#[inline] pub fn div_rem<T: Integer>(x: T, y: T) -> (T, T) { x.div_rem(&y) }
|
||||
#[inline]
|
||||
pub fn div_rem<T: Integer>(x: T, y: T) -> (T, T) {
|
||||
x.div_rem(&y)
|
||||
}
|
||||
/// Floored integer division
|
||||
#[inline] pub fn div_floor<T: Integer>(x: T, y: T) -> T { x.div_floor(&y) }
|
||||
#[inline]
|
||||
pub fn div_floor<T: Integer>(x: T, y: T) -> T {
|
||||
x.div_floor(&y)
|
||||
}
|
||||
/// Floored integer modulus
|
||||
#[inline] pub fn mod_floor<T: Integer>(x: T, y: T) -> T { x.mod_floor(&y) }
|
||||
#[inline]
|
||||
pub fn mod_floor<T: Integer>(x: T, y: T) -> T {
|
||||
x.mod_floor(&y)
|
||||
}
|
||||
/// Simultaneous floored integer division and modulus
|
||||
#[inline] pub fn div_mod_floor<T: Integer>(x: T, y: T) -> (T, T) { x.div_mod_floor(&y) }
|
||||
#[inline]
|
||||
pub fn div_mod_floor<T: Integer>(x: T, y: T) -> (T, T) {
|
||||
x.div_mod_floor(&y)
|
||||
}
|
||||
|
||||
/// Calculates the Greatest Common Divisor (GCD) of the number and `other`. The
|
||||
/// result is always positive.
|
||||
#[inline(always)] pub fn gcd<T: Integer>(x: T, y: T) -> T { x.gcd(&y) }
|
||||
#[inline(always)]
|
||||
pub fn gcd<T: Integer>(x: T, y: T) -> T {
|
||||
x.gcd(&y)
|
||||
}
|
||||
/// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
|
||||
#[inline(always)] pub fn lcm<T: Integer>(x: T, y: T) -> T { x.lcm(&y) }
|
||||
#[inline(always)]
|
||||
pub fn lcm<T: Integer>(x: T, y: T) -> T {
|
||||
x.lcm(&y)
|
||||
}
|
||||
|
||||
macro_rules! impl_integer_for_isize {
|
||||
($T:ty, $test_mod:ident) => (
|
||||
impl Integer for $T {
|
||||
/// Floored integer division
|
||||
#[inline]
|
||||
fn div_floor(&self, other: &$T) -> $T {
|
||||
fn div_floor(&self, other: &Self) -> Self {
|
||||
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
|
||||
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
|
||||
match self.div_rem(other) {
|
||||
|
@ -189,7 +207,7 @@ macro_rules! impl_integer_for_isize {
|
|||
|
||||
/// Floored integer modulo
|
||||
#[inline]
|
||||
fn mod_floor(&self, other: &$T) -> $T {
|
||||
fn mod_floor(&self, other: &Self) -> Self {
|
||||
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
|
||||
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
|
||||
match *self % *other {
|
||||
|
@ -201,7 +219,7 @@ macro_rules! impl_integer_for_isize {
|
|||
|
||||
/// Calculates `div_floor` and `mod_floor` simultaneously
|
||||
#[inline]
|
||||
fn div_mod_floor(&self, other: &$T) -> ($T,$T) {
|
||||
fn div_mod_floor(&self, other: &Self) -> (Self, Self) {
|
||||
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
|
||||
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
|
||||
match self.div_rem(other) {
|
||||
|
@ -214,7 +232,7 @@ macro_rules! impl_integer_for_isize {
|
|||
/// Calculates the Greatest Common Divisor (GCD) of the number and
|
||||
/// `other`. The result is always positive.
|
||||
#[inline]
|
||||
fn gcd(&self, other: &$T) -> $T {
|
||||
fn gcd(&self, other: &Self) -> Self {
|
||||
// Use Stein's algorithm
|
||||
let mut m = *self;
|
||||
let mut n = *other;
|
||||
|
@ -231,7 +249,7 @@ macro_rules! impl_integer_for_isize {
|
|||
// Assuming two's complement, the number created by the shift
|
||||
// is positive for all numbers except gcd = abs(min value)
|
||||
// The call to .abs() causes a panic in debug mode
|
||||
if m == <$T>::min_value() || n == <$T>::min_value() {
|
||||
if m == Self::min_value() || n == Self::min_value() {
|
||||
return (1 << shift).abs()
|
||||
}
|
||||
|
||||
|
@ -255,18 +273,22 @@ macro_rules! impl_integer_for_isize {
|
|||
/// Calculates the Lowest Common Multiple (LCM) of the number and
|
||||
/// `other`.
|
||||
#[inline]
|
||||
fn lcm(&self, other: &$T) -> $T {
|
||||
fn lcm(&self, other: &Self) -> Self {
|
||||
// should not have to recalculate abs
|
||||
(*self * (*other / self.gcd(other))).abs()
|
||||
}
|
||||
|
||||
/// Deprecated, use `is_multiple_of` instead.
|
||||
#[inline]
|
||||
fn divides(&self, other: &$T) -> bool { return self.is_multiple_of(other); }
|
||||
fn divides(&self, other: &Self) -> bool {
|
||||
self.is_multiple_of(other)
|
||||
}
|
||||
|
||||
/// Returns `true` if the number is a multiple of `other`.
|
||||
#[inline]
|
||||
fn is_multiple_of(&self, other: &$T) -> bool { *self % *other == 0 }
|
||||
fn is_multiple_of(&self, other: &Self) -> bool {
|
||||
*self % *other == 0
|
||||
}
|
||||
|
||||
/// Returns `true` if the number is divisible by `2`
|
||||
#[inline]
|
||||
|
@ -278,7 +300,7 @@ macro_rules! impl_integer_for_isize {
|
|||
|
||||
/// Simultaneous truncated integer division and modulus.
|
||||
#[inline]
|
||||
fn div_rem(&self, other: &$T) -> ($T, $T) {
|
||||
fn div_rem(&self, other: &Self) -> (Self, Self) {
|
||||
(*self / *other, *self % *other)
|
||||
}
|
||||
}
|
||||
|
@ -293,7 +315,7 @@ macro_rules! impl_integer_for_isize {
|
|||
/// - `d`: denominator (divisor)
|
||||
/// - `qr`: quotient and remainder
|
||||
#[cfg(test)]
|
||||
fn test_division_rule((n,d): ($T,$T), (q,r): ($T,$T)) {
|
||||
fn test_division_rule((n,d): ($T, $T), (q,r): ($T, $T)) {
|
||||
assert_eq!(d * q + r, n);
|
||||
}
|
||||
|
||||
|
@ -473,15 +495,19 @@ macro_rules! impl_integer_for_usize {
|
|||
impl Integer for $T {
|
||||
/// Unsigned integer division. Returns the same result as `div` (`/`).
|
||||
#[inline]
|
||||
fn div_floor(&self, other: &$T) -> $T { *self / *other }
|
||||
fn div_floor(&self, other: &Self) -> Self {
|
||||
*self / *other
|
||||
}
|
||||
|
||||
/// Unsigned integer modulo operation. Returns the same result as `rem` (`%`).
|
||||
#[inline]
|
||||
fn mod_floor(&self, other: &$T) -> $T { *self % *other }
|
||||
fn mod_floor(&self, other: &Self) -> Self {
|
||||
*self % *other
|
||||
}
|
||||
|
||||
/// Calculates the Greatest Common Divisor (GCD) of the number and `other`
|
||||
#[inline]
|
||||
fn gcd(&self, other: &$T) -> $T {
|
||||
fn gcd(&self, other: &Self) -> Self {
|
||||
// Use Stein's algorithm
|
||||
let mut m = *self;
|
||||
let mut n = *other;
|
||||
|
@ -505,29 +531,37 @@ macro_rules! impl_integer_for_usize {
|
|||
|
||||
/// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
|
||||
#[inline]
|
||||
fn lcm(&self, other: &$T) -> $T {
|
||||
fn lcm(&self, other: &Self) -> Self {
|
||||
*self * (*other / self.gcd(other))
|
||||
}
|
||||
|
||||
/// Deprecated, use `is_multiple_of` instead.
|
||||
#[inline]
|
||||
fn divides(&self, other: &$T) -> bool { return self.is_multiple_of(other); }
|
||||
fn divides(&self, other: &Self) -> bool {
|
||||
self.is_multiple_of(other)
|
||||
}
|
||||
|
||||
/// Returns `true` if the number is a multiple of `other`.
|
||||
#[inline]
|
||||
fn is_multiple_of(&self, other: &$T) -> bool { *self % *other == 0 }
|
||||
fn is_multiple_of(&self, other: &Self) -> bool {
|
||||
*self % *other == 0
|
||||
}
|
||||
|
||||
/// Returns `true` if the number is divisible by `2`.
|
||||
#[inline]
|
||||
fn is_even(&self) -> bool { (*self) & 1 == 0 }
|
||||
fn is_even(&self) -> bool {
|
||||
*self % 2 == 0
|
||||
}
|
||||
|
||||
/// Returns `true` if the number is not divisible by `2`.
|
||||
#[inline]
|
||||
fn is_odd(&self) -> bool { !(*self).is_even() }
|
||||
fn is_odd(&self) -> bool {
|
||||
!self.is_even()
|
||||
}
|
||||
|
||||
/// Simultaneous truncated integer division and modulus.
|
||||
#[inline]
|
||||
fn div_rem(&self, other: &$T) -> ($T, $T) {
|
||||
fn div_rem(&self, other: &Self) -> (Self, Self) {
|
||||
(*self / *other, *self % *other)
|
||||
}
|
||||
}
|
|
@ -0,0 +1,20 @@
|
|||
[package]
|
||||
authors = ["The Rust Project Developers"]
|
||||
description = "External iterators for generic mathematics"
|
||||
documentation = "http://rust-num.github.io/num"
|
||||
homepage = "https://github.com/rust-num/num"
|
||||
keywords = ["mathematics", "numerics"]
|
||||
license = "MIT/Apache-2.0"
|
||||
repository = "https://github.com/rust-num/num"
|
||||
name = "num-iter"
|
||||
version = "0.1.0"
|
||||
|
||||
[dependencies]
|
||||
|
||||
[dependencies.num-integer]
|
||||
optional = false
|
||||
path = "../integer"
|
||||
|
||||
[dependencies.num-traits]
|
||||
optional = false
|
||||
path = "../traits"
|
|
@ -10,7 +10,11 @@
|
|||
|
||||
//! External iterators for generic mathematics
|
||||
|
||||
use {Integer, Zero, One, CheckedAdd, ToPrimitive};
|
||||
extern crate num_traits as traits;
|
||||
extern crate num_integer as integer;
|
||||
|
||||
use integer::Integer;
|
||||
use traits::{Zero, One, CheckedAdd, ToPrimitive};
|
||||
use std::ops::{Add, Sub};
|
||||
|
||||
/// An iterator over the range [start, stop)
|
||||
|
@ -27,11 +31,9 @@ pub struct Range<A> {
|
|||
/// # Example
|
||||
///
|
||||
/// ```rust
|
||||
/// use num::iter;
|
||||
///
|
||||
/// let array = [0, 1, 2, 3, 4];
|
||||
///
|
||||
/// for i in iter::range(0, 5) {
|
||||
/// for i in num_iter::range(0, 5) {
|
||||
/// println!("{}", i);
|
||||
/// assert_eq!(i, array[i]);
|
||||
/// }
|
||||
|
@ -261,7 +263,7 @@ mod tests {
|
|||
use std::usize;
|
||||
use std::ops::{Add, Mul};
|
||||
use std::cmp::Ordering;
|
||||
use {One, ToPrimitive};
|
||||
use traits::{One, ToPrimitive};
|
||||
|
||||
#[test]
|
||||
fn test_range() {
|
|
@ -7,9 +7,7 @@ homepage = "https://github.com/rust-num/num"
|
|||
repository = "https://github.com/rust-num/num"
|
||||
documentation = "http://rust-num.github.io/num"
|
||||
keywords = ["mathematics", "numerics"]
|
||||
description = """
|
||||
Numeric syntax extensions.
|
||||
"""
|
||||
description = "Numeric syntax extensions"
|
||||
|
||||
[lib]
|
||||
name = "num_macros"
|
|
@ -0,0 +1,34 @@
|
|||
[package]
|
||||
authors = ["The Rust Project Developers"]
|
||||
description = "Rational numbers implementation for Rust"
|
||||
documentation = "http://rust-num.github.io/num"
|
||||
homepage = "https://github.com/rust-num/num"
|
||||
keywords = ["mathematics", "numerics"]
|
||||
license = "MIT/Apache-2.0"
|
||||
name = "num-rational"
|
||||
repository = "https://github.com/rust-num/num"
|
||||
version = "0.1.0"
|
||||
|
||||
[dependencies]
|
||||
|
||||
[dependencies.num-bigint]
|
||||
optional = true
|
||||
path = "../bigint"
|
||||
|
||||
[dependencies.num-integer]
|
||||
path = "../integer"
|
||||
|
||||
[dependencies.num-traits]
|
||||
path = "../traits"
|
||||
|
||||
[dependencies.rustc-serialize]
|
||||
optional = true
|
||||
version = "0.3.19"
|
||||
|
||||
[dependencies.serde]
|
||||
optional = true
|
||||
version = "0.7.0"
|
||||
|
||||
[features]
|
||||
default = ["bigint", "rustc-serialize"]
|
||||
bigint = ["num-bigint"]
|
|
@ -10,21 +10,32 @@
|
|||
|
||||
//! Rational numbers
|
||||
|
||||
use Integer;
|
||||
#[cfg(feature = "rustc-serialize")]
|
||||
extern crate rustc_serialize;
|
||||
#[cfg(feature = "serde")]
|
||||
extern crate serde;
|
||||
#[cfg(feature = "num-bigint")]
|
||||
extern crate num_bigint as bigint;
|
||||
|
||||
extern crate num_traits as traits;
|
||||
extern crate num_integer as integer;
|
||||
|
||||
use std::cmp;
|
||||
use std::error::Error;
|
||||
use std::fmt;
|
||||
#[cfg(test)]
|
||||
use std::hash;
|
||||
use std::ops::{Add, Div, Mul, Neg, Rem, Sub};
|
||||
use std::str::FromStr;
|
||||
|
||||
#[cfg(feature = "serde")]
|
||||
use serde;
|
||||
|
||||
#[cfg(feature = "bigint")]
|
||||
#[cfg(feature = "num-bigint")]
|
||||
use bigint::{BigInt, BigUint, Sign};
|
||||
use traits::{FromPrimitive, Float, PrimInt};
|
||||
use {Num, Signed, Zero, One};
|
||||
|
||||
use integer::Integer;
|
||||
use traits::{FromPrimitive, Float, PrimInt, Num, Signed, Zero, One};
|
||||
|
||||
/// Represents the ratio between 2 numbers.
|
||||
#[derive(Copy, Clone, Hash, Debug)]
|
||||
|
@ -32,7 +43,7 @@ use {Num, Signed, Zero, One};
|
|||
#[allow(missing_docs)]
|
||||
pub struct Ratio<T> {
|
||||
numer: T,
|
||||
denom: T
|
||||
denom: T,
|
||||
}
|
||||
|
||||
/// Alias for a `Ratio` of machine-sized integers.
|
||||
|
@ -40,7 +51,7 @@ pub type Rational = Ratio<isize>;
|
|||
pub type Rational32 = Ratio<i32>;
|
||||
pub type Rational64 = Ratio<i64>;
|
||||
|
||||
#[cfg(feature = "bigint")]
|
||||
#[cfg(feature = "num-bigint")]
|
||||
/// Alias for arbitrary precision rationals.
|
||||
pub type BigRational = Ratio<BigInt>;
|
||||
|
||||
|
@ -54,7 +65,10 @@ impl<T: Clone + Integer> Ratio<T> {
|
|||
/// Creates a ratio without checking for `denom == 0` or reducing.
|
||||
#[inline]
|
||||
pub fn new_raw(numer: T, denom: T) -> Ratio<T> {
|
||||
Ratio { numer: numer, denom: denom }
|
||||
Ratio {
|
||||
numer: numer,
|
||||
denom: denom,
|
||||
}
|
||||
}
|
||||
|
||||
/// Create a new Ratio. Fails if `denom == 0`.
|
||||
|
@ -94,7 +108,7 @@ impl<T: Clone + Integer> Ratio<T> {
|
|||
|
||||
/// Put self into lowest terms, with denom > 0.
|
||||
fn reduce(&mut self) {
|
||||
let g : T = self.numer.gcd(&self.denom);
|
||||
let g: T = self.numer.gcd(&self.denom);
|
||||
|
||||
// FIXME(#5992): assignment operator overloads
|
||||
// self.numer /= g;
|
||||
|
@ -128,7 +142,8 @@ impl<T: Clone + Integer> Ratio<T> {
|
|||
pub fn floor(&self) -> Ratio<T> {
|
||||
if *self < Zero::zero() {
|
||||
let one: T = One::one();
|
||||
Ratio::from_integer((self.numer.clone() - self.denom.clone() + one) / self.denom.clone())
|
||||
Ratio::from_integer((self.numer.clone() - self.denom.clone() + one) /
|
||||
self.denom.clone())
|
||||
} else {
|
||||
Ratio::from_integer(self.numer.clone() / self.denom.clone())
|
||||
}
|
||||
|
@ -141,7 +156,8 @@ impl<T: Clone + Integer> Ratio<T> {
|
|||
Ratio::from_integer(self.numer.clone() / self.denom.clone())
|
||||
} else {
|
||||
let one: T = One::one();
|
||||
Ratio::from_integer((self.numer.clone() + self.denom.clone() - one) / self.denom.clone())
|
||||
Ratio::from_integer((self.numer.clone() + self.denom.clone() - one) /
|
||||
self.denom.clone())
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -154,7 +170,9 @@ impl<T: Clone + Integer> Ratio<T> {
|
|||
|
||||
// Find unsigned fractional part of rational number
|
||||
let mut fractional = self.fract();
|
||||
if fractional < zero { fractional = zero - fractional };
|
||||
if fractional < zero {
|
||||
fractional = zero - fractional
|
||||
};
|
||||
|
||||
// The algorithm compares the unsigned fractional part with 1/2, that
|
||||
// is, a/b >= 1/2, or a >= b/2. For odd denominators, we use
|
||||
|
@ -197,13 +215,14 @@ impl<T: Clone + Integer + PrimInt> Ratio<T> {
|
|||
match expon.cmp(&0) {
|
||||
cmp::Ordering::Equal => One::one(),
|
||||
cmp::Ordering::Less => self.recip().pow(-expon),
|
||||
cmp::Ordering::Greater => Ratio::new_raw(self.numer.pow(expon as u32),
|
||||
self.denom.pow(expon as u32)),
|
||||
cmp::Ordering::Greater => {
|
||||
Ratio::new_raw(self.numer.pow(expon as u32), self.denom.pow(expon as u32))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "bigint")]
|
||||
#[cfg(feature = "num-bigint")]
|
||||
impl Ratio<BigInt> {
|
||||
/// Converts a float into a rational number.
|
||||
pub fn from_float<T: Float>(f: T) -> Option<BigRational> {
|
||||
|
@ -211,7 +230,11 @@ impl Ratio<BigInt> {
|
|||
return None;
|
||||
}
|
||||
let (mantissa, exponent, sign) = f.integer_decode();
|
||||
let bigint_sign = if sign == 1 { Sign::Plus } else { Sign::Minus };
|
||||
let bigint_sign = if sign == 1 {
|
||||
Sign::Plus
|
||||
} else {
|
||||
Sign::Minus
|
||||
};
|
||||
if exponent < 0 {
|
||||
let one: BigInt = One::one();
|
||||
let denom: BigInt = one << ((-exponent) as usize);
|
||||
|
@ -225,7 +248,7 @@ impl Ratio<BigInt> {
|
|||
}
|
||||
}
|
||||
|
||||
/* Comparisons */
|
||||
// Comparisons
|
||||
|
||||
// Mathematically, comparing a/b and c/d is the same as comparing a*d and b*c, but it's very easy
|
||||
// for those multiplications to overflow fixed-size integers, so we need to take care.
|
||||
|
@ -236,13 +259,21 @@ impl<T: Clone + Integer> Ord for Ratio<T> {
|
|||
// With equal denominators, the numerators can be directly compared
|
||||
if self.denom == other.denom {
|
||||
let ord = self.numer.cmp(&other.numer);
|
||||
return if self.denom < T::zero() { ord.reverse() } else { ord };
|
||||
return if self.denom < T::zero() {
|
||||
ord.reverse()
|
||||
} else {
|
||||
ord
|
||||
};
|
||||
}
|
||||
|
||||
// With equal numerators, the denominators can be inversely compared
|
||||
if self.numer == other.numer {
|
||||
let ord = self.denom.cmp(&other.denom);
|
||||
return if self.numer < T::zero() { ord } else { ord.reverse() };
|
||||
return if self.numer < T::zero() {
|
||||
ord
|
||||
} else {
|
||||
ord.reverse()
|
||||
};
|
||||
}
|
||||
|
||||
// Unfortunately, we don't have CheckedMul to try. That could sometimes avoid all the
|
||||
|
@ -267,7 +298,7 @@ impl<T: Clone + Integer> Ord for Ratio<T> {
|
|||
self_recip.cmp(&other_recip).reverse()
|
||||
}
|
||||
}
|
||||
},
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -340,17 +371,17 @@ macro_rules! forward_all_binop {
|
|||
};
|
||||
}
|
||||
|
||||
/* Arithmetic */
|
||||
// Arithmetic
|
||||
forward_all_binop!(impl Mul, mul);
|
||||
// a/b * c/d = (a*c)/(b*d)
|
||||
impl<'a, 'b, T> Mul<&'b Ratio<T>> for &'a Ratio<T>
|
||||
where T: Clone + Integer
|
||||
{
|
||||
|
||||
type Output = Ratio<T>;
|
||||
#[inline]
|
||||
fn mul(self, rhs: &Ratio<T>) -> Ratio<T> {
|
||||
Ratio::new(self.numer.clone() * rhs.numer.clone(), self.denom.clone() * rhs.denom.clone())
|
||||
Ratio::new(self.numer.clone() * rhs.numer.clone(),
|
||||
self.denom.clone() * rhs.denom.clone())
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -363,7 +394,8 @@ impl<'a, 'b, T> Div<&'b Ratio<T>> for &'a Ratio<T>
|
|||
|
||||
#[inline]
|
||||
fn div(self, rhs: &Ratio<T>) -> Ratio<T> {
|
||||
Ratio::new(self.numer.clone() * rhs.denom.clone(), self.denom.clone() * rhs.numer.clone())
|
||||
Ratio::new(self.numer.clone() * rhs.denom.clone(),
|
||||
self.denom.clone() * rhs.numer.clone())
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -414,9 +446,8 @@ impl<'a, T> Neg for &'a Ratio<T>
|
|||
}
|
||||
}
|
||||
|
||||
/* Constants */
|
||||
impl<T: Clone + Integer>
|
||||
Zero for Ratio<T> {
|
||||
// Constants
|
||||
impl<T: Clone + Integer> Zero for Ratio<T> {
|
||||
#[inline]
|
||||
fn zero() -> Ratio<T> {
|
||||
Ratio::new_raw(Zero::zero(), One::one())
|
||||
|
@ -428,8 +459,7 @@ impl<T: Clone + Integer>
|
|||
}
|
||||
}
|
||||
|
||||
impl<T: Clone + Integer>
|
||||
One for Ratio<T> {
|
||||
impl<T: Clone + Integer> One for Ratio<T> {
|
||||
#[inline]
|
||||
fn one() -> Ratio<T> {
|
||||
Ratio::new_raw(One::one(), One::one())
|
||||
|
@ -443,19 +473,21 @@ impl<T: Clone + Integer> Num for Ratio<T> {
|
|||
fn from_str_radix(s: &str, radix: u32) -> Result<Ratio<T>, ParseRatioError> {
|
||||
let split: Vec<&str> = s.splitn(2, '/').collect();
|
||||
if split.len() < 2 {
|
||||
Err(ParseRatioError{kind: RatioErrorKind::ParseError})
|
||||
Err(ParseRatioError { kind: RatioErrorKind::ParseError })
|
||||
} else {
|
||||
let a_result: Result<T, _> = T::from_str_radix(
|
||||
split[0],
|
||||
radix).map_err(|_| ParseRatioError{kind: RatioErrorKind::ParseError});
|
||||
let a_result: Result<T, _> = T::from_str_radix(split[0], radix).map_err(|_| {
|
||||
ParseRatioError { kind: RatioErrorKind::ParseError }
|
||||
});
|
||||
a_result.and_then(|a| {
|
||||
let b_result: Result<T, _> =
|
||||
T::from_str_radix(split[1], radix).map_err(
|
||||
|_| ParseRatioError{kind: RatioErrorKind::ParseError});
|
||||
b_result.and_then(|b| if b.is_zero() {
|
||||
Err(ParseRatioError{kind: RatioErrorKind::ZeroDenominator})
|
||||
let b_result: Result<T, _> = T::from_str_radix(split[1], radix).map_err(|_| {
|
||||
ParseRatioError { kind: RatioErrorKind::ParseError }
|
||||
});
|
||||
b_result.and_then(|b| {
|
||||
if b.is_zero() {
|
||||
Err(ParseRatioError { kind: RatioErrorKind::ZeroDenominator })
|
||||
} else {
|
||||
Ok(Ratio::new(a.clone(), b.clone()))
|
||||
}
|
||||
})
|
||||
})
|
||||
}
|
||||
|
@ -465,12 +497,20 @@ impl<T: Clone + Integer> Num for Ratio<T> {
|
|||
impl<T: Clone + Integer + Signed> Signed for Ratio<T> {
|
||||
#[inline]
|
||||
fn abs(&self) -> Ratio<T> {
|
||||
if self.is_negative() { -self.clone() } else { self.clone() }
|
||||
if self.is_negative() {
|
||||
-self.clone()
|
||||
} else {
|
||||
self.clone()
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn abs_sub(&self, other: &Ratio<T>) -> Ratio<T> {
|
||||
if *self <= *other { Zero::zero() } else { self - other }
|
||||
if *self <= *other {
|
||||
Zero::zero()
|
||||
} else {
|
||||
self - other
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
|
@ -480,12 +520,14 @@ impl<T: Clone + Integer + Signed> Signed for Ratio<T> {
|
|||
} else if self.is_zero() {
|
||||
Self::zero()
|
||||
} else {
|
||||
- Self::one()
|
||||
-Self::one()
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn is_positive(&self) -> bool { !self.is_negative() }
|
||||
fn is_positive(&self) -> bool {
|
||||
!self.is_negative()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn is_negative(&self) -> bool {
|
||||
|
@ -493,9 +535,9 @@ impl<T: Clone + Integer + Signed> Signed for Ratio<T> {
|
|||
}
|
||||
}
|
||||
|
||||
/* String conversions */
|
||||
impl<T> fmt::Display for Ratio<T> where
|
||||
T: fmt::Display + Eq + One
|
||||
// String conversions
|
||||
impl<T> fmt::Display for Ratio<T>
|
||||
where T: fmt::Display + Eq + One
|
||||
{
|
||||
/// Renders as `numer/denom`. If denom=1, renders as numer.
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
|
@ -514,17 +556,16 @@ impl<T: FromStr + Clone + Integer> FromStr for Ratio<T> {
|
|||
fn from_str(s: &str) -> Result<Ratio<T>, ParseRatioError> {
|
||||
let mut split = s.splitn(2, '/');
|
||||
|
||||
let n = try!(split.next().ok_or(
|
||||
ParseRatioError{kind: RatioErrorKind::ParseError}));
|
||||
let num = try!(FromStr::from_str(n).map_err(
|
||||
|_| ParseRatioError{kind: RatioErrorKind::ParseError}));
|
||||
let n = try!(split.next().ok_or(ParseRatioError { kind: RatioErrorKind::ParseError }));
|
||||
let num = try!(FromStr::from_str(n)
|
||||
.map_err(|_| ParseRatioError { kind: RatioErrorKind::ParseError }));
|
||||
|
||||
let d = split.next().unwrap_or("1");
|
||||
let den = try!(FromStr::from_str(d).map_err(
|
||||
|_| ParseRatioError{kind: RatioErrorKind::ParseError}));
|
||||
let den = try!(FromStr::from_str(d)
|
||||
.map_err(|_| ParseRatioError { kind: RatioErrorKind::ParseError }));
|
||||
|
||||
if Zero::is_zero(&den) {
|
||||
Err(ParseRatioError{kind: RatioErrorKind::ZeroDenominator})
|
||||
Err(ParseRatioError { kind: RatioErrorKind::ZeroDenominator })
|
||||
} else {
|
||||
Ok(Ratio::new(num, den))
|
||||
}
|
||||
|
@ -535,8 +576,8 @@ impl<T: FromStr + Clone + Integer> FromStr for Ratio<T> {
|
|||
impl<T> serde::Serialize for Ratio<T>
|
||||
where T: serde::Serialize + Clone + Integer + PartialOrd
|
||||
{
|
||||
fn serialize<S>(&self, serializer: &mut S) -> Result<(), S::Error> where
|
||||
S: serde::Serializer
|
||||
fn serialize<S>(&self, serializer: &mut S) -> Result<(), S::Error>
|
||||
where S: serde::Serializer
|
||||
{
|
||||
(self.numer(), self.denom()).serialize(serializer)
|
||||
}
|
||||
|
@ -546,8 +587,8 @@ impl<T> serde::Serialize for Ratio<T>
|
|||
impl<T> serde::Deserialize for Ratio<T>
|
||||
where T: serde::Deserialize + Clone + Integer + PartialOrd
|
||||
{
|
||||
fn deserialize<D>(deserializer: &mut D) -> Result<Self, D::Error> where
|
||||
D: serde::Deserializer,
|
||||
fn deserialize<D>(deserializer: &mut D) -> Result<Self, D::Error>
|
||||
where D: serde::Deserializer
|
||||
{
|
||||
let (numer, denom) = try!(serde::Deserialize::deserialize(deserializer));
|
||||
if denom == Zero::zero() {
|
||||
|
@ -560,7 +601,9 @@ impl<T> serde::Deserialize for Ratio<T>
|
|||
|
||||
// FIXME: Bubble up specific errors
|
||||
#[derive(Copy, Clone, Debug, PartialEq)]
|
||||
pub struct ParseRatioError { kind: RatioErrorKind }
|
||||
pub struct ParseRatioError {
|
||||
kind: RatioErrorKind,
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Debug, PartialEq)]
|
||||
enum RatioErrorKind {
|
||||
|
@ -575,7 +618,9 @@ impl fmt::Display for ParseRatioError {
|
|||
}
|
||||
|
||||
impl Error for ParseRatioError {
|
||||
fn description(&self) -> &str { self.kind.description() }
|
||||
fn description(&self) -> &str {
|
||||
self.kind.description()
|
||||
}
|
||||
}
|
||||
|
||||
impl RatioErrorKind {
|
||||
|
@ -588,39 +633,73 @@ impl RatioErrorKind {
|
|||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
fn hash<T: hash::Hash>(x: &T) -> u64 {
|
||||
use std::hash::Hasher;
|
||||
let mut hasher = hash::SipHasher::new();
|
||||
x.hash(&mut hasher);
|
||||
hasher.finish()
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use super::{Ratio, Rational};
|
||||
#[cfg(feature = "bigint")]
|
||||
#[cfg(feature = "num-bigint")]
|
||||
use super::BigRational;
|
||||
|
||||
use std::str::FromStr;
|
||||
use std::i32;
|
||||
use {Zero, One, Signed, FromPrimitive, Float};
|
||||
use traits::{Zero, One, Signed, FromPrimitive, Float};
|
||||
|
||||
pub const _0 : Rational = Ratio { numer: 0, denom: 1};
|
||||
pub const _1 : Rational = Ratio { numer: 1, denom: 1};
|
||||
pub const _2: Rational = Ratio { numer: 2, denom: 1};
|
||||
pub const _1_2: Rational = Ratio { numer: 1, denom: 2};
|
||||
pub const _3_2: Rational = Ratio { numer: 3, denom: 2};
|
||||
pub const _NEG1_2: Rational = Ratio { numer: -1, denom: 2};
|
||||
pub const _1_3: Rational = Ratio { numer: 1, denom: 3};
|
||||
pub const _NEG1_3: Rational = Ratio { numer: -1, denom: 3};
|
||||
pub const _2_3: Rational = Ratio { numer: 2, denom: 3};
|
||||
pub const _NEG2_3: Rational = Ratio { numer: -2, denom: 3};
|
||||
pub const _0: Rational = Ratio {
|
||||
numer: 0,
|
||||
denom: 1,
|
||||
};
|
||||
pub const _1: Rational = Ratio {
|
||||
numer: 1,
|
||||
denom: 1,
|
||||
};
|
||||
pub const _2: Rational = Ratio {
|
||||
numer: 2,
|
||||
denom: 1,
|
||||
};
|
||||
pub const _1_2: Rational = Ratio {
|
||||
numer: 1,
|
||||
denom: 2,
|
||||
};
|
||||
pub const _3_2: Rational = Ratio {
|
||||
numer: 3,
|
||||
denom: 2,
|
||||
};
|
||||
pub const _NEG1_2: Rational = Ratio {
|
||||
numer: -1,
|
||||
denom: 2,
|
||||
};
|
||||
pub const _1_3: Rational = Ratio {
|
||||
numer: 1,
|
||||
denom: 3,
|
||||
};
|
||||
pub const _NEG1_3: Rational = Ratio {
|
||||
numer: -1,
|
||||
denom: 3,
|
||||
};
|
||||
pub const _2_3: Rational = Ratio {
|
||||
numer: 2,
|
||||
denom: 3,
|
||||
};
|
||||
pub const _NEG2_3: Rational = Ratio {
|
||||
numer: -2,
|
||||
denom: 3,
|
||||
};
|
||||
|
||||
#[cfg(feature = "bigint")]
|
||||
#[cfg(feature = "num-bigint")]
|
||||
pub fn to_big(n: Rational) -> BigRational {
|
||||
Ratio::new(
|
||||
FromPrimitive::from_isize(n.numer).unwrap(),
|
||||
FromPrimitive::from_isize(n.denom).unwrap()
|
||||
)
|
||||
Ratio::new(FromPrimitive::from_isize(n.numer).unwrap(),
|
||||
FromPrimitive::from_isize(n.denom).unwrap())
|
||||
}
|
||||
#[cfg(not(feature = "bigint"))]
|
||||
#[cfg(not(feature = "num-bigint"))]
|
||||
pub fn to_big(n: Rational) -> Rational {
|
||||
Ratio::new(
|
||||
FromPrimitive::from_isize(n.numer).unwrap(),
|
||||
FromPrimitive::from_isize(n.denom).unwrap()
|
||||
)
|
||||
Ratio::new(FromPrimitive::from_isize(n.numer).unwrap(),
|
||||
FromPrimitive::from_isize(n.denom).unwrap())
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
@ -629,21 +708,21 @@ mod test {
|
|||
assert_eq!(_0, Zero::zero());
|
||||
assert_eq!(_1, One::one());
|
||||
assert_eq!(_2, Ratio::from_integer(2));
|
||||
assert_eq!(_1_2, Ratio::new(1,2));
|
||||
assert_eq!(_3_2, Ratio::new(3,2));
|
||||
assert_eq!(_NEG1_2, Ratio::new(-1,2));
|
||||
assert_eq!(_1_2, Ratio::new(1, 2));
|
||||
assert_eq!(_3_2, Ratio::new(3, 2));
|
||||
assert_eq!(_NEG1_2, Ratio::new(-1, 2));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_new_reduce() {
|
||||
let one22 = Ratio::new(2,2);
|
||||
let one22 = Ratio::new(2, 2);
|
||||
|
||||
assert_eq!(one22, One::one());
|
||||
}
|
||||
#[test]
|
||||
#[should_panic]
|
||||
fn test_new_zero() {
|
||||
let _a = Ratio::new(1,0);
|
||||
let _a = Ratio::new(1, 0);
|
||||
}
|
||||
|
||||
|
||||
|
@ -690,7 +769,7 @@ mod test {
|
|||
for (i, &a) in ratios.iter().enumerate() {
|
||||
check_cmp(a, a, Ordering::Equal);
|
||||
check_cmp(-a, a, Ordering::Less);
|
||||
for &b in &ratios[i+1..] {
|
||||
for &b in &ratios[i + 1..] {
|
||||
check_cmp(a, b, Ordering::Less);
|
||||
check_cmp(-a, -b, Ordering::Greater);
|
||||
check_cmp(a.recip(), b.recip(), Ordering::Greater);
|
||||
|
@ -785,7 +864,7 @@ mod test {
|
|||
}
|
||||
|
||||
test(_1, _1_2, _1_2);
|
||||
test(_1_2, _3_2, Ratio::new(3,4));
|
||||
test(_1_2, _3_2, Ratio::new(3, 4));
|
||||
test(_1_2, _NEG1_2, Ratio::new(-1, 4));
|
||||
}
|
||||
|
||||
|
@ -879,13 +958,13 @@ mod test {
|
|||
// Overflow checks
|
||||
|
||||
let _neg1 = Ratio::from_integer(-1);
|
||||
let _large_rat1 = Ratio::new(i32::MAX, i32::MAX-1);
|
||||
let _large_rat2 = Ratio::new(i32::MAX-1, i32::MAX);
|
||||
let _large_rat3 = Ratio::new(i32::MIN+2, i32::MIN+1);
|
||||
let _large_rat4 = Ratio::new(i32::MIN+1, i32::MIN+2);
|
||||
let _large_rat5 = Ratio::new(i32::MIN+2, i32::MAX);
|
||||
let _large_rat6 = Ratio::new(i32::MAX, i32::MIN+2);
|
||||
let _large_rat7 = Ratio::new(1, i32::MIN+1);
|
||||
let _large_rat1 = Ratio::new(i32::MAX, i32::MAX - 1);
|
||||
let _large_rat2 = Ratio::new(i32::MAX - 1, i32::MAX);
|
||||
let _large_rat3 = Ratio::new(i32::MIN + 2, i32::MIN + 1);
|
||||
let _large_rat4 = Ratio::new(i32::MIN + 1, i32::MIN + 2);
|
||||
let _large_rat5 = Ratio::new(i32::MIN + 2, i32::MAX);
|
||||
let _large_rat6 = Ratio::new(i32::MAX, i32::MIN + 2);
|
||||
let _large_rat7 = Ratio::new(1, i32::MIN + 1);
|
||||
let _large_rat8 = Ratio::new(1, i32::MAX);
|
||||
|
||||
assert_eq!(_large_rat1.round(), One::one());
|
||||
|
@ -947,19 +1026,19 @@ mod test {
|
|||
assert!(rational.is_err());
|
||||
}
|
||||
|
||||
let xs = ["0 /1", "abc", "", "1/", "--1/2","3/2/1", "1/0"];
|
||||
let xs = ["0 /1", "abc", "", "1/", "--1/2", "3/2/1", "1/0"];
|
||||
for &s in xs.iter() {
|
||||
test(s);
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "bigint")]
|
||||
#[cfg(feature = "num-bigint")]
|
||||
#[test]
|
||||
fn test_from_float() {
|
||||
fn test<T: Float>(given: T, (numer, denom): (&str, &str)) {
|
||||
let ratio: BigRational = Ratio::from_float(given).unwrap();
|
||||
assert_eq!(ratio, Ratio::new(
|
||||
FromStr::from_str(numer).unwrap(),
|
||||
assert_eq!(ratio,
|
||||
Ratio::new(FromStr::from_str(numer).unwrap(),
|
||||
FromStr::from_str(denom).unwrap()));
|
||||
}
|
||||
|
||||
|
@ -967,7 +1046,8 @@ mod test {
|
|||
test(3.14159265359f32, ("13176795", "4194304"));
|
||||
test(2f32.powf(100.), ("1267650600228229401496703205376", "1"));
|
||||
test(-2f32.powf(100.), ("-1267650600228229401496703205376", "1"));
|
||||
test(1.0 / 2f32.powf(100.), ("1", "1267650600228229401496703205376"));
|
||||
test(1.0 / 2f32.powf(100.),
|
||||
("1", "1267650600228229401496703205376"));
|
||||
test(684729.48391f32, ("1369459", "2"));
|
||||
test(-8573.5918555f32, ("-4389679", "512"));
|
||||
|
||||
|
@ -977,10 +1057,11 @@ mod test {
|
|||
test(-2f64.powf(100.), ("-1267650600228229401496703205376", "1"));
|
||||
test(684729.48391f64, ("367611342500051", "536870912"));
|
||||
test(-8573.5918555f64, ("-4713381968463931", "549755813888"));
|
||||
test(1.0 / 2f64.powf(100.), ("1", "1267650600228229401496703205376"));
|
||||
test(1.0 / 2f64.powf(100.),
|
||||
("1", "1267650600228229401496703205376"));
|
||||
}
|
||||
|
||||
#[cfg(feature = "bigint")]
|
||||
#[cfg(feature = "num-bigint")]
|
||||
#[test]
|
||||
fn test_from_float_fail() {
|
||||
use std::{f32, f64};
|
||||
|
@ -999,10 +1080,10 @@ mod test {
|
|||
assert_eq!(_3_2.abs_sub(&_1_2), _1);
|
||||
assert_eq!(_1_2.abs_sub(&_3_2), Zero::zero());
|
||||
assert_eq!(_1_2.signum(), One::one());
|
||||
assert_eq!(_NEG1_2.signum(), - ::one::<Ratio<isize>>());
|
||||
assert_eq!(_NEG1_2.signum(), -<Ratio<isize>>::one());
|
||||
assert!(_NEG1_2.is_negative());
|
||||
assert!(! _NEG1_2.is_positive());
|
||||
assert!(! _1_2.is_negative());
|
||||
assert!(!_NEG1_2.is_positive());
|
||||
assert!(!_1_2.is_negative());
|
||||
}
|
||||
|
||||
#[test]
|
69
src/lib.rs
69
src/lib.rs
|
@ -57,44 +57,41 @@
|
|||
html_root_url = "http://rust-num.github.io/num/",
|
||||
html_playground_url = "http://play.rust-lang.org/")]
|
||||
|
||||
#[cfg(feature = "rustc-serialize")]
|
||||
extern crate rustc_serialize;
|
||||
pub extern crate num_traits;
|
||||
pub extern crate num_integer;
|
||||
pub extern crate num_iter;
|
||||
#[cfg(feature = "num-complex")]
|
||||
pub extern crate num_complex;
|
||||
#[cfg(feature = "num-bigint")]
|
||||
pub extern crate num_bigint;
|
||||
#[cfg(feature = "num-rational")]
|
||||
pub extern crate num_rational;
|
||||
|
||||
// Some of the tests of non-RNG-based functionality are randomized using the
|
||||
// RNG-based functionality, so the RNG-based functionality needs to be enabled
|
||||
// for tests.
|
||||
#[cfg(any(feature = "rand", all(feature = "bigint", test)))]
|
||||
extern crate rand;
|
||||
|
||||
#[cfg(feature = "serde")]
|
||||
extern crate serde;
|
||||
|
||||
#[cfg(feature = "bigint")]
|
||||
pub use bigint::{BigInt, BigUint};
|
||||
#[cfg(feature = "rational")]
|
||||
pub use rational::Rational;
|
||||
#[cfg(all(feature = "rational", feature="bigint"))]
|
||||
pub use rational::BigRational;
|
||||
#[cfg(feature = "complex")]
|
||||
pub use complex::Complex;
|
||||
pub use integer::Integer;
|
||||
pub use iter::{range, range_inclusive, range_step, range_step_inclusive};
|
||||
pub use traits::{Num, Zero, One, Signed, Unsigned, Bounded,
|
||||
#[cfg(feature = "num-bigint")]
|
||||
pub use num_bigint::{BigInt, BigUint};
|
||||
#[cfg(feature = "num-rational")]
|
||||
pub use num_rational::Rational;
|
||||
#[cfg(all(feature = "num-rational", feature="num-bigint"))]
|
||||
pub use num_rational::BigRational;
|
||||
#[cfg(feature = "num-complex")]
|
||||
pub use num_complex::Complex;
|
||||
pub use num_integer::Integer;
|
||||
pub use num_iter::{range, range_inclusive, range_step, range_step_inclusive};
|
||||
pub use num_traits::{Num, Zero, One, Signed, Unsigned, Bounded,
|
||||
Saturating, CheckedAdd, CheckedSub, CheckedMul, CheckedDiv,
|
||||
PrimInt, Float, ToPrimitive, FromPrimitive, NumCast, cast};
|
||||
|
||||
#[cfg(test)] use std::hash;
|
||||
|
||||
use std::ops::{Mul};
|
||||
|
||||
#[cfg(feature = "bigint")]
|
||||
pub mod bigint;
|
||||
pub mod complex;
|
||||
pub mod integer;
|
||||
pub mod iter;
|
||||
pub mod traits;
|
||||
#[cfg(feature = "rational")]
|
||||
pub mod rational;
|
||||
#[cfg(feature = "num-bigint")]
|
||||
pub use num_bigint as bigint;
|
||||
#[cfg(feature = "num-complex")]
|
||||
pub use num_complex as complex;
|
||||
pub use num_integer as integer;
|
||||
pub use num_iter as iter;
|
||||
pub use num_traits as traits;
|
||||
#[cfg(feature = "num-rational")]
|
||||
pub use num_rational as rational;
|
||||
|
||||
/// Returns the additive identity, `0`.
|
||||
#[inline(always)] pub fn zero<T: Zero>() -> T { Zero::zero() }
|
||||
|
@ -206,11 +203,3 @@ pub fn checked_pow<T: Clone + One + CheckedMul>(mut base: T, mut exp: usize) ->
|
|||
}
|
||||
Some(acc)
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
fn hash<T: hash::Hash>(x: &T) -> u64 {
|
||||
use std::hash::Hasher;
|
||||
let mut hasher = hash::SipHasher::new();
|
||||
x.hash(&mut hasher);
|
||||
hasher.finish()
|
||||
}
|
||||
|
|
2552
src/traits.rs
2552
src/traits.rs
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,12 @@
|
|||
[package]
|
||||
authors = ["The Rust Project Developers"]
|
||||
description = "Numeric traits for generic mathematics"
|
||||
documentation = "http://rust-num.github.io/num"
|
||||
homepage = "https://github.com/rust-num/num"
|
||||
keywords = ["mathematics", "numerics"]
|
||||
license = "MIT/Apache-2.0"
|
||||
repository = "https://github.com/rust-num/num"
|
||||
name = "num-traits"
|
||||
version = "0.1.0"
|
||||
|
||||
[dependencies]
|
|
@ -0,0 +1,69 @@
|
|||
use std::{usize, u8, u16, u32, u64};
|
||||
use std::{isize, i8, i16, i32, i64};
|
||||
use std::{f32, f64};
|
||||
|
||||
/// Numbers which have upper and lower bounds
|
||||
pub trait Bounded {
|
||||
// FIXME (#5527): These should be associated constants
|
||||
/// returns the smallest finite number this type can represent
|
||||
fn min_value() -> Self;
|
||||
/// returns the largest finite number this type can represent
|
||||
fn max_value() -> Self;
|
||||
}
|
||||
|
||||
macro_rules! bounded_impl {
|
||||
($t:ty, $min:expr, $max:expr) => {
|
||||
impl Bounded for $t {
|
||||
#[inline]
|
||||
fn min_value() -> $t { $min }
|
||||
|
||||
#[inline]
|
||||
fn max_value() -> $t { $max }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bounded_impl!(usize, usize::MIN, usize::MAX);
|
||||
bounded_impl!(u8, u8::MIN, u8::MAX);
|
||||
bounded_impl!(u16, u16::MIN, u16::MAX);
|
||||
bounded_impl!(u32, u32::MIN, u32::MAX);
|
||||
bounded_impl!(u64, u64::MIN, u64::MAX);
|
||||
|
||||
bounded_impl!(isize, isize::MIN, isize::MAX);
|
||||
bounded_impl!(i8, i8::MIN, i8::MAX);
|
||||
bounded_impl!(i16, i16::MIN, i16::MAX);
|
||||
bounded_impl!(i32, i32::MIN, i32::MAX);
|
||||
bounded_impl!(i64, i64::MIN, i64::MAX);
|
||||
|
||||
bounded_impl!(f32, f32::MIN, f32::MAX);
|
||||
|
||||
macro_rules! for_each_tuple_ {
|
||||
( $m:ident !! ) => (
|
||||
$m! { }
|
||||
);
|
||||
( $m:ident !! $h:ident, $($t:ident,)* ) => (
|
||||
$m! { $h $($t)* }
|
||||
for_each_tuple_! { $m !! $($t,)* }
|
||||
);
|
||||
}
|
||||
macro_rules! for_each_tuple {
|
||||
( $m:ident ) => (
|
||||
for_each_tuple_! { $m !! A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, }
|
||||
);
|
||||
}
|
||||
|
||||
macro_rules! bounded_tuple {
|
||||
( $($name:ident)* ) => (
|
||||
impl<$($name: Bounded,)*> Bounded for ($($name,)*) {
|
||||
fn min_value() -> Self {
|
||||
($($name::min_value(),)*)
|
||||
}
|
||||
fn max_value() -> Self {
|
||||
($($name::max_value(),)*)
|
||||
}
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
for_each_tuple!(bounded_tuple);
|
||||
bounded_impl!(f64, f64::MIN, f64::MAX);
|
|
@ -0,0 +1,433 @@
|
|||
use std::mem::size_of;
|
||||
|
||||
use identities::Zero;
|
||||
use bounds::Bounded;
|
||||
|
||||
/// A generic trait for converting a value to a number.
|
||||
pub trait ToPrimitive {
|
||||
/// Converts the value of `self` to an `isize`.
|
||||
#[inline]
|
||||
fn to_isize(&self) -> Option<isize> {
|
||||
self.to_i64().and_then(|x| x.to_isize())
|
||||
}
|
||||
|
||||
/// Converts the value of `self` to an `i8`.
|
||||
#[inline]
|
||||
fn to_i8(&self) -> Option<i8> {
|
||||
self.to_i64().and_then(|x| x.to_i8())
|
||||
}
|
||||
|
||||
/// Converts the value of `self` to an `i16`.
|
||||
#[inline]
|
||||
fn to_i16(&self) -> Option<i16> {
|
||||
self.to_i64().and_then(|x| x.to_i16())
|
||||
}
|
||||
|
||||
/// Converts the value of `self` to an `i32`.
|
||||
#[inline]
|
||||
fn to_i32(&self) -> Option<i32> {
|
||||
self.to_i64().and_then(|x| x.to_i32())
|
||||
}
|
||||
|
||||
/// Converts the value of `self` to an `i64`.
|
||||
fn to_i64(&self) -> Option<i64>;
|
||||
|
||||
/// Converts the value of `self` to a `usize`.
|
||||
#[inline]
|
||||
fn to_usize(&self) -> Option<usize> {
|
||||
self.to_u64().and_then(|x| x.to_usize())
|
||||
}
|
||||
|
||||
/// Converts the value of `self` to an `u8`.
|
||||
#[inline]
|
||||
fn to_u8(&self) -> Option<u8> {
|
||||
self.to_u64().and_then(|x| x.to_u8())
|
||||
}
|
||||
|
||||
/// Converts the value of `self` to an `u16`.
|
||||
#[inline]
|
||||
fn to_u16(&self) -> Option<u16> {
|
||||
self.to_u64().and_then(|x| x.to_u16())
|
||||
}
|
||||
|
||||
/// Converts the value of `self` to an `u32`.
|
||||
#[inline]
|
||||
fn to_u32(&self) -> Option<u32> {
|
||||
self.to_u64().and_then(|x| x.to_u32())
|
||||
}
|
||||
|
||||
/// Converts the value of `self` to an `u64`.
|
||||
#[inline]
|
||||
fn to_u64(&self) -> Option<u64>;
|
||||
|
||||
/// Converts the value of `self` to an `f32`.
|
||||
#[inline]
|
||||
fn to_f32(&self) -> Option<f32> {
|
||||
self.to_f64().and_then(|x| x.to_f32())
|
||||
}
|
||||
|
||||
/// Converts the value of `self` to an `f64`.
|
||||
#[inline]
|
||||
fn to_f64(&self) -> Option<f64> {
|
||||
self.to_i64().and_then(|x| x.to_f64())
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! impl_to_primitive_int_to_int {
|
||||
($SrcT:ty, $DstT:ty, $slf:expr) => (
|
||||
{
|
||||
if size_of::<$SrcT>() <= size_of::<$DstT>() {
|
||||
Some($slf as $DstT)
|
||||
} else {
|
||||
let n = $slf as i64;
|
||||
let min_value: $DstT = Bounded::min_value();
|
||||
let max_value: $DstT = Bounded::max_value();
|
||||
if min_value as i64 <= n && n <= max_value as i64 {
|
||||
Some($slf as $DstT)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
}
|
||||
|
||||
macro_rules! impl_to_primitive_int_to_uint {
|
||||
($SrcT:ty, $DstT:ty, $slf:expr) => (
|
||||
{
|
||||
let zero: $SrcT = Zero::zero();
|
||||
let max_value: $DstT = Bounded::max_value();
|
||||
if zero <= $slf && $slf as u64 <= max_value as u64 {
|
||||
Some($slf as $DstT)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
)
|
||||
}
|
||||
|
||||
macro_rules! impl_to_primitive_int {
|
||||
($T:ty) => (
|
||||
impl ToPrimitive for $T {
|
||||
#[inline]
|
||||
fn to_isize(&self) -> Option<isize> { impl_to_primitive_int_to_int!($T, isize, *self) }
|
||||
#[inline]
|
||||
fn to_i8(&self) -> Option<i8> { impl_to_primitive_int_to_int!($T, i8, *self) }
|
||||
#[inline]
|
||||
fn to_i16(&self) -> Option<i16> { impl_to_primitive_int_to_int!($T, i16, *self) }
|
||||
#[inline]
|
||||
fn to_i32(&self) -> Option<i32> { impl_to_primitive_int_to_int!($T, i32, *self) }
|
||||
#[inline]
|
||||
fn to_i64(&self) -> Option<i64> { impl_to_primitive_int_to_int!($T, i64, *self) }
|
||||
|
||||
#[inline]
|
||||
fn to_usize(&self) -> Option<usize> { impl_to_primitive_int_to_uint!($T, usize, *self) }
|
||||
#[inline]
|
||||
fn to_u8(&self) -> Option<u8> { impl_to_primitive_int_to_uint!($T, u8, *self) }
|
||||
#[inline]
|
||||
fn to_u16(&self) -> Option<u16> { impl_to_primitive_int_to_uint!($T, u16, *self) }
|
||||
#[inline]
|
||||
fn to_u32(&self) -> Option<u32> { impl_to_primitive_int_to_uint!($T, u32, *self) }
|
||||
#[inline]
|
||||
fn to_u64(&self) -> Option<u64> { impl_to_primitive_int_to_uint!($T, u64, *self) }
|
||||
|
||||
#[inline]
|
||||
fn to_f32(&self) -> Option<f32> { Some(*self as f32) }
|
||||
#[inline]
|
||||
fn to_f64(&self) -> Option<f64> { Some(*self as f64) }
|
||||
}
|
||||
)
|
||||
}
|
||||
|
||||
impl_to_primitive_int!(isize);
|
||||
impl_to_primitive_int!(i8);
|
||||
impl_to_primitive_int!(i16);
|
||||
impl_to_primitive_int!(i32);
|
||||
impl_to_primitive_int!(i64);
|
||||
|
||||
macro_rules! impl_to_primitive_uint_to_int {
|
||||
($DstT:ty, $slf:expr) => (
|
||||
{
|
||||
let max_value: $DstT = Bounded::max_value();
|
||||
if $slf as u64 <= max_value as u64 {
|
||||
Some($slf as $DstT)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
)
|
||||
}
|
||||
|
||||
macro_rules! impl_to_primitive_uint_to_uint {
|
||||
($SrcT:ty, $DstT:ty, $slf:expr) => (
|
||||
{
|
||||
if size_of::<$SrcT>() <= size_of::<$DstT>() {
|
||||
Some($slf as $DstT)
|
||||
} else {
|
||||
let zero: $SrcT = Zero::zero();
|
||||
let max_value: $DstT = Bounded::max_value();
|
||||
if zero <= $slf && $slf as u64 <= max_value as u64 {
|
||||
Some($slf as $DstT)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
}
|
||||
|
||||
macro_rules! impl_to_primitive_uint {
|
||||
($T:ty) => (
|
||||
impl ToPrimitive for $T {
|
||||
#[inline]
|
||||
fn to_isize(&self) -> Option<isize> { impl_to_primitive_uint_to_int!(isize, *self) }
|
||||
#[inline]
|
||||
fn to_i8(&self) -> Option<i8> { impl_to_primitive_uint_to_int!(i8, *self) }
|
||||
#[inline]
|
||||
fn to_i16(&self) -> Option<i16> { impl_to_primitive_uint_to_int!(i16, *self) }
|
||||
#[inline]
|
||||
fn to_i32(&self) -> Option<i32> { impl_to_primitive_uint_to_int!(i32, *self) }
|
||||
#[inline]
|
||||
fn to_i64(&self) -> Option<i64> { impl_to_primitive_uint_to_int!(i64, *self) }
|
||||
|
||||
#[inline]
|
||||
fn to_usize(&self) -> Option<usize> {
|
||||
impl_to_primitive_uint_to_uint!($T, usize, *self)
|
||||
}
|
||||
#[inline]
|
||||
fn to_u8(&self) -> Option<u8> { impl_to_primitive_uint_to_uint!($T, u8, *self) }
|
||||
#[inline]
|
||||
fn to_u16(&self) -> Option<u16> { impl_to_primitive_uint_to_uint!($T, u16, *self) }
|
||||
#[inline]
|
||||
fn to_u32(&self) -> Option<u32> { impl_to_primitive_uint_to_uint!($T, u32, *self) }
|
||||
#[inline]
|
||||
fn to_u64(&self) -> Option<u64> { impl_to_primitive_uint_to_uint!($T, u64, *self) }
|
||||
|
||||
#[inline]
|
||||
fn to_f32(&self) -> Option<f32> { Some(*self as f32) }
|
||||
#[inline]
|
||||
fn to_f64(&self) -> Option<f64> { Some(*self as f64) }
|
||||
}
|
||||
)
|
||||
}
|
||||
|
||||
impl_to_primitive_uint!(usize);
|
||||
impl_to_primitive_uint!(u8);
|
||||
impl_to_primitive_uint!(u16);
|
||||
impl_to_primitive_uint!(u32);
|
||||
impl_to_primitive_uint!(u64);
|
||||
|
||||
macro_rules! impl_to_primitive_float_to_float {
|
||||
($SrcT:ident, $DstT:ident, $slf:expr) => (
|
||||
if size_of::<$SrcT>() <= size_of::<$DstT>() {
|
||||
Some($slf as $DstT)
|
||||
} else {
|
||||
let n = $slf as f64;
|
||||
let max_value: $SrcT = ::std::$SrcT::MAX;
|
||||
if -max_value as f64 <= n && n <= max_value as f64 {
|
||||
Some($slf as $DstT)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
)
|
||||
}
|
||||
|
||||
macro_rules! impl_to_primitive_float {
|
||||
($T:ident) => (
|
||||
impl ToPrimitive for $T {
|
||||
#[inline]
|
||||
fn to_isize(&self) -> Option<isize> { Some(*self as isize) }
|
||||
#[inline]
|
||||
fn to_i8(&self) -> Option<i8> { Some(*self as i8) }
|
||||
#[inline]
|
||||
fn to_i16(&self) -> Option<i16> { Some(*self as i16) }
|
||||
#[inline]
|
||||
fn to_i32(&self) -> Option<i32> { Some(*self as i32) }
|
||||
#[inline]
|
||||
fn to_i64(&self) -> Option<i64> { Some(*self as i64) }
|
||||
|
||||
#[inline]
|
||||
fn to_usize(&self) -> Option<usize> { Some(*self as usize) }
|
||||
#[inline]
|
||||
fn to_u8(&self) -> Option<u8> { Some(*self as u8) }
|
||||
#[inline]
|
||||
fn to_u16(&self) -> Option<u16> { Some(*self as u16) }
|
||||
#[inline]
|
||||
fn to_u32(&self) -> Option<u32> { Some(*self as u32) }
|
||||
#[inline]
|
||||
fn to_u64(&self) -> Option<u64> { Some(*self as u64) }
|
||||
|
||||
#[inline]
|
||||
fn to_f32(&self) -> Option<f32> { impl_to_primitive_float_to_float!($T, f32, *self) }
|
||||
#[inline]
|
||||
fn to_f64(&self) -> Option<f64> { impl_to_primitive_float_to_float!($T, f64, *self) }
|
||||
}
|
||||
)
|
||||
}
|
||||
|
||||
impl_to_primitive_float!(f32);
|
||||
impl_to_primitive_float!(f64);
|
||||
|
||||
/// A generic trait for converting a number to a value.
|
||||
pub trait FromPrimitive: Sized {
|
||||
/// Convert an `isize` to return an optional value of this type. If the
|
||||
/// value cannot be represented by this value, the `None` is returned.
|
||||
#[inline]
|
||||
fn from_isize(n: isize) -> Option<Self> {
|
||||
FromPrimitive::from_i64(n as i64)
|
||||
}
|
||||
|
||||
/// Convert an `i8` to return an optional value of this type. If the
|
||||
/// type cannot be represented by this value, the `None` is returned.
|
||||
#[inline]
|
||||
fn from_i8(n: i8) -> Option<Self> {
|
||||
FromPrimitive::from_i64(n as i64)
|
||||
}
|
||||
|
||||
/// Convert an `i16` to return an optional value of this type. If the
|
||||
/// type cannot be represented by this value, the `None` is returned.
|
||||
#[inline]
|
||||
fn from_i16(n: i16) -> Option<Self> {
|
||||
FromPrimitive::from_i64(n as i64)
|
||||
}
|
||||
|
||||
/// Convert an `i32` to return an optional value of this type. If the
|
||||
/// type cannot be represented by this value, the `None` is returned.
|
||||
#[inline]
|
||||
fn from_i32(n: i32) -> Option<Self> {
|
||||
FromPrimitive::from_i64(n as i64)
|
||||
}
|
||||
|
||||
/// Convert an `i64` to return an optional value of this type. If the
|
||||
/// type cannot be represented by this value, the `None` is returned.
|
||||
fn from_i64(n: i64) -> Option<Self>;
|
||||
|
||||
/// Convert a `usize` to return an optional value of this type. If the
|
||||
/// type cannot be represented by this value, the `None` is returned.
|
||||
#[inline]
|
||||
fn from_usize(n: usize) -> Option<Self> {
|
||||
FromPrimitive::from_u64(n as u64)
|
||||
}
|
||||
|
||||
/// Convert an `u8` to return an optional value of this type. If the
|
||||
/// type cannot be represented by this value, the `None` is returned.
|
||||
#[inline]
|
||||
fn from_u8(n: u8) -> Option<Self> {
|
||||
FromPrimitive::from_u64(n as u64)
|
||||
}
|
||||
|
||||
/// Convert an `u16` to return an optional value of this type. If the
|
||||
/// type cannot be represented by this value, the `None` is returned.
|
||||
#[inline]
|
||||
fn from_u16(n: u16) -> Option<Self> {
|
||||
FromPrimitive::from_u64(n as u64)
|
||||
}
|
||||
|
||||
/// Convert an `u32` to return an optional value of this type. If the
|
||||
/// type cannot be represented by this value, the `None` is returned.
|
||||
#[inline]
|
||||
fn from_u32(n: u32) -> Option<Self> {
|
||||
FromPrimitive::from_u64(n as u64)
|
||||
}
|
||||
|
||||
/// Convert an `u64` to return an optional value of this type. If the
|
||||
/// type cannot be represented by this value, the `None` is returned.
|
||||
fn from_u64(n: u64) -> Option<Self>;
|
||||
|
||||
/// Convert a `f32` to return an optional value of this type. If the
|
||||
/// type cannot be represented by this value, the `None` is returned.
|
||||
#[inline]
|
||||
fn from_f32(n: f32) -> Option<Self> {
|
||||
FromPrimitive::from_f64(n as f64)
|
||||
}
|
||||
|
||||
/// Convert a `f64` to return an optional value of this type. If the
|
||||
/// type cannot be represented by this value, the `None` is returned.
|
||||
#[inline]
|
||||
fn from_f64(n: f64) -> Option<Self> {
|
||||
FromPrimitive::from_i64(n as i64)
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! impl_from_primitive {
|
||||
($T:ty, $to_ty:ident) => (
|
||||
#[allow(deprecated)]
|
||||
impl FromPrimitive for $T {
|
||||
#[inline] fn from_i8(n: i8) -> Option<$T> { n.$to_ty() }
|
||||
#[inline] fn from_i16(n: i16) -> Option<$T> { n.$to_ty() }
|
||||
#[inline] fn from_i32(n: i32) -> Option<$T> { n.$to_ty() }
|
||||
#[inline] fn from_i64(n: i64) -> Option<$T> { n.$to_ty() }
|
||||
|
||||
#[inline] fn from_u8(n: u8) -> Option<$T> { n.$to_ty() }
|
||||
#[inline] fn from_u16(n: u16) -> Option<$T> { n.$to_ty() }
|
||||
#[inline] fn from_u32(n: u32) -> Option<$T> { n.$to_ty() }
|
||||
#[inline] fn from_u64(n: u64) -> Option<$T> { n.$to_ty() }
|
||||
|
||||
#[inline] fn from_f32(n: f32) -> Option<$T> { n.$to_ty() }
|
||||
#[inline] fn from_f64(n: f64) -> Option<$T> { n.$to_ty() }
|
||||
}
|
||||
)
|
||||
}
|
||||
|
||||
impl_from_primitive!(isize, to_isize);
|
||||
impl_from_primitive!(i8, to_i8);
|
||||
impl_from_primitive!(i16, to_i16);
|
||||
impl_from_primitive!(i32, to_i32);
|
||||
impl_from_primitive!(i64, to_i64);
|
||||
impl_from_primitive!(usize, to_usize);
|
||||
impl_from_primitive!(u8, to_u8);
|
||||
impl_from_primitive!(u16, to_u16);
|
||||
impl_from_primitive!(u32, to_u32);
|
||||
impl_from_primitive!(u64, to_u64);
|
||||
impl_from_primitive!(f32, to_f32);
|
||||
impl_from_primitive!(f64, to_f64);
|
||||
|
||||
/// Cast from one machine scalar to another.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// # use num_traits as num;
|
||||
/// let twenty: f32 = num::cast(0x14).unwrap();
|
||||
/// assert_eq!(twenty, 20f32);
|
||||
/// ```
|
||||
///
|
||||
#[inline]
|
||||
pub fn cast<T: NumCast, U: NumCast>(n: T) -> Option<U> {
|
||||
NumCast::from(n)
|
||||
}
|
||||
|
||||
/// An interface for casting between machine scalars.
|
||||
pub trait NumCast: Sized + ToPrimitive {
|
||||
/// Creates a number from another value that can be converted into
|
||||
/// a primitive via the `ToPrimitive` trait.
|
||||
fn from<T: ToPrimitive>(n: T) -> Option<Self>;
|
||||
}
|
||||
|
||||
macro_rules! impl_num_cast {
|
||||
($T:ty, $conv:ident) => (
|
||||
impl NumCast for $T {
|
||||
#[inline]
|
||||
#[allow(deprecated)]
|
||||
fn from<N: ToPrimitive>(n: N) -> Option<$T> {
|
||||
// `$conv` could be generated using `concat_idents!`, but that
|
||||
// macro seems to be broken at the moment
|
||||
n.$conv()
|
||||
}
|
||||
}
|
||||
)
|
||||
}
|
||||
|
||||
impl_num_cast!(u8, to_u8);
|
||||
impl_num_cast!(u16, to_u16);
|
||||
impl_num_cast!(u32, to_u32);
|
||||
impl_num_cast!(u64, to_u64);
|
||||
impl_num_cast!(usize, to_usize);
|
||||
impl_num_cast!(i8, to_i8);
|
||||
impl_num_cast!(i16, to_i16);
|
||||
impl_num_cast!(i32, to_i32);
|
||||
impl_num_cast!(i64, to_i64);
|
||||
impl_num_cast!(isize, to_isize);
|
||||
impl_num_cast!(f32, to_f32);
|
||||
impl_num_cast!(f64, to_f64);
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,95 @@
|
|||
use std::ops::{Add, Mul};
|
||||
|
||||
/// Defines an additive identity element for `Self`.
|
||||
pub trait Zero: Sized + Add<Self, Output = Self> {
|
||||
/// Returns the additive identity element of `Self`, `0`.
|
||||
///
|
||||
/// # Laws
|
||||
///
|
||||
/// ```{.text}
|
||||
/// a + 0 = a ∀ a ∈ Self
|
||||
/// 0 + a = a ∀ a ∈ Self
|
||||
/// ```
|
||||
///
|
||||
/// # Purity
|
||||
///
|
||||
/// This function should return the same result at all times regardless of
|
||||
/// external mutable state, for example values stored in TLS or in
|
||||
/// `static mut`s.
|
||||
// FIXME (#5527): This should be an associated constant
|
||||
fn zero() -> Self;
|
||||
|
||||
/// Returns `true` if `self` is equal to the additive identity.
|
||||
#[inline]
|
||||
fn is_zero(&self) -> bool;
|
||||
}
|
||||
|
||||
macro_rules! zero_impl {
|
||||
($t:ty, $v:expr) => {
|
||||
impl Zero for $t {
|
||||
#[inline]
|
||||
fn zero() -> $t { $v }
|
||||
#[inline]
|
||||
fn is_zero(&self) -> bool { *self == $v }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
zero_impl!(usize, 0usize);
|
||||
zero_impl!(u8, 0u8);
|
||||
zero_impl!(u16, 0u16);
|
||||
zero_impl!(u32, 0u32);
|
||||
zero_impl!(u64, 0u64);
|
||||
|
||||
zero_impl!(isize, 0isize);
|
||||
zero_impl!(i8, 0i8);
|
||||
zero_impl!(i16, 0i16);
|
||||
zero_impl!(i32, 0i32);
|
||||
zero_impl!(i64, 0i64);
|
||||
|
||||
zero_impl!(f32, 0.0f32);
|
||||
zero_impl!(f64, 0.0f64);
|
||||
|
||||
/// Defines a multiplicative identity element for `Self`.
|
||||
pub trait One: Sized + Mul<Self, Output = Self> {
|
||||
/// Returns the multiplicative identity element of `Self`, `1`.
|
||||
///
|
||||
/// # Laws
|
||||
///
|
||||
/// ```{.text}
|
||||
/// a * 1 = a ∀ a ∈ Self
|
||||
/// 1 * a = a ∀ a ∈ Self
|
||||
/// ```
|
||||
///
|
||||
/// # Purity
|
||||
///
|
||||
/// This function should return the same result at all times regardless of
|
||||
/// external mutable state, for example values stored in TLS or in
|
||||
/// `static mut`s.
|
||||
// FIXME (#5527): This should be an associated constant
|
||||
fn one() -> Self;
|
||||
}
|
||||
|
||||
macro_rules! one_impl {
|
||||
($t:ty, $v:expr) => {
|
||||
impl One for $t {
|
||||
#[inline]
|
||||
fn one() -> $t { $v }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
one_impl!(usize, 1usize);
|
||||
one_impl!(u8, 1u8);
|
||||
one_impl!(u16, 1u16);
|
||||
one_impl!(u32, 1u32);
|
||||
one_impl!(u64, 1u64);
|
||||
|
||||
one_impl!(isize, 1isize);
|
||||
one_impl!(i8, 1i8);
|
||||
one_impl!(i16, 1i16);
|
||||
one_impl!(i32, 1i32);
|
||||
one_impl!(i64, 1i64);
|
||||
|
||||
one_impl!(f32, 1.0f32);
|
||||
one_impl!(f64, 1.0f64);
|
|
@ -0,0 +1,360 @@
|
|||
use std::ops::{Not, BitAnd, BitOr, BitXor, Shl, Shr};
|
||||
|
||||
use {Num, NumCast};
|
||||
use bounds::Bounded;
|
||||
use ops::checked::*;
|
||||
use ops::saturating::Saturating;
|
||||
|
||||
pub trait PrimInt
|
||||
: Sized
|
||||
+ Copy
|
||||
+ Num + NumCast
|
||||
+ Bounded
|
||||
+ PartialOrd + Ord + Eq
|
||||
+ Not<Output=Self>
|
||||
+ BitAnd<Output=Self>
|
||||
+ BitOr<Output=Self>
|
||||
+ BitXor<Output=Self>
|
||||
+ Shl<usize, Output=Self>
|
||||
+ Shr<usize, Output=Self>
|
||||
+ CheckedAdd<Output=Self>
|
||||
+ CheckedSub<Output=Self>
|
||||
+ CheckedMul<Output=Self>
|
||||
+ CheckedDiv<Output=Self>
|
||||
+ Saturating
|
||||
{
|
||||
/// Returns the number of ones in the binary representation of `self`.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use num_traits::PrimInt;
|
||||
///
|
||||
/// let n = 0b01001100u8;
|
||||
///
|
||||
/// assert_eq!(n.count_ones(), 3);
|
||||
/// ```
|
||||
fn count_ones(self) -> u32;
|
||||
|
||||
/// Returns the number of zeros in the binary representation of `self`.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use num_traits::PrimInt;
|
||||
///
|
||||
/// let n = 0b01001100u8;
|
||||
///
|
||||
/// assert_eq!(n.count_zeros(), 5);
|
||||
/// ```
|
||||
fn count_zeros(self) -> u32;
|
||||
|
||||
/// Returns the number of leading zeros in the binary representation
|
||||
/// of `self`.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use num_traits::PrimInt;
|
||||
///
|
||||
/// let n = 0b0101000u16;
|
||||
///
|
||||
/// assert_eq!(n.leading_zeros(), 10);
|
||||
/// ```
|
||||
fn leading_zeros(self) -> u32;
|
||||
|
||||
/// Returns the number of trailing zeros in the binary representation
|
||||
/// of `self`.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use num_traits::PrimInt;
|
||||
///
|
||||
/// let n = 0b0101000u16;
|
||||
///
|
||||
/// assert_eq!(n.trailing_zeros(), 3);
|
||||
/// ```
|
||||
fn trailing_zeros(self) -> u32;
|
||||
|
||||
/// Shifts the bits to the left by a specified amount amount, `n`, wrapping
|
||||
/// the truncated bits to the end of the resulting integer.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use num_traits::PrimInt;
|
||||
///
|
||||
/// let n = 0x0123456789ABCDEFu64;
|
||||
/// let m = 0x3456789ABCDEF012u64;
|
||||
///
|
||||
/// assert_eq!(n.rotate_left(12), m);
|
||||
/// ```
|
||||
fn rotate_left(self, n: u32) -> Self;
|
||||
|
||||
/// Shifts the bits to the right by a specified amount amount, `n`, wrapping
|
||||
/// the truncated bits to the beginning of the resulting integer.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use num_traits::PrimInt;
|
||||
///
|
||||
/// let n = 0x0123456789ABCDEFu64;
|
||||
/// let m = 0xDEF0123456789ABCu64;
|
||||
///
|
||||
/// assert_eq!(n.rotate_right(12), m);
|
||||
/// ```
|
||||
fn rotate_right(self, n: u32) -> Self;
|
||||
|
||||
/// Shifts the bits to the left by a specified amount amount, `n`, filling
|
||||
/// zeros in the least significant bits.
|
||||
///
|
||||
/// This is bitwise equivalent to signed `Shl`.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use num_traits::PrimInt;
|
||||
///
|
||||
/// let n = 0x0123456789ABCDEFu64;
|
||||
/// let m = 0x3456789ABCDEF000u64;
|
||||
///
|
||||
/// assert_eq!(n.signed_shl(12), m);
|
||||
/// ```
|
||||
fn signed_shl(self, n: u32) -> Self;
|
||||
|
||||
/// Shifts the bits to the right by a specified amount amount, `n`, copying
|
||||
/// the "sign bit" in the most significant bits even for unsigned types.
|
||||
///
|
||||
/// This is bitwise equivalent to signed `Shr`.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use num_traits::PrimInt;
|
||||
///
|
||||
/// let n = 0xFEDCBA9876543210u64;
|
||||
/// let m = 0xFFFFEDCBA9876543u64;
|
||||
///
|
||||
/// assert_eq!(n.signed_shr(12), m);
|
||||
/// ```
|
||||
fn signed_shr(self, n: u32) -> Self;
|
||||
|
||||
/// Shifts the bits to the left by a specified amount amount, `n`, filling
|
||||
/// zeros in the least significant bits.
|
||||
///
|
||||
/// This is bitwise equivalent to unsigned `Shl`.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use num_traits::PrimInt;
|
||||
///
|
||||
/// let n = 0x0123456789ABCDEFi64;
|
||||
/// let m = 0x3456789ABCDEF000i64;
|
||||
///
|
||||
/// assert_eq!(n.unsigned_shl(12), m);
|
||||
/// ```
|
||||
fn unsigned_shl(self, n: u32) -> Self;
|
||||
|
||||
/// Shifts the bits to the right by a specified amount amount, `n`, filling
|
||||
/// zeros in the most significant bits.
|
||||
///
|
||||
/// This is bitwise equivalent to unsigned `Shr`.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use num_traits::PrimInt;
|
||||
///
|
||||
/// let n = 0xFEDCBA9876543210i64;
|
||||
/// let m = 0x000FEDCBA9876543i64;
|
||||
///
|
||||
/// assert_eq!(n.unsigned_shr(12), m);
|
||||
/// ```
|
||||
fn unsigned_shr(self, n: u32) -> Self;
|
||||
|
||||
/// Reverses the byte order of the integer.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use num_traits::PrimInt;
|
||||
///
|
||||
/// let n = 0x0123456789ABCDEFu64;
|
||||
/// let m = 0xEFCDAB8967452301u64;
|
||||
///
|
||||
/// assert_eq!(n.swap_bytes(), m);
|
||||
/// ```
|
||||
fn swap_bytes(self) -> Self;
|
||||
|
||||
/// Convert an integer from big endian to the target's endianness.
|
||||
///
|
||||
/// On big endian this is a no-op. On little endian the bytes are swapped.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use num_traits::PrimInt;
|
||||
///
|
||||
/// let n = 0x0123456789ABCDEFu64;
|
||||
///
|
||||
/// if cfg!(target_endian = "big") {
|
||||
/// assert_eq!(u64::from_be(n), n)
|
||||
/// } else {
|
||||
/// assert_eq!(u64::from_be(n), n.swap_bytes())
|
||||
/// }
|
||||
/// ```
|
||||
fn from_be(x: Self) -> Self;
|
||||
|
||||
/// Convert an integer from little endian to the target's endianness.
|
||||
///
|
||||
/// On little endian this is a no-op. On big endian the bytes are swapped.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use num_traits::PrimInt;
|
||||
///
|
||||
/// let n = 0x0123456789ABCDEFu64;
|
||||
///
|
||||
/// if cfg!(target_endian = "little") {
|
||||
/// assert_eq!(u64::from_le(n), n)
|
||||
/// } else {
|
||||
/// assert_eq!(u64::from_le(n), n.swap_bytes())
|
||||
/// }
|
||||
/// ```
|
||||
fn from_le(x: Self) -> Self;
|
||||
|
||||
/// Convert `self` to big endian from the target's endianness.
|
||||
///
|
||||
/// On big endian this is a no-op. On little endian the bytes are swapped.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use num_traits::PrimInt;
|
||||
///
|
||||
/// let n = 0x0123456789ABCDEFu64;
|
||||
///
|
||||
/// if cfg!(target_endian = "big") {
|
||||
/// assert_eq!(n.to_be(), n)
|
||||
/// } else {
|
||||
/// assert_eq!(n.to_be(), n.swap_bytes())
|
||||
/// }
|
||||
/// ```
|
||||
fn to_be(self) -> Self;
|
||||
|
||||
/// Convert `self` to little endian from the target's endianness.
|
||||
///
|
||||
/// On little endian this is a no-op. On big endian the bytes are swapped.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use num_traits::PrimInt;
|
||||
///
|
||||
/// let n = 0x0123456789ABCDEFu64;
|
||||
///
|
||||
/// if cfg!(target_endian = "little") {
|
||||
/// assert_eq!(n.to_le(), n)
|
||||
/// } else {
|
||||
/// assert_eq!(n.to_le(), n.swap_bytes())
|
||||
/// }
|
||||
/// ```
|
||||
fn to_le(self) -> Self;
|
||||
|
||||
/// Raises self to the power of `exp`, using exponentiation by squaring.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use num_traits::PrimInt;
|
||||
///
|
||||
/// assert_eq!(2i32.pow(4), 16);
|
||||
/// ```
|
||||
fn pow(self, mut exp: u32) -> Self;
|
||||
}
|
||||
|
||||
macro_rules! prim_int_impl {
|
||||
($T:ty, $S:ty, $U:ty) => (
|
||||
impl PrimInt for $T {
|
||||
fn count_ones(self) -> u32 {
|
||||
<$T>::count_ones(self)
|
||||
}
|
||||
|
||||
fn count_zeros(self) -> u32 {
|
||||
<$T>::count_zeros(self)
|
||||
}
|
||||
|
||||
fn leading_zeros(self) -> u32 {
|
||||
<$T>::leading_zeros(self)
|
||||
}
|
||||
|
||||
fn trailing_zeros(self) -> u32 {
|
||||
<$T>::trailing_zeros(self)
|
||||
}
|
||||
|
||||
fn rotate_left(self, n: u32) -> Self {
|
||||
<$T>::rotate_left(self, n)
|
||||
}
|
||||
|
||||
fn rotate_right(self, n: u32) -> Self {
|
||||
<$T>::rotate_right(self, n)
|
||||
}
|
||||
|
||||
fn signed_shl(self, n: u32) -> Self {
|
||||
((self as $S) << n) as $T
|
||||
}
|
||||
|
||||
fn signed_shr(self, n: u32) -> Self {
|
||||
((self as $S) >> n) as $T
|
||||
}
|
||||
|
||||
fn unsigned_shl(self, n: u32) -> Self {
|
||||
((self as $U) << n) as $T
|
||||
}
|
||||
|
||||
fn unsigned_shr(self, n: u32) -> Self {
|
||||
((self as $U) >> n) as $T
|
||||
}
|
||||
|
||||
fn swap_bytes(self) -> Self {
|
||||
<$T>::swap_bytes(self)
|
||||
}
|
||||
|
||||
fn from_be(x: Self) -> Self {
|
||||
<$T>::from_be(x)
|
||||
}
|
||||
|
||||
fn from_le(x: Self) -> Self {
|
||||
<$T>::from_le(x)
|
||||
}
|
||||
|
||||
fn to_be(self) -> Self {
|
||||
<$T>::to_be(self)
|
||||
}
|
||||
|
||||
fn to_le(self) -> Self {
|
||||
<$T>::to_le(self)
|
||||
}
|
||||
|
||||
fn pow(self, exp: u32) -> Self {
|
||||
<$T>::pow(self, exp)
|
||||
}
|
||||
}
|
||||
)
|
||||
}
|
||||
|
||||
// prim_int_impl!(type, signed, unsigned);
|
||||
prim_int_impl!(u8, i8, u8);
|
||||
prim_int_impl!(u16, i16, u16);
|
||||
prim_int_impl!(u32, i32, u32);
|
||||
prim_int_impl!(u64, i64, u64);
|
||||
prim_int_impl!(usize, isize, usize);
|
||||
prim_int_impl!(i8, i8, u8);
|
||||
prim_int_impl!(i16, i16, u16);
|
||||
prim_int_impl!(i32, i32, u32);
|
||||
prim_int_impl!(i64, i64, u64);
|
||||
prim_int_impl!(isize, isize, usize);
|
|
@ -0,0 +1,233 @@
|
|||
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
|
||||
// file at the top-level directory of this distribution and at
|
||||
// http://rust-lang.org/COPYRIGHT.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
||||
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
||||
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
||||
// option. This file may not be copied, modified, or distributed
|
||||
// except according to those terms.
|
||||
|
||||
//! Numeric traits for generic mathematics
|
||||
|
||||
use std::ops::{Add, Sub, Mul, Div, Rem};
|
||||
|
||||
pub use bounds::Bounded;
|
||||
pub use float::Float;
|
||||
pub use identities::{Zero, One};
|
||||
pub use ops::checked::*;
|
||||
pub use ops::saturating::Saturating;
|
||||
pub use sign::{Signed, Unsigned};
|
||||
pub use cast::*;
|
||||
pub use int::PrimInt;
|
||||
|
||||
pub mod identities;
|
||||
pub mod sign;
|
||||
pub mod ops;
|
||||
pub mod bounds;
|
||||
pub mod float;
|
||||
pub mod cast;
|
||||
pub mod int;
|
||||
|
||||
/// The base trait for numeric types
|
||||
pub trait Num: PartialEq + Zero + One
|
||||
+ Add<Output = Self> + Sub<Output = Self>
|
||||
+ Mul<Output = Self> + Div<Output = Self> + Rem<Output = Self>
|
||||
{
|
||||
type FromStrRadixErr;
|
||||
|
||||
/// Convert from a string and radix <= 36.
|
||||
fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr>;
|
||||
}
|
||||
|
||||
macro_rules! int_trait_impl {
|
||||
($name:ident for $($t:ty)*) => ($(
|
||||
impl $name for $t {
|
||||
type FromStrRadixErr = ::std::num::ParseIntError;
|
||||
fn from_str_radix(s: &str, radix: u32)
|
||||
-> Result<Self, ::std::num::ParseIntError>
|
||||
{
|
||||
<$t>::from_str_radix(s, radix)
|
||||
}
|
||||
}
|
||||
)*)
|
||||
}
|
||||
int_trait_impl!(Num for usize u8 u16 u32 u64 isize i8 i16 i32 i64);
|
||||
|
||||
#[derive(Debug)]
|
||||
pub enum FloatErrorKind {
|
||||
Empty,
|
||||
Invalid,
|
||||
}
|
||||
// FIXME: std::num::ParseFloatError is stable in 1.0, but opaque to us,
|
||||
// so there's not really any way for us to reuse it.
|
||||
#[derive(Debug)]
|
||||
pub struct ParseFloatError {
|
||||
pub kind: FloatErrorKind,
|
||||
}
|
||||
|
||||
// FIXME: The standard library from_str_radix on floats was deprecated, so we're stuck
|
||||
// with this implementation ourselves until we want to make a breaking change.
|
||||
// (would have to drop it from `Num` though)
|
||||
macro_rules! float_trait_impl {
|
||||
($name:ident for $($t:ty)*) => ($(
|
||||
impl $name for $t {
|
||||
type FromStrRadixErr = ParseFloatError;
|
||||
|
||||
fn from_str_radix(src: &str, radix: u32)
|
||||
-> Result<Self, Self::FromStrRadixErr>
|
||||
{
|
||||
use self::FloatErrorKind::*;
|
||||
use self::ParseFloatError as PFE;
|
||||
|
||||
// Special values
|
||||
match src {
|
||||
"inf" => return Ok(Float::infinity()),
|
||||
"-inf" => return Ok(Float::neg_infinity()),
|
||||
"NaN" => return Ok(Float::nan()),
|
||||
_ => {},
|
||||
}
|
||||
|
||||
fn slice_shift_char(src: &str) -> Option<(char, &str)> {
|
||||
src.chars().nth(0).map(|ch| (ch, &src[1..]))
|
||||
}
|
||||
|
||||
let (is_positive, src) = match slice_shift_char(src) {
|
||||
None => return Err(PFE { kind: Empty }),
|
||||
Some(('-', "")) => return Err(PFE { kind: Empty }),
|
||||
Some(('-', src)) => (false, src),
|
||||
Some((_, _)) => (true, src),
|
||||
};
|
||||
|
||||
// The significand to accumulate
|
||||
let mut sig = if is_positive { 0.0 } else { -0.0 };
|
||||
// Necessary to detect overflow
|
||||
let mut prev_sig = sig;
|
||||
let mut cs = src.chars().enumerate();
|
||||
// Exponent prefix and exponent index offset
|
||||
let mut exp_info = None::<(char, usize)>;
|
||||
|
||||
// Parse the integer part of the significand
|
||||
for (i, c) in cs.by_ref() {
|
||||
match c.to_digit(radix) {
|
||||
Some(digit) => {
|
||||
// shift significand one digit left
|
||||
sig = sig * (radix as $t);
|
||||
|
||||
// add/subtract current digit depending on sign
|
||||
if is_positive {
|
||||
sig = sig + ((digit as isize) as $t);
|
||||
} else {
|
||||
sig = sig - ((digit as isize) as $t);
|
||||
}
|
||||
|
||||
// Detect overflow by comparing to last value, except
|
||||
// if we've not seen any non-zero digits.
|
||||
if prev_sig != 0.0 {
|
||||
if is_positive && sig <= prev_sig
|
||||
{ return Ok(Float::infinity()); }
|
||||
if !is_positive && sig >= prev_sig
|
||||
{ return Ok(Float::neg_infinity()); }
|
||||
|
||||
// Detect overflow by reversing the shift-and-add process
|
||||
if is_positive && (prev_sig != (sig - digit as $t) / radix as $t)
|
||||
{ return Ok(Float::infinity()); }
|
||||
if !is_positive && (prev_sig != (sig + digit as $t) / radix as $t)
|
||||
{ return Ok(Float::neg_infinity()); }
|
||||
}
|
||||
prev_sig = sig;
|
||||
},
|
||||
None => match c {
|
||||
'e' | 'E' | 'p' | 'P' => {
|
||||
exp_info = Some((c, i + 1));
|
||||
break; // start of exponent
|
||||
},
|
||||
'.' => {
|
||||
break; // start of fractional part
|
||||
},
|
||||
_ => {
|
||||
return Err(PFE { kind: Invalid });
|
||||
},
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
// If we are not yet at the exponent parse the fractional
|
||||
// part of the significand
|
||||
if exp_info.is_none() {
|
||||
let mut power = 1.0;
|
||||
for (i, c) in cs.by_ref() {
|
||||
match c.to_digit(radix) {
|
||||
Some(digit) => {
|
||||
// Decrease power one order of magnitude
|
||||
power = power / (radix as $t);
|
||||
// add/subtract current digit depending on sign
|
||||
sig = if is_positive {
|
||||
sig + (digit as $t) * power
|
||||
} else {
|
||||
sig - (digit as $t) * power
|
||||
};
|
||||
// Detect overflow by comparing to last value
|
||||
if is_positive && sig < prev_sig
|
||||
{ return Ok(Float::infinity()); }
|
||||
if !is_positive && sig > prev_sig
|
||||
{ return Ok(Float::neg_infinity()); }
|
||||
prev_sig = sig;
|
||||
},
|
||||
None => match c {
|
||||
'e' | 'E' | 'p' | 'P' => {
|
||||
exp_info = Some((c, i + 1));
|
||||
break; // start of exponent
|
||||
},
|
||||
_ => {
|
||||
return Err(PFE { kind: Invalid });
|
||||
},
|
||||
},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Parse and calculate the exponent
|
||||
let exp = match exp_info {
|
||||
Some((c, offset)) => {
|
||||
let base = match c {
|
||||
'E' | 'e' if radix == 10 => 10.0,
|
||||
'P' | 'p' if radix == 16 => 2.0,
|
||||
_ => return Err(PFE { kind: Invalid }),
|
||||
};
|
||||
|
||||
// Parse the exponent as decimal integer
|
||||
let src = &src[offset..];
|
||||
let (is_positive, exp) = match slice_shift_char(src) {
|
||||
Some(('-', src)) => (false, src.parse::<usize>()),
|
||||
Some(('+', src)) => (true, src.parse::<usize>()),
|
||||
Some((_, _)) => (true, src.parse::<usize>()),
|
||||
None => return Err(PFE { kind: Invalid }),
|
||||
};
|
||||
|
||||
match (is_positive, exp) {
|
||||
(true, Ok(exp)) => base.powi(exp as i32),
|
||||
(false, Ok(exp)) => 1.0 / base.powi(exp as i32),
|
||||
(_, Err(_)) => return Err(PFE { kind: Invalid }),
|
||||
}
|
||||
},
|
||||
None => 1.0, // no exponent
|
||||
};
|
||||
|
||||
Ok(sig * exp)
|
||||
}
|
||||
}
|
||||
)*)
|
||||
}
|
||||
float_trait_impl!(Num for f32 f64);
|
||||
|
||||
#[test]
|
||||
fn from_str_radix_unwrap() {
|
||||
// The Result error must impl Debug to allow unwrap()
|
||||
|
||||
let i: i32 = Num::from_str_radix("0", 10).unwrap();
|
||||
assert_eq!(i, 0);
|
||||
|
||||
let f: f32 = Num::from_str_radix("0.0", 10).unwrap();
|
||||
assert_eq!(f, 0.0);
|
||||
}
|
|
@ -0,0 +1,91 @@
|
|||
use std::ops::{Add, Sub, Mul, Div};
|
||||
|
||||
/// Performs addition that returns `None` instead of wrapping around on
|
||||
/// overflow.
|
||||
pub trait CheckedAdd: Sized + Add<Self, Output=Self> {
|
||||
/// Adds two numbers, checking for overflow. If overflow happens, `None` is
|
||||
/// returned.
|
||||
fn checked_add(&self, v: &Self) -> Option<Self>;
|
||||
}
|
||||
|
||||
macro_rules! checked_impl {
|
||||
($trait_name:ident, $method:ident, $t:ty) => {
|
||||
impl $trait_name for $t {
|
||||
#[inline]
|
||||
fn $method(&self, v: &$t) -> Option<$t> {
|
||||
<$t>::$method(*self, *v)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
checked_impl!(CheckedAdd, checked_add, u8);
|
||||
checked_impl!(CheckedAdd, checked_add, u16);
|
||||
checked_impl!(CheckedAdd, checked_add, u32);
|
||||
checked_impl!(CheckedAdd, checked_add, u64);
|
||||
checked_impl!(CheckedAdd, checked_add, usize);
|
||||
|
||||
checked_impl!(CheckedAdd, checked_add, i8);
|
||||
checked_impl!(CheckedAdd, checked_add, i16);
|
||||
checked_impl!(CheckedAdd, checked_add, i32);
|
||||
checked_impl!(CheckedAdd, checked_add, i64);
|
||||
checked_impl!(CheckedAdd, checked_add, isize);
|
||||
|
||||
/// Performs subtraction that returns `None` instead of wrapping around on underflow.
|
||||
pub trait CheckedSub: Sized + Sub<Self, Output=Self> {
|
||||
/// Subtracts two numbers, checking for underflow. If underflow happens,
|
||||
/// `None` is returned.
|
||||
fn checked_sub(&self, v: &Self) -> Option<Self>;
|
||||
}
|
||||
|
||||
checked_impl!(CheckedSub, checked_sub, u8);
|
||||
checked_impl!(CheckedSub, checked_sub, u16);
|
||||
checked_impl!(CheckedSub, checked_sub, u32);
|
||||
checked_impl!(CheckedSub, checked_sub, u64);
|
||||
checked_impl!(CheckedSub, checked_sub, usize);
|
||||
|
||||
checked_impl!(CheckedSub, checked_sub, i8);
|
||||
checked_impl!(CheckedSub, checked_sub, i16);
|
||||
checked_impl!(CheckedSub, checked_sub, i32);
|
||||
checked_impl!(CheckedSub, checked_sub, i64);
|
||||
checked_impl!(CheckedSub, checked_sub, isize);
|
||||
|
||||
/// Performs multiplication that returns `None` instead of wrapping around on underflow or
|
||||
/// overflow.
|
||||
pub trait CheckedMul: Sized + Mul<Self, Output=Self> {
|
||||
/// Multiplies two numbers, checking for underflow or overflow. If underflow
|
||||
/// or overflow happens, `None` is returned.
|
||||
fn checked_mul(&self, v: &Self) -> Option<Self>;
|
||||
}
|
||||
|
||||
checked_impl!(CheckedMul, checked_mul, u8);
|
||||
checked_impl!(CheckedMul, checked_mul, u16);
|
||||
checked_impl!(CheckedMul, checked_mul, u32);
|
||||
checked_impl!(CheckedMul, checked_mul, u64);
|
||||
checked_impl!(CheckedMul, checked_mul, usize);
|
||||
|
||||
checked_impl!(CheckedMul, checked_mul, i8);
|
||||
checked_impl!(CheckedMul, checked_mul, i16);
|
||||
checked_impl!(CheckedMul, checked_mul, i32);
|
||||
checked_impl!(CheckedMul, checked_mul, i64);
|
||||
checked_impl!(CheckedMul, checked_mul, isize);
|
||||
|
||||
/// Performs division that returns `None` instead of panicking on division by zero and instead of
|
||||
/// wrapping around on underflow and overflow.
|
||||
pub trait CheckedDiv: Sized + Div<Self, Output=Self> {
|
||||
/// Divides two numbers, checking for underflow, overflow and division by
|
||||
/// zero. If any of that happens, `None` is returned.
|
||||
fn checked_div(&self, v: &Self) -> Option<Self>;
|
||||
}
|
||||
|
||||
checked_impl!(CheckedDiv, checked_div, u8);
|
||||
checked_impl!(CheckedDiv, checked_div, u16);
|
||||
checked_impl!(CheckedDiv, checked_div, u32);
|
||||
checked_impl!(CheckedDiv, checked_div, u64);
|
||||
checked_impl!(CheckedDiv, checked_div, usize);
|
||||
|
||||
checked_impl!(CheckedDiv, checked_div, i8);
|
||||
checked_impl!(CheckedDiv, checked_div, i16);
|
||||
checked_impl!(CheckedDiv, checked_div, i32);
|
||||
checked_impl!(CheckedDiv, checked_div, i64);
|
||||
checked_impl!(CheckedDiv, checked_div, isize);
|
|
@ -0,0 +1,2 @@
|
|||
pub mod saturating;
|
||||
pub mod checked;
|
|
@ -0,0 +1,26 @@
|
|||
/// Saturating math operations
|
||||
pub trait Saturating {
|
||||
/// Saturating addition operator.
|
||||
/// Returns a+b, saturating at the numeric bounds instead of overflowing.
|
||||
fn saturating_add(self, v: Self) -> Self;
|
||||
|
||||
/// Saturating subtraction operator.
|
||||
/// Returns a-b, saturating at the numeric bounds instead of overflowing.
|
||||
fn saturating_sub(self, v: Self) -> Self;
|
||||
}
|
||||
|
||||
macro_rules! saturating_impl {
|
||||
($trait_name:ident for $($t:ty)*) => {$(
|
||||
impl $trait_name for $t {
|
||||
fn saturating_add(self, v: Self) -> Self {
|
||||
Self::saturating_add(self, v)
|
||||
}
|
||||
|
||||
fn saturating_sub(self, v: Self) -> Self {
|
||||
Self::saturating_sub(self, v)
|
||||
}
|
||||
}
|
||||
)*}
|
||||
}
|
||||
|
||||
saturating_impl!(Saturating for isize usize i8 u8 i16 u16 i32 u32 i64 u64);
|
|
@ -0,0 +1,126 @@
|
|||
use std::ops::Neg;
|
||||
use std::{f32, f64};
|
||||
|
||||
use Num;
|
||||
|
||||
/// Useful functions for signed numbers (i.e. numbers that can be negative).
|
||||
pub trait Signed: Sized + Num + Neg<Output = Self> {
|
||||
/// Computes the absolute value.
|
||||
///
|
||||
/// For `f32` and `f64`, `NaN` will be returned if the number is `NaN`.
|
||||
///
|
||||
/// For signed integers, `::MIN` will be returned if the number is `::MIN`.
|
||||
fn abs(&self) -> Self;
|
||||
|
||||
/// The positive difference of two numbers.
|
||||
///
|
||||
/// Returns `zero` if the number is less than or equal to `other`, otherwise the difference
|
||||
/// between `self` and `other` is returned.
|
||||
fn abs_sub(&self, other: &Self) -> Self;
|
||||
|
||||
/// Returns the sign of the number.
|
||||
///
|
||||
/// For `f32` and `f64`:
|
||||
///
|
||||
/// * `1.0` if the number is positive, `+0.0` or `INFINITY`
|
||||
/// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
|
||||
/// * `NaN` if the number is `NaN`
|
||||
///
|
||||
/// For signed integers:
|
||||
///
|
||||
/// * `0` if the number is zero
|
||||
/// * `1` if the number is positive
|
||||
/// * `-1` if the number is negative
|
||||
fn signum(&self) -> Self;
|
||||
|
||||
/// Returns true if the number is positive and false if the number is zero or negative.
|
||||
fn is_positive(&self) -> bool;
|
||||
|
||||
/// Returns true if the number is negative and false if the number is zero or positive.
|
||||
fn is_negative(&self) -> bool;
|
||||
}
|
||||
|
||||
macro_rules! signed_impl {
|
||||
($($t:ty)*) => ($(
|
||||
impl Signed for $t {
|
||||
#[inline]
|
||||
fn abs(&self) -> $t {
|
||||
if self.is_negative() { -*self } else { *self }
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn abs_sub(&self, other: &$t) -> $t {
|
||||
if *self <= *other { 0 } else { *self - *other }
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn signum(&self) -> $t {
|
||||
match *self {
|
||||
n if n > 0 => 1,
|
||||
0 => 0,
|
||||
_ => -1,
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn is_positive(&self) -> bool { *self > 0 }
|
||||
|
||||
#[inline]
|
||||
fn is_negative(&self) -> bool { *self < 0 }
|
||||
}
|
||||
)*)
|
||||
}
|
||||
|
||||
signed_impl!(isize i8 i16 i32 i64);
|
||||
|
||||
macro_rules! signed_float_impl {
|
||||
($t:ty, $nan:expr, $inf:expr, $neg_inf:expr) => {
|
||||
impl Signed for $t {
|
||||
/// Computes the absolute value. Returns `NAN` if the number is `NAN`.
|
||||
#[inline]
|
||||
fn abs(&self) -> $t {
|
||||
<$t>::abs(*self)
|
||||
}
|
||||
|
||||
/// The positive difference of two numbers. Returns `0.0` if the number is
|
||||
/// less than or equal to `other`, otherwise the difference between`self`
|
||||
/// and `other` is returned.
|
||||
#[inline]
|
||||
fn abs_sub(&self, other: &$t) -> $t {
|
||||
<$t>::abs_sub(*self, *other)
|
||||
}
|
||||
|
||||
/// # Returns
|
||||
///
|
||||
/// - `1.0` if the number is positive, `+0.0` or `INFINITY`
|
||||
/// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
|
||||
/// - `NAN` if the number is NaN
|
||||
#[inline]
|
||||
fn signum(&self) -> $t {
|
||||
<$t>::signum(*self)
|
||||
}
|
||||
|
||||
/// Returns `true` if the number is positive, including `+0.0` and `INFINITY`
|
||||
#[inline]
|
||||
fn is_positive(&self) -> bool { *self > 0.0 || (1.0 / *self) == $inf }
|
||||
|
||||
/// Returns `true` if the number is negative, including `-0.0` and `NEG_INFINITY`
|
||||
#[inline]
|
||||
fn is_negative(&self) -> bool { *self < 0.0 || (1.0 / *self) == $neg_inf }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
signed_float_impl!(f32, f32::NAN, f32::INFINITY, f32::NEG_INFINITY);
|
||||
signed_float_impl!(f64, f64::NAN, f64::INFINITY, f64::NEG_INFINITY);
|
||||
|
||||
/// A trait for values which cannot be negative
|
||||
pub trait Unsigned: Num {}
|
||||
|
||||
macro_rules! empty_trait_impl {
|
||||
($name:ident for $($t:ty)*) => ($(
|
||||
impl $name for $t {}
|
||||
)*)
|
||||
}
|
||||
|
||||
empty_trait_impl!(Unsigned for usize u8 u16 u32 u64);
|
Loading…
Reference in New Issue