Added powc, powf, log and expf methods for complex numbers

This commit is contained in:
Christian Liebhardt 2016-04-15 09:57:32 -07:00
parent 0861fb4cfb
commit 24fcc1575a
1 changed files with 99 additions and 3 deletions

View File

@ -120,7 +120,8 @@ impl<T: Clone + Float> Complex<T> {
#[inline] #[inline]
pub fn exp(&self) -> Complex<T> { pub fn exp(&self) -> Complex<T> {
// formula: e^(a + bi) = e^a (cos(b) + i*sin(b)) // formula: e^(a + bi) = e^a (cos(b) + i*sin(b))
Complex::new(self.im.cos(), self.im.sin()).scale(self.re.exp()) // = from_polar(e^a, b)
Complex::from_polar(&self.re.exp(), &self.im)
} }
/// Computes the principal value of natural logarithm of `self`. /// Computes the principal value of natural logarithm of `self`.
@ -133,7 +134,8 @@ impl<T: Clone + Float> Complex<T> {
#[inline] #[inline]
pub fn ln(&self) -> Complex<T> { pub fn ln(&self) -> Complex<T> {
// formula: ln(z) = ln|z| + i*arg(z) // formula: ln(z) = ln|z| + i*arg(z)
Complex::new(self.norm().ln(), self.arg()) let (r, theta) = self.to_polar();
Complex::new(r.ln(), theta)
} }
/// Computes the principal value of the square root of `self`. /// Computes the principal value of the square root of `self`.
@ -151,6 +153,53 @@ impl<T: Clone + Float> Complex<T> {
Complex::from_polar(&(r.sqrt()), &(theta/two)) Complex::from_polar(&(r.sqrt()), &(theta/two))
} }
/// Raises `self` to a floating point power.
#[inline]
pub fn powf(&self, exp: T) -> Complex<T> {
// formula: x^y = (ρ e^(i θ))^y = ρ^y e^(i θ y)
// = from_polar(ρ^y, θ y)
let (r, theta) = self.to_polar();
Complex::from_polar(&r.powf(exp), &(theta*exp))
}
/// Returns the logarithm of `self` with respect to an arbitrary base.
#[inline]
pub fn log(&self, base: T) -> Complex<T> {
// formula: log_y(x) = log_y(ρ e^(i θ))
// = log_y(ρ) + log_y(e^(i θ)) = log_y(ρ) + ln(e^(i θ)) / ln(y)
// = log_y(ρ) + i θ / ln(y)
let (r, theta) = self.to_polar();
Complex::new(r.log(base), theta / base.ln())
}
/// Raises `self` to a complex power.
#[inline]
pub fn powc(&self, exp: Complex<T>) -> Complex<T> {
// formula: x^y = (a + i b)^(c + i d)
// = (ρ e^(i θ))^c (ρ e^(i θ))^(i d)
// where ρ=|x| and θ=arg(x)
// = ρ^c e^(d θ) e^(i c θ) ρ^(i d)
// = p^c e^(d θ) (cos(c θ)
// + i sin(c θ)) (cos(d ln(ρ)) + i sin(d ln(ρ)))
// = p^c e^(d θ) (
// cos(c θ) cos(d ln(ρ)) sin(c θ) sin(d ln(ρ))
// + i(cos(c θ) sin(d ln(ρ)) + sin(c θ) cos(d ln(ρ))))
// = p^c e^(d θ) (cos(c θ + d ln(ρ)) + i sin(c θ + d ln(ρ)))
// = from_polar(p^c e^(d θ), c θ + d ln(ρ))
let (r, theta) = self.to_polar();
Complex::from_polar(
&(r.powf(exp.re) * (-exp.im * theta).exp()),
&(exp.re * theta + exp.im * r.ln()))
}
/// Raises a floating point number to the complex power `self`.
#[inline]
pub fn expf(&self, base: T) -> Complex<T> {
// formula: x^(a+bi) = x^a x^bi = x^a e^(b ln(x) i)
// = from_polar(x^a, b ln(x))
Complex::from_polar(&base.powf(self.re), &(self.im * base.ln()))
}
/// Computes the sine of `self`. /// Computes the sine of `self`.
#[inline] #[inline]
pub fn sin(&self) -> Complex<T> { pub fn sin(&self) -> Complex<T> {
@ -716,8 +765,12 @@ mod test {
} }
fn close(a: Complex64, b: Complex64) -> bool { fn close(a: Complex64, b: Complex64) -> bool {
close_to_tol(a, b, 1e-10)
}
fn close_to_tol(a: Complex64, b: Complex64, tol: f64) -> bool {
// returns true if a and b are reasonably close // returns true if a and b are reasonably close
(a == b) || (a-b).norm() < 1e-10 (a == b) || (a-b).norm() < tol
} }
#[test] #[test]
@ -749,6 +802,49 @@ mod test {
} }
} }
#[test]
fn test_powc()
{
let a = Complex::new(2.0, -3.0);
let b = Complex::new(3.0, 0.0);
assert!(close(a.powc(b), a.powf(b.re)));
assert!(close(b.powc(a), a.expf(b.re)));
let c = Complex::new(1.0 / 3.0, 0.1);
assert!(close_to_tol(a.powc(c), Complex::new(1.65826, -0.33502), 1e-5));
}
#[test]
fn test_powf()
{
let c = Complex::new(2.0, -1.0);
let r = c.powf(3.5);
assert!(close_to_tol(r, Complex::new(-0.8684746, -16.695934), 1e-5));
}
#[test]
fn test_log()
{
let c = Complex::new(2.0, -1.0);
let r = c.log(10.0);
assert!(close_to_tol(r, Complex::new(0.349485, -0.20135958), 1e-5));
}
#[test]
fn test_some_expf_cases()
{
let c = Complex::new(2.0, -1.0);
let r = c.expf(10.0);
assert!(close_to_tol(r, Complex::new(-66.82015, -74.39803), 1e-5));
let c = Complex::new(5.0, -2.0);
let r = c.expf(3.4);
assert!(close_to_tol(r, Complex::new(-349.25, -290.63), 1e-2));
let c = Complex::new(-1.5, 2.0 / 3.0);
let r = c.expf(1.0 / 3.0);
assert!(close_to_tol(r, Complex::new(3.8637, -3.4745), 1e-2));
}
#[test] #[test]
fn test_sqrt() { fn test_sqrt() {
assert!(close(_0_0i.sqrt(), _0_0i)); assert!(close(_0_0i.sqrt(), _0_0i));