binomial: Discuss overflow

This commit is contained in:
Vinzent Steinberg 2017-03-29 14:12:05 +02:00
parent a7b459c05e
commit 0fc6cb15a5
1 changed files with 34 additions and 0 deletions

View File

@ -676,6 +676,23 @@ impl<T> IterBinomial<T>
where T: Integer,
{
/// For a given n, iterate over all binomial coefficients binomial(n, k), for k=0...n.
///
/// Note that this might overflow, depending on `T`. For the primitive
/// integer types, the following n are the largest ones for which there will
/// be no overflow:
///
/// type | n
/// -----|---
/// u8 | 10
/// i8 | 9
/// u16 | 18
/// i16 | 17
/// u32 | 34
/// i32 | 33
/// u64 | 67
/// i64 | 66
///
/// For larger n, `T` should be a bigint type.
pub fn new(n: T) -> IterBinomial<T> {
IterBinomial {
k: T::zero(), a: T::one(), n: n
@ -716,6 +733,23 @@ fn multiply_and_divide<T: Integer + Clone>(r: T, a: T, b: T) -> T {
}
/// Calculate the binomial coefficient.
///
/// Note that this might overflow, depending on `T`. For the primitive integer
/// types, the following n are the largest ones possible such that there will
/// be no overflow for any k:
///
/// type | n
/// -----|---
/// u8 | 10
/// i8 | 9
/// u16 | 18
/// i16 | 17
/// u32 | 34
/// i32 | 33
/// u64 | 67
/// i64 | 66
///
/// For larger n, consider using a bigint type for `T`.
pub fn binomial<T: Integer + Clone>(mut n: T, k: T) -> T {
// See http://blog.plover.com/math/choose.html for the idea.
if k > n {