Merge pull request #112 from Emerentius/master

Implement Stein's algorithm for gcd
This commit is contained in:
Łukasz Niemier 2015-10-15 13:25:33 +02:00
commit 2e4afbc9ba
1 changed files with 113 additions and 11 deletions

View File

@ -217,15 +217,41 @@ macro_rules! impl_integer_for_isize {
/// `other`. The result is always positive. /// `other`. The result is always positive.
#[inline] #[inline]
fn gcd(&self, other: &$T) -> $T { fn gcd(&self, other: &$T) -> $T {
// Use Euclid's algorithm // Use Stein's algorithm
let mut m = *self; let mut m = *self;
let mut n = *other; let mut n = *other;
while m != 0 { if m == 0 || n == 0 { return (m | n).abs() }
let temp = m;
m = n % temp; // find common factors of 2
n = temp; let shift = (m | n).trailing_zeros();
// The algorithm needs positive numbers, but the minimum value
// can't be represented as a positive one.
// It's also a power of two, so the gcd can be
// calculated by bitshifting in that case
// Assuming two's complement, the number created by the shift
// is positive for all numbers except gcd = abs(min value)
// The call to .abs() causes a panic in debug mode
if m == <$T>::min_value() || n == <$T>::min_value() {
return (1 << shift).abs()
} }
n.abs()
// guaranteed to be positive now, rest like unsigned algorithm
m = m.abs();
n = n.abs();
// divide n and m by 2 until odd
// m inside loop
n >>= n.trailing_zeros();
while m != 0 {
m >>= m.trailing_zeros();
if n > m { ::std::mem::swap(&mut n, &mut m) }
m -= n;
}
n << shift
} }
/// Calculates the Lowest Common Multiple (LCM) of the number and /// Calculates the Lowest Common Multiple (LCM) of the number and
@ -334,6 +360,47 @@ macro_rules! impl_integer_for_isize {
assert_eq!((-6 as $T).gcd(&3), 3 as $T); assert_eq!((-6 as $T).gcd(&3), 3 as $T);
assert_eq!((-4 as $T).gcd(&-2), 2 as $T); assert_eq!((-4 as $T).gcd(&-2), 2 as $T);
} }
#[test]
fn test_gcd_cmp_with_euclidean() {
fn euclidean_gcd(mut m: $T, mut n: $T) -> $T {
while m != 0 {
::std::mem::swap(&mut m, &mut n);
m %= n;
}
n.abs()
}
// gcd(-128, b) = 128 is not representable as positive value
// for i8
for i in -127..127 {
for j in -127..127 {
assert_eq!(euclidean_gcd(i,j), i.gcd(&j));
}
}
// last value
// FIXME: Use inclusive ranges for above loop when implemented
let i = 127;
for j in -127..127 {
assert_eq!(euclidean_gcd(i,j), i.gcd(&j));
}
assert_eq!(127.gcd(&127), 127);
}
#[test]
#[should_panic]
fn test_gcd_min_val_min_val() {
let min = <$T>::min_value();
min.gcd(&min);
}
#[test]
#[should_panic]
fn test_gcd_min_val_0() {
let min = <$T>::min_value();
min.gcd(&0);
}
#[test] #[test]
fn test_lcm() { fn test_lcm() {
@ -396,15 +463,25 @@ macro_rules! impl_integer_for_usize {
/// Calculates the Greatest Common Divisor (GCD) of the number and `other` /// Calculates the Greatest Common Divisor (GCD) of the number and `other`
#[inline] #[inline]
fn gcd(&self, other: &$T) -> $T { fn gcd(&self, other: &$T) -> $T {
// Use Euclid's algorithm // Use Stein's algorithm
let mut m = *self; let mut m = *self;
let mut n = *other; let mut n = *other;
if m == 0 || n == 0 { return m | n }
// find common factors of 2
let shift = (m | n).trailing_zeros();
// divide n and m by 2 until odd
// m inside loop
n >>= n.trailing_zeros();
while m != 0 { while m != 0 {
let temp = m; m >>= m.trailing_zeros();
m = n % temp; if n > m { ::std::mem::swap(&mut n, &mut m) }
n = temp; m -= n;
} }
n
n << shift
} }
/// Calculates the Lowest Common Multiple (LCM) of the number and `other`. /// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
@ -462,6 +539,31 @@ macro_rules! impl_integer_for_usize {
assert_eq!((56 as $T).gcd(&42), 14 as $T); assert_eq!((56 as $T).gcd(&42), 14 as $T);
} }
#[test]
fn test_gcd_cmp_with_euclidean() {
fn euclidean_gcd(mut m: $T, mut n: $T) -> $T {
while m != 0 {
::std::mem::swap(&mut m, &mut n);
m %= n;
}
n
}
for i in 0..255 {
for j in 0..255 {
assert_eq!(euclidean_gcd(i,j), i.gcd(&j));
}
}
// last value
// FIXME: Use inclusive ranges for above loop when implemented
let i = 255;
for j in 0..255 {
assert_eq!(euclidean_gcd(i,j), i.gcd(&j));
}
assert_eq!(255.gcd(&255), 255);
}
#[test] #[test]
fn test_lcm() { fn test_lcm() {
assert_eq!((1 as $T).lcm(&0), 0 as $T); assert_eq!((1 as $T).lcm(&0), 0 as $T);