Add `iter` modules for generic number iteration.
The codes are imported from the standard library.
This commit is contained in:
parent
2155e7d2ee
commit
3568298a22
|
@ -0,0 +1,341 @@
|
|||
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
|
||||
// file at the top-level directory of this distribution and at
|
||||
// http://rust-lang.org/COPYRIGHT.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
||||
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
||||
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
||||
// option. This file may not be copied, modified, or distributed
|
||||
// except according to those terms.
|
||||
|
||||
//! External iterators for generic mathematics
|
||||
|
||||
use {Integer, Zero, One, CheckedAdd};
|
||||
use std::num::Int;
|
||||
|
||||
/// An iterator over the range [start, stop)
|
||||
#[deriving(Clone)]
|
||||
pub struct Range<A> {
|
||||
state: A,
|
||||
stop: A,
|
||||
one: A
|
||||
}
|
||||
|
||||
/// Returns an iterator over the given range [start, stop) (that is, starting
|
||||
/// at start (inclusive), and ending at stop (exclusive)).
|
||||
///
|
||||
/// # Example
|
||||
///
|
||||
/// ```rust
|
||||
/// let array = [0, 1, 2, 3, 4];
|
||||
///
|
||||
/// for i in range(0, 5u) {
|
||||
/// println!("{}", i);
|
||||
/// assert_eq!(i, array[i]);
|
||||
/// }
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn range<A: Add<A, A> + PartialOrd + Clone + One>(start: A, stop: A) -> Range<A> {
|
||||
Range{state: start, stop: stop, one: One::one()}
|
||||
}
|
||||
|
||||
// FIXME: rust-lang/rust#10414: Unfortunate type bound
|
||||
impl<A: Add<A, A> + PartialOrd + Clone + ToPrimitive> Iterator<A> for Range<A> {
|
||||
#[inline]
|
||||
fn next(&mut self) -> Option<A> {
|
||||
if self.state < self.stop {
|
||||
let result = self.state.clone();
|
||||
self.state = self.state + self.one;
|
||||
Some(result)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn size_hint(&self) -> (uint, Option<uint>) {
|
||||
// This first checks if the elements are representable as i64. If they aren't, try u64 (to
|
||||
// handle cases like range(huge, huger)). We don't use uint/int because the difference of
|
||||
// the i64/u64 might lie within their range.
|
||||
let bound = match self.state.to_i64() {
|
||||
Some(a) => {
|
||||
let sz = self.stop.to_i64().map(|b| b.checked_sub(a));
|
||||
match sz {
|
||||
Some(Some(bound)) => bound.to_uint(),
|
||||
_ => None,
|
||||
}
|
||||
},
|
||||
None => match self.state.to_u64() {
|
||||
Some(a) => {
|
||||
let sz = self.stop.to_u64().map(|b| b.checked_sub(a));
|
||||
match sz {
|
||||
Some(Some(bound)) => bound.to_uint(),
|
||||
_ => None
|
||||
}
|
||||
},
|
||||
None => None
|
||||
}
|
||||
};
|
||||
|
||||
match bound {
|
||||
Some(b) => (b, Some(b)),
|
||||
// Standard fallback for unbounded/unrepresentable bounds
|
||||
None => (0, None)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// `Integer` is required to ensure the range will be the same regardless of
|
||||
/// the direction it is consumed.
|
||||
impl<A: Integer + PartialOrd + Clone + ToPrimitive> DoubleEndedIterator<A> for Range<A> {
|
||||
#[inline]
|
||||
fn next_back(&mut self) -> Option<A> {
|
||||
if self.stop > self.state {
|
||||
self.stop = self.stop - self.one;
|
||||
Some(self.stop.clone())
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// An iterator over the range [start, stop]
|
||||
#[deriving(Clone)]
|
||||
pub struct RangeInclusive<A> {
|
||||
range: Range<A>,
|
||||
done: bool,
|
||||
}
|
||||
|
||||
/// Return an iterator over the range [start, stop]
|
||||
#[inline]
|
||||
pub fn range_inclusive<A: Add<A, A> + PartialOrd + Clone + One>(start: A, stop: A)
|
||||
-> RangeInclusive<A> {
|
||||
RangeInclusive{range: range(start, stop), done: false}
|
||||
}
|
||||
|
||||
impl<A: Add<A, A> + PartialOrd + Clone + ToPrimitive> Iterator<A> for RangeInclusive<A> {
|
||||
#[inline]
|
||||
fn next(&mut self) -> Option<A> {
|
||||
match self.range.next() {
|
||||
Some(x) => Some(x),
|
||||
None => {
|
||||
if !self.done && self.range.state == self.range.stop {
|
||||
self.done = true;
|
||||
Some(self.range.stop.clone())
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn size_hint(&self) -> (uint, Option<uint>) {
|
||||
let (lo, hi) = self.range.size_hint();
|
||||
if self.done {
|
||||
(lo, hi)
|
||||
} else {
|
||||
let lo = lo.saturating_add(1);
|
||||
let hi = match hi {
|
||||
Some(x) => x.checked_add(1),
|
||||
None => None
|
||||
};
|
||||
(lo, hi)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<A: Sub<A, A> + Integer + PartialOrd + Clone + ToPrimitive> DoubleEndedIterator<A>
|
||||
for RangeInclusive<A> {
|
||||
#[inline]
|
||||
fn next_back(&mut self) -> Option<A> {
|
||||
if self.range.stop > self.range.state {
|
||||
let result = self.range.stop.clone();
|
||||
self.range.stop = self.range.stop - self.range.one;
|
||||
Some(result)
|
||||
} else if !self.done && self.range.state == self.range.stop {
|
||||
self.done = true;
|
||||
Some(self.range.stop.clone())
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// An iterator over the range [start, stop) by `step`. It handles overflow by stopping.
|
||||
#[deriving(Clone)]
|
||||
pub struct RangeStep<A> {
|
||||
state: A,
|
||||
stop: A,
|
||||
step: A,
|
||||
rev: bool,
|
||||
}
|
||||
|
||||
/// Return an iterator over the range [start, stop) by `step`. It handles overflow by stopping.
|
||||
#[inline]
|
||||
pub fn range_step<A: CheckedAdd + PartialOrd +
|
||||
Clone + Zero>(start: A, stop: A, step: A) -> RangeStep<A> {
|
||||
let rev = step < Zero::zero();
|
||||
RangeStep{state: start, stop: stop, step: step, rev: rev}
|
||||
}
|
||||
|
||||
impl<A: CheckedAdd + PartialOrd + Clone> Iterator<A> for RangeStep<A> {
|
||||
#[inline]
|
||||
fn next(&mut self) -> Option<A> {
|
||||
if (self.rev && self.state > self.stop) || (!self.rev && self.state < self.stop) {
|
||||
let result = self.state.clone();
|
||||
match self.state.checked_add(&self.step) {
|
||||
Some(x) => self.state = x,
|
||||
None => self.state = self.stop.clone()
|
||||
}
|
||||
Some(result)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// An iterator over the range [start, stop] by `step`. It handles overflow by stopping.
|
||||
#[deriving(Clone)]
|
||||
pub struct RangeStepInclusive<A> {
|
||||
state: A,
|
||||
stop: A,
|
||||
step: A,
|
||||
rev: bool,
|
||||
done: bool,
|
||||
}
|
||||
|
||||
/// Return an iterator over the range [start, stop] by `step`. It handles overflow by stopping.
|
||||
#[inline]
|
||||
pub fn range_step_inclusive<A: CheckedAdd + PartialOrd + Clone + Zero>(start: A, stop: A,
|
||||
step: A) -> RangeStepInclusive<A> {
|
||||
let rev = step < Zero::zero();
|
||||
RangeStepInclusive{state: start, stop: stop, step: step, rev: rev, done: false}
|
||||
}
|
||||
|
||||
impl<A: CheckedAdd + PartialOrd + Clone + PartialEq> Iterator<A> for RangeStepInclusive<A> {
|
||||
#[inline]
|
||||
fn next(&mut self) -> Option<A> {
|
||||
if !self.done && ((self.rev && self.state >= self.stop) ||
|
||||
(!self.rev && self.state <= self.stop)) {
|
||||
let result = self.state.clone();
|
||||
match self.state.checked_add(&self.step) {
|
||||
Some(x) => self.state = x,
|
||||
None => self.done = true
|
||||
}
|
||||
Some(result)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::uint;
|
||||
use One;
|
||||
|
||||
#[test]
|
||||
fn test_range() {
|
||||
/// A mock type to check Range when ToPrimitive returns None
|
||||
struct Foo;
|
||||
|
||||
impl ToPrimitive for Foo {
|
||||
fn to_i64(&self) -> Option<i64> { None }
|
||||
fn to_u64(&self) -> Option<u64> { None }
|
||||
}
|
||||
|
||||
impl Add<Foo, Foo> for Foo {
|
||||
fn add(&self, _: &Foo) -> Foo {
|
||||
Foo
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialEq for Foo {
|
||||
fn eq(&self, _: &Foo) -> bool {
|
||||
true
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialOrd for Foo {
|
||||
fn partial_cmp(&self, _: &Foo) -> Option<Ordering> {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
impl Clone for Foo {
|
||||
fn clone(&self) -> Foo {
|
||||
Foo
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul<Foo, Foo> for Foo {
|
||||
fn mul(&self, _: &Foo) -> Foo {
|
||||
Foo
|
||||
}
|
||||
}
|
||||
|
||||
impl One for Foo {
|
||||
fn one() -> Foo {
|
||||
Foo
|
||||
}
|
||||
}
|
||||
|
||||
assert!(super::range(0i, 5).collect::<Vec<int>>() == vec![0i, 1, 2, 3, 4]);
|
||||
assert!(super::range(-10i, -1).collect::<Vec<int>>() ==
|
||||
vec![-10, -9, -8, -7, -6, -5, -4, -3, -2]);
|
||||
assert!(super::range(0i, 5).rev().collect::<Vec<int>>() == vec![4, 3, 2, 1, 0]);
|
||||
assert_eq!(super::range(200i, -5).count(), 0);
|
||||
assert_eq!(super::range(200i, -5).rev().count(), 0);
|
||||
assert_eq!(super::range(200i, 200).count(), 0);
|
||||
assert_eq!(super::range(200i, 200).rev().count(), 0);
|
||||
|
||||
assert_eq!(super::range(0i, 100).size_hint(), (100, Some(100)));
|
||||
// this test is only meaningful when sizeof uint < sizeof u64
|
||||
assert_eq!(super::range(uint::MAX - 1, uint::MAX).size_hint(), (1, Some(1)));
|
||||
assert_eq!(super::range(-10i, -1).size_hint(), (9, Some(9)));
|
||||
assert_eq!(super::range(Foo, Foo).size_hint(), (0, None));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_range_inclusive() {
|
||||
assert!(super::range_inclusive(0i, 5).collect::<Vec<int>>() ==
|
||||
vec![0i, 1, 2, 3, 4, 5]);
|
||||
assert!(super::range_inclusive(0i, 5).rev().collect::<Vec<int>>() ==
|
||||
vec![5i, 4, 3, 2, 1, 0]);
|
||||
assert_eq!(super::range_inclusive(200i, -5).count(), 0);
|
||||
assert_eq!(super::range_inclusive(200i, -5).rev().count(), 0);
|
||||
assert!(super::range_inclusive(200i, 200).collect::<Vec<int>>() == vec![200]);
|
||||
assert!(super::range_inclusive(200i, 200).rev().collect::<Vec<int>>() == vec![200]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_range_step() {
|
||||
assert!(super::range_step(0i, 20, 5).collect::<Vec<int>>() ==
|
||||
vec![0, 5, 10, 15]);
|
||||
assert!(super::range_step(20i, 0, -5).collect::<Vec<int>>() ==
|
||||
vec![20, 15, 10, 5]);
|
||||
assert!(super::range_step(20i, 0, -6).collect::<Vec<int>>() ==
|
||||
vec![20, 14, 8, 2]);
|
||||
assert!(super::range_step(200u8, 255, 50).collect::<Vec<u8>>() ==
|
||||
vec![200u8, 250]);
|
||||
assert!(super::range_step(200i, -5, 1).collect::<Vec<int>>() == vec![]);
|
||||
assert!(super::range_step(200i, 200, 1).collect::<Vec<int>>() == vec![]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_range_step_inclusive() {
|
||||
assert!(super::range_step_inclusive(0i, 20, 5).collect::<Vec<int>>() ==
|
||||
vec![0, 5, 10, 15, 20]);
|
||||
assert!(super::range_step_inclusive(20i, 0, -5).collect::<Vec<int>>() ==
|
||||
vec![20, 15, 10, 5, 0]);
|
||||
assert!(super::range_step_inclusive(20i, 0, -6).collect::<Vec<int>>() ==
|
||||
vec![20, 14, 8, 2]);
|
||||
assert!(super::range_step_inclusive(200u8, 255, 50).collect::<Vec<u8>>() ==
|
||||
vec![200u8, 250]);
|
||||
assert!(super::range_step_inclusive(200i, -5, 1).collect::<Vec<int>>() ==
|
||||
vec![]);
|
||||
assert!(super::range_step_inclusive(200i, 200, 1).collect::<Vec<int>>() ==
|
||||
vec![200]);
|
||||
}
|
||||
}
|
|
@ -64,12 +64,14 @@ pub use bigint::{BigInt, BigUint};
|
|||
pub use rational::{Rational, BigRational};
|
||||
pub use complex::Complex;
|
||||
pub use integer::Integer;
|
||||
pub use iter::{range, range_inclusive, range_step, range_step_inclusive};
|
||||
pub use traits::{Num, Zero, One, Signed, Unsigned, Bounded,
|
||||
Saturating, CheckedAdd, CheckedSub, CheckedMul, CheckedDiv};
|
||||
|
||||
pub mod bigint;
|
||||
pub mod complex;
|
||||
pub mod integer;
|
||||
pub mod iter;
|
||||
pub mod traits;
|
||||
pub mod rational;
|
||||
|
||||
|
|
Loading…
Reference in New Issue