rational: make sure Hash agrees with Eq
We can't use a derived `Hash` when we have a manual `Eq`, because we need to uphold the invariant `a == b` → `h(a) == h(b)`. Since `Eq` doesn't require them to be in reduced form, `Hash` also needs to be normalized.
This commit is contained in:
parent
8964c65f38
commit
3f32ad48f4
|
@ -27,8 +27,7 @@ extern crate num_integer as integer;
|
||||||
use std::cmp;
|
use std::cmp;
|
||||||
use std::error::Error;
|
use std::error::Error;
|
||||||
use std::fmt;
|
use std::fmt;
|
||||||
#[cfg(test)]
|
use std::hash::{Hash, Hasher};
|
||||||
use std::hash;
|
|
||||||
use std::ops::{Add, Div, Mul, Neg, Rem, Sub};
|
use std::ops::{Add, Div, Mul, Neg, Rem, Sub};
|
||||||
use std::str::FromStr;
|
use std::str::FromStr;
|
||||||
|
|
||||||
|
@ -39,7 +38,7 @@ use integer::Integer;
|
||||||
use traits::{FromPrimitive, Float, PrimInt, Num, Signed, Zero, One, Bounded, NumCast};
|
use traits::{FromPrimitive, Float, PrimInt, Num, Signed, Zero, One, Bounded, NumCast};
|
||||||
|
|
||||||
/// Represents the ratio between 2 numbers.
|
/// Represents the ratio between 2 numbers.
|
||||||
#[derive(Copy, Clone, Hash, Debug)]
|
#[derive(Copy, Clone, Debug)]
|
||||||
#[cfg_attr(feature = "rustc-serialize", derive(RustcEncodable, RustcDecodable))]
|
#[cfg_attr(feature = "rustc-serialize", derive(RustcEncodable, RustcDecodable))]
|
||||||
#[allow(missing_docs)]
|
#[allow(missing_docs)]
|
||||||
pub struct Ratio<T> {
|
pub struct Ratio<T> {
|
||||||
|
@ -347,6 +346,24 @@ impl<T: Clone + Integer> PartialEq for Ratio<T> {
|
||||||
|
|
||||||
impl<T: Clone + Integer> Eq for Ratio<T> {}
|
impl<T: Clone + Integer> Eq for Ratio<T> {}
|
||||||
|
|
||||||
|
// NB: We can't just `#[derive(Hash)]`, because it needs to agree
|
||||||
|
// with `Eq` even for non-reduced ratios.
|
||||||
|
impl<T: Clone + Integer + Hash> Hash for Ratio<T> {
|
||||||
|
fn hash<H: Hasher>(&self, state: &mut H) {
|
||||||
|
recurse(&self.numer, &self.denom, state);
|
||||||
|
|
||||||
|
fn recurse<T: Integer + Hash, H: Hasher>(numer: &T, denom: &T, state: &mut H) {
|
||||||
|
if !denom.is_zero() {
|
||||||
|
let (int, rem) = numer.div_mod_floor(denom);
|
||||||
|
int.hash(state);
|
||||||
|
recurse(denom, &rem, state);
|
||||||
|
} else {
|
||||||
|
denom.hash(state);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
macro_rules! forward_val_val_binop {
|
macro_rules! forward_val_val_binop {
|
||||||
(impl $imp:ident, $method:ident) => {
|
(impl $imp:ident, $method:ident) => {
|
||||||
|
@ -843,8 +860,8 @@ fn approximate_float_unsigned<T, F>(val: F, max_error: F, max_iterations: usize)
|
||||||
}
|
}
|
||||||
|
|
||||||
#[cfg(test)]
|
#[cfg(test)]
|
||||||
fn hash<T: hash::Hash>(x: &T) -> u64 {
|
fn hash<T: Hash>(x: &T) -> u64 {
|
||||||
use std::hash::{BuildHasher, Hasher};
|
use std::hash::BuildHasher;
|
||||||
use std::collections::hash_map::RandomState;
|
use std::collections::hash_map::RandomState;
|
||||||
let mut hasher = <RandomState as BuildHasher>::Hasher::new();
|
let mut hasher = <RandomState as BuildHasher>::Hasher::new();
|
||||||
x.hash(&mut hasher);
|
x.hash(&mut hasher);
|
||||||
|
@ -1366,6 +1383,17 @@ mod test {
|
||||||
fn test_hash() {
|
fn test_hash() {
|
||||||
assert!(::hash(&_0) != ::hash(&_1));
|
assert!(::hash(&_0) != ::hash(&_1));
|
||||||
assert!(::hash(&_0) != ::hash(&_3_2));
|
assert!(::hash(&_0) != ::hash(&_3_2));
|
||||||
|
|
||||||
|
// a == b -> hash(a) == hash(b)
|
||||||
|
let a = Rational::new_raw(4, 2);
|
||||||
|
let b = Rational::new_raw(6, 3);
|
||||||
|
assert_eq!(a, b);
|
||||||
|
assert_eq!(::hash(&a), ::hash(&b));
|
||||||
|
|
||||||
|
let a = Rational::new_raw(123456789, 1000);
|
||||||
|
let b = Rational::new_raw(123456789 * 5, 5000);
|
||||||
|
assert_eq!(a, b);
|
||||||
|
assert_eq!(::hash(&a), ::hash(&b));
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
|
|
Loading…
Reference in New Issue