Added powc, powf, log and expf methods for complex numbers
This commit is contained in:
parent
0861fb4cfb
commit
24fcc1575a
|
@ -120,7 +120,8 @@ impl<T: Clone + Float> Complex<T> {
|
||||||
#[inline]
|
#[inline]
|
||||||
pub fn exp(&self) -> Complex<T> {
|
pub fn exp(&self) -> Complex<T> {
|
||||||
// formula: e^(a + bi) = e^a (cos(b) + i*sin(b))
|
// formula: e^(a + bi) = e^a (cos(b) + i*sin(b))
|
||||||
Complex::new(self.im.cos(), self.im.sin()).scale(self.re.exp())
|
// = from_polar(e^a, b)
|
||||||
|
Complex::from_polar(&self.re.exp(), &self.im)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Computes the principal value of natural logarithm of `self`.
|
/// Computes the principal value of natural logarithm of `self`.
|
||||||
|
@ -133,7 +134,8 @@ impl<T: Clone + Float> Complex<T> {
|
||||||
#[inline]
|
#[inline]
|
||||||
pub fn ln(&self) -> Complex<T> {
|
pub fn ln(&self) -> Complex<T> {
|
||||||
// formula: ln(z) = ln|z| + i*arg(z)
|
// formula: ln(z) = ln|z| + i*arg(z)
|
||||||
Complex::new(self.norm().ln(), self.arg())
|
let (r, theta) = self.to_polar();
|
||||||
|
Complex::new(r.ln(), theta)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Computes the principal value of the square root of `self`.
|
/// Computes the principal value of the square root of `self`.
|
||||||
|
@ -151,6 +153,53 @@ impl<T: Clone + Float> Complex<T> {
|
||||||
Complex::from_polar(&(r.sqrt()), &(theta/two))
|
Complex::from_polar(&(r.sqrt()), &(theta/two))
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Raises `self` to a floating point power.
|
||||||
|
#[inline]
|
||||||
|
pub fn powf(&self, exp: T) -> Complex<T> {
|
||||||
|
// formula: x^y = (ρ e^(i θ))^y = ρ^y e^(i θ y)
|
||||||
|
// = from_polar(ρ^y, θ y)
|
||||||
|
let (r, theta) = self.to_polar();
|
||||||
|
Complex::from_polar(&r.powf(exp), &(theta*exp))
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns the logarithm of `self` with respect to an arbitrary base.
|
||||||
|
#[inline]
|
||||||
|
pub fn log(&self, base: T) -> Complex<T> {
|
||||||
|
// formula: log_y(x) = log_y(ρ e^(i θ))
|
||||||
|
// = log_y(ρ) + log_y(e^(i θ)) = log_y(ρ) + ln(e^(i θ)) / ln(y)
|
||||||
|
// = log_y(ρ) + i θ / ln(y)
|
||||||
|
let (r, theta) = self.to_polar();
|
||||||
|
Complex::new(r.log(base), theta / base.ln())
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Raises `self` to a complex power.
|
||||||
|
#[inline]
|
||||||
|
pub fn powc(&self, exp: Complex<T>) -> Complex<T> {
|
||||||
|
// formula: x^y = (a + i b)^(c + i d)
|
||||||
|
// = (ρ e^(i θ))^c (ρ e^(i θ))^(i d)
|
||||||
|
// where ρ=|x| and θ=arg(x)
|
||||||
|
// = ρ^c e^(−d θ) e^(i c θ) ρ^(i d)
|
||||||
|
// = p^c e^(−d θ) (cos(c θ)
|
||||||
|
// + i sin(c θ)) (cos(d ln(ρ)) + i sin(d ln(ρ)))
|
||||||
|
// = p^c e^(−d θ) (
|
||||||
|
// cos(c θ) cos(d ln(ρ)) − sin(c θ) sin(d ln(ρ))
|
||||||
|
// + i(cos(c θ) sin(d ln(ρ)) + sin(c θ) cos(d ln(ρ))))
|
||||||
|
// = p^c e^(−d θ) (cos(c θ + d ln(ρ)) + i sin(c θ + d ln(ρ)))
|
||||||
|
// = from_polar(p^c e^(−d θ), c θ + d ln(ρ))
|
||||||
|
let (r, theta) = self.to_polar();
|
||||||
|
Complex::from_polar(
|
||||||
|
&(r.powf(exp.re) * (-exp.im * theta).exp()),
|
||||||
|
&(exp.re * theta + exp.im * r.ln()))
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Raises a floating point number to the complex power `self`.
|
||||||
|
#[inline]
|
||||||
|
pub fn expf(&self, base: T) -> Complex<T> {
|
||||||
|
// formula: x^(a+bi) = x^a x^bi = x^a e^(b ln(x) i)
|
||||||
|
// = from_polar(x^a, b ln(x))
|
||||||
|
Complex::from_polar(&base.powf(self.re), &(self.im * base.ln()))
|
||||||
|
}
|
||||||
|
|
||||||
/// Computes the sine of `self`.
|
/// Computes the sine of `self`.
|
||||||
#[inline]
|
#[inline]
|
||||||
pub fn sin(&self) -> Complex<T> {
|
pub fn sin(&self) -> Complex<T> {
|
||||||
|
@ -716,8 +765,12 @@ mod test {
|
||||||
}
|
}
|
||||||
|
|
||||||
fn close(a: Complex64, b: Complex64) -> bool {
|
fn close(a: Complex64, b: Complex64) -> bool {
|
||||||
|
close_to_tol(a, b, 1e-10)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn close_to_tol(a: Complex64, b: Complex64, tol: f64) -> bool {
|
||||||
// returns true if a and b are reasonably close
|
// returns true if a and b are reasonably close
|
||||||
(a == b) || (a-b).norm() < 1e-10
|
(a == b) || (a-b).norm() < tol
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
|
@ -749,6 +802,49 @@ mod test {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_powc()
|
||||||
|
{
|
||||||
|
let a = Complex::new(2.0, -3.0);
|
||||||
|
let b = Complex::new(3.0, 0.0);
|
||||||
|
assert!(close(a.powc(b), a.powf(b.re)));
|
||||||
|
assert!(close(b.powc(a), a.expf(b.re)));
|
||||||
|
let c = Complex::new(1.0 / 3.0, 0.1);
|
||||||
|
assert!(close_to_tol(a.powc(c), Complex::new(1.65826, -0.33502), 1e-5));
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_powf()
|
||||||
|
{
|
||||||
|
let c = Complex::new(2.0, -1.0);
|
||||||
|
let r = c.powf(3.5);
|
||||||
|
assert!(close_to_tol(r, Complex::new(-0.8684746, -16.695934), 1e-5));
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_log()
|
||||||
|
{
|
||||||
|
let c = Complex::new(2.0, -1.0);
|
||||||
|
let r = c.log(10.0);
|
||||||
|
assert!(close_to_tol(r, Complex::new(0.349485, -0.20135958), 1e-5));
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_some_expf_cases()
|
||||||
|
{
|
||||||
|
let c = Complex::new(2.0, -1.0);
|
||||||
|
let r = c.expf(10.0);
|
||||||
|
assert!(close_to_tol(r, Complex::new(-66.82015, -74.39803), 1e-5));
|
||||||
|
|
||||||
|
let c = Complex::new(5.0, -2.0);
|
||||||
|
let r = c.expf(3.4);
|
||||||
|
assert!(close_to_tol(r, Complex::new(-349.25, -290.63), 1e-2));
|
||||||
|
|
||||||
|
let c = Complex::new(-1.5, 2.0 / 3.0);
|
||||||
|
let r = c.expf(1.0 / 3.0);
|
||||||
|
assert!(close_to_tol(r, Complex::new(3.8637, -3.4745), 1e-2));
|
||||||
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_sqrt() {
|
fn test_sqrt() {
|
||||||
assert!(close(_0_0i.sqrt(), _0_0i));
|
assert!(close(_0_0i.sqrt(), _0_0i));
|
||||||
|
|
Loading…
Reference in New Issue