Auto merge of #137 - liebharc:master, r=cuviper

Added powc, powf, log and expf methods for complex numbers

I would like to have a few functions added for complex numbers (powf, log and exp function with arbitrary base). I've provided an implementation with this commit. However it requires more work and discussion and I've added comments to point out the parts which I'm especially unhappy with. Would be nice to get some feedback so that we can improve this pull request first.
This commit is contained in:
Homu 2016-04-18 07:06:39 +09:00
commit 39c1de8841
1 changed files with 99 additions and 3 deletions

View File

@ -120,7 +120,8 @@ impl<T: Clone + Float> Complex<T> {
#[inline] #[inline]
pub fn exp(&self) -> Complex<T> { pub fn exp(&self) -> Complex<T> {
// formula: e^(a + bi) = e^a (cos(b) + i*sin(b)) // formula: e^(a + bi) = e^a (cos(b) + i*sin(b))
Complex::new(self.im.cos(), self.im.sin()).scale(self.re.exp()) // = from_polar(e^a, b)
Complex::from_polar(&self.re.exp(), &self.im)
} }
/// Computes the principal value of natural logarithm of `self`. /// Computes the principal value of natural logarithm of `self`.
@ -133,7 +134,8 @@ impl<T: Clone + Float> Complex<T> {
#[inline] #[inline]
pub fn ln(&self) -> Complex<T> { pub fn ln(&self) -> Complex<T> {
// formula: ln(z) = ln|z| + i*arg(z) // formula: ln(z) = ln|z| + i*arg(z)
Complex::new(self.norm().ln(), self.arg()) let (r, theta) = self.to_polar();
Complex::new(r.ln(), theta)
} }
/// Computes the principal value of the square root of `self`. /// Computes the principal value of the square root of `self`.
@ -151,6 +153,53 @@ impl<T: Clone + Float> Complex<T> {
Complex::from_polar(&(r.sqrt()), &(theta/two)) Complex::from_polar(&(r.sqrt()), &(theta/two))
} }
/// Raises `self` to a floating point power.
#[inline]
pub fn powf(&self, exp: T) -> Complex<T> {
// formula: x^y = (ρ e^(i θ))^y = ρ^y e^(i θ y)
// = from_polar(ρ^y, θ y)
let (r, theta) = self.to_polar();
Complex::from_polar(&r.powf(exp), &(theta*exp))
}
/// Returns the logarithm of `self` with respect to an arbitrary base.
#[inline]
pub fn log(&self, base: T) -> Complex<T> {
// formula: log_y(x) = log_y(ρ e^(i θ))
// = log_y(ρ) + log_y(e^(i θ)) = log_y(ρ) + ln(e^(i θ)) / ln(y)
// = log_y(ρ) + i θ / ln(y)
let (r, theta) = self.to_polar();
Complex::new(r.log(base), theta / base.ln())
}
/// Raises `self` to a complex power.
#[inline]
pub fn powc(&self, exp: Complex<T>) -> Complex<T> {
// formula: x^y = (a + i b)^(c + i d)
// = (ρ e^(i θ))^c (ρ e^(i θ))^(i d)
// where ρ=|x| and θ=arg(x)
// = ρ^c e^(d θ) e^(i c θ) ρ^(i d)
// = p^c e^(d θ) (cos(c θ)
// + i sin(c θ)) (cos(d ln(ρ)) + i sin(d ln(ρ)))
// = p^c e^(d θ) (
// cos(c θ) cos(d ln(ρ)) sin(c θ) sin(d ln(ρ))
// + i(cos(c θ) sin(d ln(ρ)) + sin(c θ) cos(d ln(ρ))))
// = p^c e^(d θ) (cos(c θ + d ln(ρ)) + i sin(c θ + d ln(ρ)))
// = from_polar(p^c e^(d θ), c θ + d ln(ρ))
let (r, theta) = self.to_polar();
Complex::from_polar(
&(r.powf(exp.re) * (-exp.im * theta).exp()),
&(exp.re * theta + exp.im * r.ln()))
}
/// Raises a floating point number to the complex power `self`.
#[inline]
pub fn expf(&self, base: T) -> Complex<T> {
// formula: x^(a+bi) = x^a x^bi = x^a e^(b ln(x) i)
// = from_polar(x^a, b ln(x))
Complex::from_polar(&base.powf(self.re), &(self.im * base.ln()))
}
/// Computes the sine of `self`. /// Computes the sine of `self`.
#[inline] #[inline]
pub fn sin(&self) -> Complex<T> { pub fn sin(&self) -> Complex<T> {
@ -716,8 +765,12 @@ mod test {
} }
fn close(a: Complex64, b: Complex64) -> bool { fn close(a: Complex64, b: Complex64) -> bool {
close_to_tol(a, b, 1e-10)
}
fn close_to_tol(a: Complex64, b: Complex64, tol: f64) -> bool {
// returns true if a and b are reasonably close // returns true if a and b are reasonably close
(a == b) || (a-b).norm() < 1e-10 (a == b) || (a-b).norm() < tol
} }
#[test] #[test]
@ -749,6 +802,49 @@ mod test {
} }
} }
#[test]
fn test_powc()
{
let a = Complex::new(2.0, -3.0);
let b = Complex::new(3.0, 0.0);
assert!(close(a.powc(b), a.powf(b.re)));
assert!(close(b.powc(a), a.expf(b.re)));
let c = Complex::new(1.0 / 3.0, 0.1);
assert!(close_to_tol(a.powc(c), Complex::new(1.65826, -0.33502), 1e-5));
}
#[test]
fn test_powf()
{
let c = Complex::new(2.0, -1.0);
let r = c.powf(3.5);
assert!(close_to_tol(r, Complex::new(-0.8684746, -16.695934), 1e-5));
}
#[test]
fn test_log()
{
let c = Complex::new(2.0, -1.0);
let r = c.log(10.0);
assert!(close_to_tol(r, Complex::new(0.349485, -0.20135958), 1e-5));
}
#[test]
fn test_some_expf_cases()
{
let c = Complex::new(2.0, -1.0);
let r = c.expf(10.0);
assert!(close_to_tol(r, Complex::new(-66.82015, -74.39803), 1e-5));
let c = Complex::new(5.0, -2.0);
let r = c.expf(3.4);
assert!(close_to_tol(r, Complex::new(-349.25, -290.63), 1e-2));
let c = Complex::new(-1.5, 2.0 / 3.0);
let r = c.expf(1.0 / 3.0);
assert!(close_to_tol(r, Complex::new(3.8637, -3.4745), 1e-2));
}
#[test] #[test]
fn test_sqrt() { fn test_sqrt() {
assert!(close(_0_0i.sqrt(), _0_0i)); assert!(close(_0_0i.sqrt(), _0_0i));