traits: Introduce std feature
This makes it possible to build `traits` without `std`. For this a new trait `BasicFloat` was introduced, implementing some basic functionality that works with `core`. Most notably this is lacking functions like `cos`, `sin`, etc. `Float` is not available without `std`. Refs #216.
This commit is contained in:
parent
ef752e4687
commit
351dfc6383
|
@ -10,3 +10,7 @@ name = "num-traits"
|
|||
version = "0.1.37"
|
||||
|
||||
[dependencies]
|
||||
|
||||
[features]
|
||||
default = ["std"]
|
||||
std = []
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
use std::{usize, u8, u16, u32, u64};
|
||||
use std::{isize, i8, i16, i32, i64};
|
||||
use std::{f32, f64};
|
||||
use std::num::Wrapping;
|
||||
use core::{usize, u8, u16, u32, u64};
|
||||
use core::{isize, i8, i16, i32, i64};
|
||||
use core::{f32, f64};
|
||||
use core::num::Wrapping;
|
||||
|
||||
/// Numbers which have upper and lower bounds
|
||||
pub trait Bounded {
|
||||
|
|
|
@ -1,8 +1,9 @@
|
|||
use std::mem::size_of;
|
||||
use std::num::Wrapping;
|
||||
use core::mem::size_of;
|
||||
use core::num::Wrapping;
|
||||
|
||||
use identities::Zero;
|
||||
use bounds::Bounded;
|
||||
use float::BasicFloat;
|
||||
|
||||
/// A generic trait for converting a value to a number.
|
||||
pub trait ToPrimitive {
|
||||
|
@ -226,8 +227,8 @@ macro_rules! impl_to_primitive_float_to_float {
|
|||
// Make sure the value is in range for the cast.
|
||||
// NaN and +-inf are cast as they are.
|
||||
let n = $slf as f64;
|
||||
let max_value: $DstT = ::std::$DstT::MAX;
|
||||
if !n.is_finite() || (-max_value as f64 <= n && n <= max_value as f64) {
|
||||
let max_value: $DstT = ::core::$DstT::MAX;
|
||||
if !BasicFloat::is_finite(n) || (-max_value as f64 <= n && n <= max_value as f64) {
|
||||
Some($slf as $DstT)
|
||||
} else {
|
||||
None
|
||||
|
@ -454,8 +455,8 @@ impl<T: NumCast> NumCast for Wrapping<T> {
|
|||
|
||||
#[test]
|
||||
fn to_primitive_float() {
|
||||
use std::f32;
|
||||
use std::f64;
|
||||
use core::f32;
|
||||
use core::f64;
|
||||
|
||||
let f32_toolarge = 1e39f64;
|
||||
assert_eq!(f32_toolarge.to_f32(), None);
|
||||
|
|
|
@ -1,15 +1,209 @@
|
|||
use std::mem;
|
||||
use std::ops::Neg;
|
||||
use std::num::FpCategory;
|
||||
use core::mem;
|
||||
use core::ops::Neg;
|
||||
use core::num::FpCategory;
|
||||
|
||||
// Used for default implementation of `epsilon`
|
||||
use std::f32;
|
||||
use core::f32;
|
||||
|
||||
use {Num, NumCast};
|
||||
|
||||
/// Basic floating point operations that work with `core`.
|
||||
pub trait BasicFloat: Num + Neg<Output = Self> + PartialOrd + Copy {
|
||||
/// Returns positive infinity.
|
||||
#[inline]
|
||||
fn infinity() -> Self;
|
||||
|
||||
/// Returns negative infinity.
|
||||
#[inline]
|
||||
fn neg_infinity() -> Self;
|
||||
|
||||
/// Returns NaN.
|
||||
#[inline]
|
||||
fn nan() -> Self;
|
||||
|
||||
/// Returns `true` if the number is NaN.
|
||||
#[inline]
|
||||
fn is_nan(self) -> bool {
|
||||
self != self
|
||||
}
|
||||
|
||||
/// Returns `true` if the number is infinite.
|
||||
#[inline]
|
||||
fn is_infinite(self) -> bool {
|
||||
self == Self::infinity() || self == Self::neg_infinity()
|
||||
}
|
||||
|
||||
/// Returns `true` if the number is neither infinite or NaN.
|
||||
#[inline]
|
||||
fn is_finite(self) -> bool {
|
||||
!(self.is_nan() || self.is_infinite())
|
||||
}
|
||||
|
||||
/// Returns `true` if the number is neither zero, infinite, subnormal or NaN.
|
||||
#[inline]
|
||||
fn is_normal(self) -> bool {
|
||||
self.classify() == FpCategory::Normal
|
||||
}
|
||||
|
||||
/// Returns the floating point category of the number. If only one property
|
||||
/// is going to be tested, it is generally faster to use the specific
|
||||
/// predicate instead.
|
||||
#[inline]
|
||||
fn classify(self) -> FpCategory;
|
||||
|
||||
/// Computes the absolute value of `self`. Returns `BasicFloat::nan()` if the
|
||||
/// number is `BasicFloat::nan()`.
|
||||
#[inline]
|
||||
fn abs(self) -> Self {
|
||||
if self.is_sign_positive() {
|
||||
return self;
|
||||
}
|
||||
if self.is_sign_negative() {
|
||||
return -self;
|
||||
}
|
||||
Self::nan()
|
||||
}
|
||||
|
||||
/// Returns a number that represents the sign of `self`.
|
||||
///
|
||||
/// - `1.0` if the number is positive, `+0.0` or `BasicFloat::infinity()`
|
||||
/// - `-1.0` if the number is negative, `-0.0` or `BasicFloat::neg_infinity()`
|
||||
/// - `BasicFloat::nan()` if the number is `BasicFloat::nan()`
|
||||
#[inline]
|
||||
fn signum(self) -> Self {
|
||||
if self.is_sign_positive() {
|
||||
return Self::one();
|
||||
}
|
||||
if self.is_sign_negative() {
|
||||
return -Self::one();
|
||||
}
|
||||
Self::nan()
|
||||
}
|
||||
|
||||
/// Returns `true` if `self` is positive, including `+0.0` and
|
||||
/// `BasicFloat::infinity()`.
|
||||
#[inline]
|
||||
fn is_sign_positive(self) -> bool {
|
||||
self > Self::zero() || (Self::one() / self) == Self::infinity()
|
||||
}
|
||||
|
||||
/// Returns `true` if `self` is negative, including `-0.0` and
|
||||
/// `BasicFloat::neg_infinity()`.
|
||||
#[inline]
|
||||
fn is_sign_negative(self) -> bool {
|
||||
self < Self::zero() || (Self::one() / self) == Self::neg_infinity()
|
||||
}
|
||||
|
||||
/// Returns the reciprocal (multiplicative inverse) of the number.
|
||||
#[inline]
|
||||
fn recip(self) -> Self {
|
||||
Self::one() / self
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn powi(self, mut exp: i32) -> Self {
|
||||
if exp == 0 { return Self::one() }
|
||||
|
||||
let mut base;
|
||||
if exp < 0 {
|
||||
exp = -exp;
|
||||
base = self.recip();
|
||||
} else {
|
||||
base = self;
|
||||
}
|
||||
|
||||
while exp & 1 == 0 {
|
||||
base = base * base;
|
||||
exp >>= 1;
|
||||
}
|
||||
if exp == 1 { return base }
|
||||
|
||||
let mut acc = base;
|
||||
while exp > 1 {
|
||||
exp >>= 1;
|
||||
base = base * base;
|
||||
if exp & 1 == 1 {
|
||||
acc = acc * base;
|
||||
}
|
||||
}
|
||||
acc
|
||||
}
|
||||
|
||||
/// Converts to degrees, assuming the number is in radians.
|
||||
#[inline]
|
||||
fn to_degrees(self) -> Self;
|
||||
|
||||
/// Converts to radians, assuming the number is in degrees.
|
||||
#[inline]
|
||||
fn to_radians(self) -> Self;
|
||||
}
|
||||
|
||||
impl BasicFloat for f32 {
|
||||
fn infinity() -> Self {
|
||||
::core::f32::INFINITY
|
||||
}
|
||||
fn neg_infinity() -> Self {
|
||||
::core::f32::INFINITY
|
||||
}
|
||||
fn nan() -> Self {
|
||||
::core::f32::NAN
|
||||
}
|
||||
fn classify(self) -> FpCategory {
|
||||
const EXP_MASK: u32 = 0x7f800000;
|
||||
const MAN_MASK: u32 = 0x007fffff;
|
||||
|
||||
let bits: u32 = unsafe { mem::transmute(self) };
|
||||
match (bits & MAN_MASK, bits & EXP_MASK) {
|
||||
(0, 0) => FpCategory::Zero,
|
||||
(_, 0) => FpCategory::Subnormal,
|
||||
(0, EXP_MASK) => FpCategory::Infinite,
|
||||
(_, EXP_MASK) => FpCategory::Nan,
|
||||
_ => FpCategory::Normal,
|
||||
}
|
||||
}
|
||||
fn to_degrees(self) -> Self {
|
||||
self * (180.0 / ::core::f32::consts::PI)
|
||||
}
|
||||
fn to_radians(self) -> Self {
|
||||
self * (::core::f32::consts::PI / 180.0)
|
||||
}
|
||||
}
|
||||
|
||||
impl BasicFloat for f64 {
|
||||
fn infinity() -> Self {
|
||||
::core::f64::INFINITY
|
||||
}
|
||||
fn neg_infinity() -> Self {
|
||||
::core::f64::INFINITY
|
||||
}
|
||||
fn nan() -> Self {
|
||||
::core::f64::NAN
|
||||
}
|
||||
fn classify(self) -> FpCategory {
|
||||
const EXP_MASK: u64 = 0x7ff0000000000000;
|
||||
const MAN_MASK: u64 = 0x000fffffffffffff;
|
||||
|
||||
let bits: u64 = unsafe { mem::transmute(self) };
|
||||
match (bits & MAN_MASK, bits & EXP_MASK) {
|
||||
(0, 0) => FpCategory::Zero,
|
||||
(_, 0) => FpCategory::Subnormal,
|
||||
(0, EXP_MASK) => FpCategory::Infinite,
|
||||
(_, EXP_MASK) => FpCategory::Nan,
|
||||
_ => FpCategory::Normal,
|
||||
}
|
||||
}
|
||||
fn to_degrees(self) -> Self {
|
||||
self * (180.0 / ::core::f64::consts::PI)
|
||||
}
|
||||
fn to_radians(self) -> Self {
|
||||
self * (::core::f64::consts::PI / 180.0)
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: these doctests aren't actually helpful, because they're using and
|
||||
// testing the inherent methods directly, not going through `Float`.
|
||||
|
||||
/// Floating point operations that work with `std`.
|
||||
pub trait Float
|
||||
: Num
|
||||
+ Copy
|
||||
|
@ -930,17 +1124,17 @@ macro_rules! float_impl {
|
|||
impl Float for $T {
|
||||
#[inline]
|
||||
fn nan() -> Self {
|
||||
::std::$T::NAN
|
||||
::core::$T::NAN
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn infinity() -> Self {
|
||||
::std::$T::INFINITY
|
||||
::core::$T::INFINITY
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn neg_infinity() -> Self {
|
||||
::std::$T::NEG_INFINITY
|
||||
::core::$T::NEG_INFINITY
|
||||
}
|
||||
|
||||
#[inline]
|
||||
|
@ -950,22 +1144,22 @@ macro_rules! float_impl {
|
|||
|
||||
#[inline]
|
||||
fn min_value() -> Self {
|
||||
::std::$T::MIN
|
||||
::core::$T::MIN
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn min_positive_value() -> Self {
|
||||
::std::$T::MIN_POSITIVE
|
||||
::core::$T::MIN_POSITIVE
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn epsilon() -> Self {
|
||||
::std::$T::EPSILON
|
||||
::core::$T::EPSILON
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn max_value() -> Self {
|
||||
::std::$T::MAX
|
||||
::core::$T::MAX
|
||||
}
|
||||
|
||||
#[inline]
|
||||
|
@ -1097,14 +1291,14 @@ macro_rules! float_impl {
|
|||
fn to_degrees(self) -> Self {
|
||||
// NB: `f32` didn't stabilize this until 1.7
|
||||
// <$T>::to_degrees(self)
|
||||
self * (180. / ::std::$T::consts::PI)
|
||||
self * (180. / ::core::$T::consts::PI)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn to_radians(self) -> Self {
|
||||
// NB: `f32` didn't stabilize this until 1.7
|
||||
// <$T>::to_radians(self)
|
||||
self * (::std::$T::consts::PI / 180.)
|
||||
self * (::core::$T::consts::PI / 180.)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
|
@ -1257,7 +1451,9 @@ fn integer_decode_f64(f: f64) -> (u64, i16, i8) {
|
|||
(mantissa, exponent, sign)
|
||||
}
|
||||
|
||||
#[cfg(feature = "std")]
|
||||
float_impl!(f32 integer_decode_f32);
|
||||
#[cfg(feature = "std")]
|
||||
float_impl!(f64 integer_decode_f64);
|
||||
|
||||
macro_rules! float_const_impl {
|
||||
|
@ -1274,7 +1470,7 @@ macro_rules! float_const_impl {
|
|||
$(
|
||||
#[inline]
|
||||
fn $constant() -> Self {
|
||||
::std::$T::consts::$constant
|
||||
::core::$T::consts::$constant
|
||||
}
|
||||
)+
|
||||
}
|
||||
|
@ -1318,11 +1514,8 @@ float_const_impl! {
|
|||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use Float;
|
||||
|
||||
#[test]
|
||||
fn convert_deg_rad() {
|
||||
use std::f64::consts;
|
||||
use BasicFloat;
|
||||
use core::f64::consts;
|
||||
|
||||
const DEG_RAD_PAIRS: [(f64, f64); 7] = [
|
||||
(0.0, 0.),
|
||||
|
@ -1334,6 +1527,23 @@ mod tests {
|
|||
(180.0, consts::PI),
|
||||
];
|
||||
|
||||
#[test]
|
||||
fn convert_deg_rad_core() {
|
||||
for &(deg, rad) in &DEG_RAD_PAIRS {
|
||||
assert!((BasicFloat::to_degrees(rad) - deg).abs() < 1e-6);
|
||||
assert!((BasicFloat::to_radians(deg) - rad).abs() < 1e-6);
|
||||
|
||||
let (deg, rad) = (deg as f32, rad as f32);
|
||||
assert!((BasicFloat::to_degrees(rad) - deg).abs() < 1e-6);
|
||||
assert!((BasicFloat::to_radians(deg) - rad).abs() < 1e-6);
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(std)]
|
||||
#[test]
|
||||
fn convert_deg_rad_std() {
|
||||
use Float;
|
||||
|
||||
for &(deg, rad) in &DEG_RAD_PAIRS {
|
||||
assert!((Float::to_degrees(rad) - deg).abs() < 1e-6);
|
||||
assert!((Float::to_radians(deg) - rad).abs() < 1e-6);
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
use std::ops::{Add, Mul};
|
||||
use std::num::Wrapping;
|
||||
use core::ops::{Add, Mul};
|
||||
use core::num::Wrapping;
|
||||
|
||||
/// Defines an additive identity element for `Self`.
|
||||
pub trait Zero: Sized + Add<Self, Output = Self> {
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
use std::ops::{Not, BitAnd, BitOr, BitXor, Shl, Shr};
|
||||
use core::ops::{Not, BitAnd, BitOr, BitXor, Shl, Shr};
|
||||
|
||||
use {Num, NumCast};
|
||||
use bounds::Bounded;
|
||||
|
|
|
@ -14,12 +14,16 @@
|
|||
html_root_url = "https://rust-num.github.io/num/",
|
||||
html_playground_url = "http://play.integer32.com/")]
|
||||
|
||||
use std::ops::{Add, Sub, Mul, Div, Rem};
|
||||
use std::ops::{AddAssign, SubAssign, MulAssign, DivAssign, RemAssign};
|
||||
use std::num::Wrapping;
|
||||
#![cfg_attr(not(feature = "std"), no_std)]
|
||||
#[cfg(feature = "std")]
|
||||
extern crate core;
|
||||
|
||||
use core::ops::{Add, Sub, Mul, Div, Rem};
|
||||
use core::ops::{AddAssign, SubAssign, MulAssign, DivAssign, RemAssign};
|
||||
use core::num::Wrapping;
|
||||
|
||||
pub use bounds::Bounded;
|
||||
pub use float::{Float, FloatConst};
|
||||
pub use float::{BasicFloat, Float, FloatConst};
|
||||
pub use identities::{Zero, One, zero, one};
|
||||
pub use ops::checked::*;
|
||||
pub use ops::wrapping::*;
|
||||
|
@ -129,10 +133,10 @@ impl<T> NumAssignRef for T where T: NumAssign + for<'r> NumAssignOps<&'r T> {}
|
|||
macro_rules! int_trait_impl {
|
||||
($name:ident for $($t:ty)*) => ($(
|
||||
impl $name for $t {
|
||||
type FromStrRadixErr = ::std::num::ParseIntError;
|
||||
type FromStrRadixErr = ::core::num::ParseIntError;
|
||||
#[inline]
|
||||
fn from_str_radix(s: &str, radix: u32)
|
||||
-> Result<Self, ::std::num::ParseIntError>
|
||||
-> Result<Self, ::core::num::ParseIntError>
|
||||
{
|
||||
<$t>::from_str_radix(s, radix)
|
||||
}
|
||||
|
@ -158,7 +162,7 @@ pub enum FloatErrorKind {
|
|||
Empty,
|
||||
Invalid,
|
||||
}
|
||||
// FIXME: std::num::ParseFloatError is stable in 1.0, but opaque to us,
|
||||
// FIXME: core::num::ParseFloatError is stable in 1.0, but opaque to us,
|
||||
// so there's not really any way for us to reuse it.
|
||||
#[derive(Debug)]
|
||||
pub struct ParseFloatError {
|
||||
|
@ -181,9 +185,9 @@ macro_rules! float_trait_impl {
|
|||
|
||||
// Special values
|
||||
match src {
|
||||
"inf" => return Ok(Float::infinity()),
|
||||
"-inf" => return Ok(Float::neg_infinity()),
|
||||
"NaN" => return Ok(Float::nan()),
|
||||
"inf" => return Ok(BasicFloat::infinity()),
|
||||
"-inf" => return Ok(BasicFloat::neg_infinity()),
|
||||
"NaN" => return Ok(BasicFloat::nan()),
|
||||
_ => {},
|
||||
}
|
||||
|
||||
|
@ -224,15 +228,15 @@ macro_rules! float_trait_impl {
|
|||
// if we've not seen any non-zero digits.
|
||||
if prev_sig != 0.0 {
|
||||
if is_positive && sig <= prev_sig
|
||||
{ return Ok(Float::infinity()); }
|
||||
{ return Ok(BasicFloat::infinity()); }
|
||||
if !is_positive && sig >= prev_sig
|
||||
{ return Ok(Float::neg_infinity()); }
|
||||
{ return Ok(BasicFloat::neg_infinity()); }
|
||||
|
||||
// Detect overflow by reversing the shift-and-add process
|
||||
if is_positive && (prev_sig != (sig - digit as $t) / radix as $t)
|
||||
{ return Ok(Float::infinity()); }
|
||||
{ return Ok(BasicFloat::infinity()); }
|
||||
if !is_positive && (prev_sig != (sig + digit as $t) / radix as $t)
|
||||
{ return Ok(Float::neg_infinity()); }
|
||||
{ return Ok(BasicFloat::neg_infinity()); }
|
||||
}
|
||||
prev_sig = sig;
|
||||
},
|
||||
|
@ -268,9 +272,9 @@ macro_rules! float_trait_impl {
|
|||
};
|
||||
// Detect overflow by comparing to last value
|
||||
if is_positive && sig < prev_sig
|
||||
{ return Ok(Float::infinity()); }
|
||||
{ return Ok(BasicFloat::infinity()); }
|
||||
if !is_positive && sig > prev_sig
|
||||
{ return Ok(Float::neg_infinity()); }
|
||||
{ return Ok(BasicFloat::neg_infinity()); }
|
||||
prev_sig = sig;
|
||||
},
|
||||
None => match c {
|
||||
|
@ -305,8 +309,8 @@ macro_rules! float_trait_impl {
|
|||
};
|
||||
|
||||
match (is_positive, exp) {
|
||||
(true, Ok(exp)) => base.powi(exp as i32),
|
||||
(false, Ok(exp)) => 1.0 / base.powi(exp as i32),
|
||||
(true, Ok(exp)) => BasicFloat::powi(base, exp as i32),
|
||||
(false, Ok(exp)) => 1.0 / BasicFloat::powi(base, exp as i32),
|
||||
(_, Err(_)) => return Err(PFE { kind: Invalid }),
|
||||
}
|
||||
},
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
use std::ops::{Add, Sub, Mul, Div};
|
||||
use core::ops::{Add, Sub, Mul, Div};
|
||||
|
||||
/// Performs addition that returns `None` instead of wrapping around on
|
||||
/// overflow.
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
use std::ops::{Add, Sub, Mul};
|
||||
use std::num::Wrapping;
|
||||
use core::ops::{Add, Sub, Mul};
|
||||
use core::num::Wrapping;
|
||||
|
||||
macro_rules! wrapping_impl {
|
||||
($trait_name:ident, $method:ident, $t:ty) => {
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
use std::ops::Mul;
|
||||
use core::ops::Mul;
|
||||
use {One, CheckedMul};
|
||||
|
||||
/// Raises a value to the power of exp, using exponentiation by squaring.
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
use std::ops::Neg;
|
||||
use std::{f32, f64};
|
||||
use std::num::Wrapping;
|
||||
use core::ops::Neg;
|
||||
use core::{f32, f64};
|
||||
use core::num::Wrapping;
|
||||
|
||||
use Num;
|
||||
|
||||
|
@ -104,16 +104,15 @@ macro_rules! signed_float_impl {
|
|||
/// Computes the absolute value. Returns `NAN` if the number is `NAN`.
|
||||
#[inline]
|
||||
fn abs(&self) -> $t {
|
||||
<$t>::abs(*self)
|
||||
(*self).abs()
|
||||
}
|
||||
|
||||
/// The positive difference of two numbers. Returns `0.0` if the number is
|
||||
/// less than or equal to `other`, otherwise the difference between`self`
|
||||
/// and `other` is returned.
|
||||
#[inline]
|
||||
#[allow(deprecated)]
|
||||
fn abs_sub(&self, other: &$t) -> $t {
|
||||
<$t>::abs_sub(*self, *other)
|
||||
if *self <= *other { 0. } else { *self - *other }
|
||||
}
|
||||
|
||||
/// # Returns
|
||||
|
@ -123,7 +122,7 @@ macro_rules! signed_float_impl {
|
|||
/// - `NAN` if the number is NaN
|
||||
#[inline]
|
||||
fn signum(&self) -> $t {
|
||||
<$t>::signum(*self)
|
||||
(*self).signum()
|
||||
}
|
||||
|
||||
/// Returns `true` if the number is positive, including `+0.0` and `INFINITY`
|
||||
|
|
Loading…
Reference in New Issue