binomial: Discuss overflow
This commit is contained in:
parent
a7b459c05e
commit
0fc6cb15a5
|
@ -676,6 +676,23 @@ impl<T> IterBinomial<T>
|
|||
where T: Integer,
|
||||
{
|
||||
/// For a given n, iterate over all binomial coefficients binomial(n, k), for k=0...n.
|
||||
///
|
||||
/// Note that this might overflow, depending on `T`. For the primitive
|
||||
/// integer types, the following n are the largest ones for which there will
|
||||
/// be no overflow:
|
||||
///
|
||||
/// type | n
|
||||
/// -----|---
|
||||
/// u8 | 10
|
||||
/// i8 | 9
|
||||
/// u16 | 18
|
||||
/// i16 | 17
|
||||
/// u32 | 34
|
||||
/// i32 | 33
|
||||
/// u64 | 67
|
||||
/// i64 | 66
|
||||
///
|
||||
/// For larger n, `T` should be a bigint type.
|
||||
pub fn new(n: T) -> IterBinomial<T> {
|
||||
IterBinomial {
|
||||
k: T::zero(), a: T::one(), n: n
|
||||
|
@ -716,6 +733,23 @@ fn multiply_and_divide<T: Integer + Clone>(r: T, a: T, b: T) -> T {
|
|||
}
|
||||
|
||||
/// Calculate the binomial coefficient.
|
||||
///
|
||||
/// Note that this might overflow, depending on `T`. For the primitive integer
|
||||
/// types, the following n are the largest ones possible such that there will
|
||||
/// be no overflow for any k:
|
||||
///
|
||||
/// type | n
|
||||
/// -----|---
|
||||
/// u8 | 10
|
||||
/// i8 | 9
|
||||
/// u16 | 18
|
||||
/// i16 | 17
|
||||
/// u32 | 34
|
||||
/// i32 | 33
|
||||
/// u64 | 67
|
||||
/// i64 | 66
|
||||
///
|
||||
/// For larger n, consider using a bigint type for `T`.
|
||||
pub fn binomial<T: Integer + Clone>(mut n: T, k: T) -> T {
|
||||
// See http://blog.plover.com/math/choose.html for the idea.
|
||||
if k > n {
|
||||
|
|
Loading…
Reference in New Issue