adds basic parser for complex numbers in Cartesian form

This commit is contained in:
Alan Liddell 2017-07-10 05:57:38 -04:00
parent 31fa9f626a
commit 3c490cdee4
1 changed files with 121 additions and 18 deletions

View File

@ -22,10 +22,12 @@ extern crate rustc_serialize;
#[cfg(feature = "serde")]
extern crate serde;
use std::error::Error;
use std::fmt;
#[cfg(test)]
use std::hash;
use std::ops::{Add, Div, Mul, Neg, Sub};
use std::str::FromStr;
use traits::{Zero, One, Num, Float};
@ -178,7 +180,7 @@ impl<T: Clone + Float> Complex<T> {
let (r, theta) = self.to_polar();
Complex::from_polar(&(r.sqrt()), &(theta/two))
}
/// Raises `self` to a floating point power.
#[inline]
pub fn powf(&self, exp: T) -> Complex<T> {
@ -187,25 +189,25 @@ impl<T: Clone + Float> Complex<T> {
let (r, theta) = self.to_polar();
Complex::from_polar(&r.powf(exp), &(theta*exp))
}
/// Returns the logarithm of `self` with respect to an arbitrary base.
#[inline]
pub fn log(&self, base: T) -> Complex<T> {
// formula: log_y(x) = log_y(ρ e^(i θ))
// = log_y(ρ) + log_y(e^(i θ)) = log_y(ρ) + ln(e^(i θ)) / ln(y)
// = log_y(ρ) + i θ / ln(y)
// formula: log_y(x) = log_y(ρ e^(i θ))
// = log_y(ρ) + log_y(e^(i θ)) = log_y(ρ) + ln(e^(i θ)) / ln(y)
// = log_y(ρ) + i θ / ln(y)
let (r, theta) = self.to_polar();
Complex::new(r.log(base), theta / base.ln())
}
/// Raises `self` to a complex power.
#[inline]
pub fn powc(&self, exp: Complex<T>) -> Complex<T> {
// formula: x^y = (a + i b)^(c + i d)
// = (ρ e^(i θ))^c (ρ e^(i θ))^(i d)
// = (ρ e^(i θ))^c (ρ e^(i θ))^(i d)
// where ρ=|x| and θ=arg(x)
// = ρ^c e^(d θ) e^(i c θ) ρ^(i d)
// = p^c e^(d θ) (cos(c θ)
// = p^c e^(d θ) (cos(c θ)
// + i sin(c θ)) (cos(d ln(ρ)) + i sin(d ln(ρ)))
// = p^c e^(d θ) (
// cos(c θ) cos(d ln(ρ)) sin(c θ) sin(d ln(ρ))
@ -214,14 +216,14 @@ impl<T: Clone + Float> Complex<T> {
// = from_polar(p^c e^(d θ), c θ + d ln(ρ))
let (r, theta) = self.to_polar();
Complex::from_polar(
&(r.powf(exp.re) * (-exp.im * theta).exp()),
&(r.powf(exp.re) * (-exp.im * theta).exp()),
&(exp.re * theta + exp.im * r.ln()))
}
/// Raises a floating point number to the complex power `self`.
#[inline]
pub fn expf(&self, base: T) -> Complex<T> {
// formula: x^(a+bi) = x^a x^bi = x^a e^(b ln(x) i)
// formula: x^(a+bi) = x^a x^bi = x^a e^(b ln(x) i)
// = from_polar(x^a, b ln(x))
Complex::from_polar(&base.powf(self.re), &(self.im * base.ln()))
}
@ -740,6 +742,77 @@ impl<T> fmt::Binary for Complex<T> where
}
}
impl<T> FromStr for Complex<T> where
T: FromStr + Num + PartialOrd + Clone
{
type Err = ParseComplexError;
/// Parses `a +/- bi`; `ai +/- b`; `a`; or `bi` where `a` and `b` are of type `T`
fn from_str(s: &str) -> Result<Complex<T>, ParseComplexError>
{
// first try to split on " + "
let mut split_p = s.splitn(2, " + ");
let mut a = match split_p.next() {
None => return Err(ParseComplexError { kind: ComplexErrorKind::ParseError }),
Some(s) => s.to_string()
};
let mut b = match split_p.next() {
// no second item could mean we need to split on " - " instead
None => {
let mut split_m = s.splitn(2, " - ");
a = match split_m.next() {
None => return Err(ParseComplexError { kind: ComplexErrorKind::ParseError }),
Some(s) => s.to_string()
};
let c = match split_m.next() {
None => {
// if `a` is imaginary, let `b` be real (and vice versa)
match a.rfind('i') {
None => "0i".to_string(),
Some(u) => "0".to_string()
}
}
Some(s) => {
"-".to_string() + s
}
};
c
},
Some(s) => s.to_string()
};
let re = match a.rfind('i') {
None => {
try!(T::from_str(&a)
.map_err(|_| ParseComplexError { kind: ComplexErrorKind::ParseError }))
},
Some(u) => {
try!(T::from_str(&b)
.map_err(|_| ParseComplexError { kind: ComplexErrorKind::ParseError }))
}
};
let im = match a.rfind('i') {
None => {
b.pop();
try!(T::from_str(&b)
.map_err(|_| ParseComplexError { kind: ComplexErrorKind::ParseError }))
},
Some(u) => {
a.pop();
try!(T::from_str(&a)
.map_err(|_| ParseComplexError { kind: ComplexErrorKind::ParseError }))
}
};
Ok(Complex::new(re, im))
}
}
#[cfg(feature = "serde")]
impl<T> serde::Serialize for Complex<T>
where T: serde::Serialize
@ -763,6 +836,36 @@ impl<T> serde::Deserialize for Complex<T> where
}
}
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct ParseComplexError {
kind: ComplexErrorKind,
}
#[derive(Copy, Clone, Debug, PartialEq)]
enum ComplexErrorKind {
ParseError,
}
impl Error for ParseComplexError {
fn description(&self) -> &str {
self.kind.description()
}
}
impl fmt::Display for ParseComplexError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.description().fmt(f)
}
}
impl ComplexErrorKind {
fn description(&self) -> &'static str {
match *self {
ComplexErrorKind::ParseError => "failed to parse complex number",
}
}
}
#[cfg(test)]
fn hash<T: hash::Hash>(x: &T) -> u64 {
use std::hash::{BuildHasher, Hasher};
@ -880,7 +983,7 @@ mod test {
fn close(a: Complex64, b: Complex64) -> bool {
close_to_tol(a, b, 1e-10)
}
fn close_to_tol(a: Complex64, b: Complex64, tol: f64) -> bool {
// returns true if a and b are reasonably close
(a == b) || (a-b).norm() < tol
@ -914,7 +1017,7 @@ mod test {
assert!(-f64::consts::PI <= c.ln().arg() && c.ln().arg() <= f64::consts::PI);
}
}
#[test]
fn test_powc()
{
@ -925,7 +1028,7 @@ mod test {
let c = Complex::new(1.0 / 3.0, 0.1);
assert!(close_to_tol(a.powc(c), Complex::new(1.65826, -0.33502), 1e-5));
}
#[test]
fn test_powf()
{
@ -933,7 +1036,7 @@ mod test {
let r = c.powf(3.5);
assert!(close_to_tol(r, Complex::new(-0.8684746, -16.695934), 1e-5));
}
#[test]
fn test_log()
{
@ -941,18 +1044,18 @@ mod test {
let r = c.log(10.0);
assert!(close_to_tol(r, Complex::new(0.349485, -0.20135958), 1e-5));
}
#[test]
fn test_some_expf_cases()
{
let c = Complex::new(2.0, -1.0);
let r = c.expf(10.0);
assert!(close_to_tol(r, Complex::new(-66.82015, -74.39803), 1e-5));
let c = Complex::new(5.0, -2.0);
let r = c.expf(3.4);
assert!(close_to_tol(r, Complex::new(-349.25, -290.63), 1e-2));
let c = Complex::new(-1.5, 2.0 / 3.0);
let r = c.expf(1.0 / 3.0);
assert!(close_to_tol(r, Complex::new(3.8637, -3.4745), 1e-2));