Initial seeding from rust repo

This commit is contained in:
Aaron Turon 2014-09-16 10:35:35 -07:00
commit 482f0e0b74
10 changed files with 4906 additions and 0 deletions

2
.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
/target
/Cargo.lock

7
.travis.yml Normal file
View File

@ -0,0 +1,7 @@
install:
- curl https://static.rust-lang.org/rustup.sh | sudo sh -
script:
- cargo build --verbose
- cargo test --verbose
env:
- LD_LIBRARY_PATH=/usr/local/lib

10
Cargo.toml Normal file
View File

@ -0,0 +1,10 @@
[package]
name = "num"
version = "0.0.1"
authors = ["The Rust Project Developers"]
[lib]
name = "num"
plugin = true

201
LICENSE-APACHE Normal file
View File

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

25
LICENSE-MIT Normal file
View File

@ -0,0 +1,25 @@
Copyright (c) 2014 The Rust Project Developers
Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the
Software without restriction, including without
limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice
shall be included in all copies or substantial portions
of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

2956
src/bigint.rs Normal file

File diff suppressed because it is too large Load Diff

379
src/complex.rs Normal file
View File

@ -0,0 +1,379 @@
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Complex numbers.
use std::fmt;
use std::num::{Zero, One, ToStrRadix};
// FIXME #1284: handle complex NaN & infinity etc. This
// probably doesn't map to C's _Complex correctly.
/// A complex number in Cartesian form.
#[deriving(PartialEq, Clone, Hash)]
pub struct Complex<T> {
/// Real portion of the complex number
pub re: T,
/// Imaginary portion of the complex number
pub im: T
}
pub type Complex32 = Complex<f32>;
pub type Complex64 = Complex<f64>;
impl<T: Clone + Num> Complex<T> {
/// Create a new Complex
#[inline]
pub fn new(re: T, im: T) -> Complex<T> {
Complex { re: re, im: im }
}
/// Returns the square of the norm (since `T` doesn't necessarily
/// have a sqrt function), i.e. `re^2 + im^2`.
#[inline]
pub fn norm_sqr(&self) -> T {
self.re * self.re + self.im * self.im
}
/// Returns the complex conjugate. i.e. `re - i im`
#[inline]
pub fn conj(&self) -> Complex<T> {
Complex::new(self.re.clone(), -self.im)
}
/// Multiplies `self` by the scalar `t`.
#[inline]
pub fn scale(&self, t: T) -> Complex<T> {
Complex::new(self.re * t, self.im * t)
}
/// Divides `self` by the scalar `t`.
#[inline]
pub fn unscale(&self, t: T) -> Complex<T> {
Complex::new(self.re / t, self.im / t)
}
/// Returns `1/self`
#[inline]
pub fn inv(&self) -> Complex<T> {
let norm_sqr = self.norm_sqr();
Complex::new(self.re / norm_sqr,
-self.im / norm_sqr)
}
}
impl<T: Clone + FloatMath> Complex<T> {
/// Calculate |self|
#[inline]
pub fn norm(&self) -> T {
self.re.hypot(self.im)
}
}
impl<T: Clone + FloatMath> Complex<T> {
/// Calculate the principal Arg of self.
#[inline]
pub fn arg(&self) -> T {
self.im.atan2(self.re)
}
/// Convert to polar form (r, theta), such that `self = r * exp(i
/// * theta)`
#[inline]
pub fn to_polar(&self) -> (T, T) {
(self.norm(), self.arg())
}
/// Convert a polar representation into a complex number.
#[inline]
pub fn from_polar(r: &T, theta: &T) -> Complex<T> {
Complex::new(*r * theta.cos(), *r * theta.sin())
}
}
/* arithmetic */
// (a + i b) + (c + i d) == (a + c) + i (b + d)
impl<T: Clone + Num> Add<Complex<T>, Complex<T>> for Complex<T> {
#[inline]
fn add(&self, other: &Complex<T>) -> Complex<T> {
Complex::new(self.re + other.re, self.im + other.im)
}
}
// (a + i b) - (c + i d) == (a - c) + i (b - d)
impl<T: Clone + Num> Sub<Complex<T>, Complex<T>> for Complex<T> {
#[inline]
fn sub(&self, other: &Complex<T>) -> Complex<T> {
Complex::new(self.re - other.re, self.im - other.im)
}
}
// (a + i b) * (c + i d) == (a*c - b*d) + i (a*d + b*c)
impl<T: Clone + Num> Mul<Complex<T>, Complex<T>> for Complex<T> {
#[inline]
fn mul(&self, other: &Complex<T>) -> Complex<T> {
Complex::new(self.re*other.re - self.im*other.im,
self.re*other.im + self.im*other.re)
}
}
// (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d)
// == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)]
impl<T: Clone + Num> Div<Complex<T>, Complex<T>> for Complex<T> {
#[inline]
fn div(&self, other: &Complex<T>) -> Complex<T> {
let norm_sqr = other.norm_sqr();
Complex::new((self.re*other.re + self.im*other.im) / norm_sqr,
(self.im*other.re - self.re*other.im) / norm_sqr)
}
}
impl<T: Clone + Num> Neg<Complex<T>> for Complex<T> {
#[inline]
fn neg(&self) -> Complex<T> {
Complex::new(-self.re, -self.im)
}
}
/* constants */
impl<T: Clone + Num> Zero for Complex<T> {
#[inline]
fn zero() -> Complex<T> {
Complex::new(Zero::zero(), Zero::zero())
}
#[inline]
fn is_zero(&self) -> bool {
self.re.is_zero() && self.im.is_zero()
}
}
impl<T: Clone + Num> One for Complex<T> {
#[inline]
fn one() -> Complex<T> {
Complex::new(One::one(), Zero::zero())
}
}
/* string conversions */
impl<T: fmt::Show + Num + PartialOrd> fmt::Show for Complex<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if self.im < Zero::zero() {
write!(f, "{}-{}i", self.re, -self.im)
} else {
write!(f, "{}+{}i", self.re, self.im)
}
}
}
impl<T: ToStrRadix + Num + PartialOrd> ToStrRadix for Complex<T> {
fn to_str_radix(&self, radix: uint) -> String {
if self.im < Zero::zero() {
format!("{}-{}i",
self.re.to_str_radix(radix),
(-self.im).to_str_radix(radix))
} else {
format!("{}+{}i",
self.re.to_str_radix(radix),
self.im.to_str_radix(radix))
}
}
}
#[cfg(test)]
mod test {
#![allow(non_uppercase_statics)]
use super::{Complex64, Complex};
use std::num::{Zero, One, Float};
use std::hash::hash;
pub static _0_0i : Complex64 = Complex { re: 0.0, im: 0.0 };
pub static _1_0i : Complex64 = Complex { re: 1.0, im: 0.0 };
pub static _1_1i : Complex64 = Complex { re: 1.0, im: 1.0 };
pub static _0_1i : Complex64 = Complex { re: 0.0, im: 1.0 };
pub static _neg1_1i : Complex64 = Complex { re: -1.0, im: 1.0 };
pub static _05_05i : Complex64 = Complex { re: 0.5, im: 0.5 };
pub static all_consts : [Complex64, .. 5] = [_0_0i, _1_0i, _1_1i, _neg1_1i, _05_05i];
#[test]
fn test_consts() {
// check our constants are what Complex::new creates
fn test(c : Complex64, r : f64, i: f64) {
assert_eq!(c, Complex::new(r,i));
}
test(_0_0i, 0.0, 0.0);
test(_1_0i, 1.0, 0.0);
test(_1_1i, 1.0, 1.0);
test(_neg1_1i, -1.0, 1.0);
test(_05_05i, 0.5, 0.5);
assert_eq!(_0_0i, Zero::zero());
assert_eq!(_1_0i, One::one());
}
#[test]
#[ignore(cfg(target_arch = "x86"))]
// FIXME #7158: (maybe?) currently failing on x86.
fn test_norm() {
fn test(c: Complex64, ns: f64) {
assert_eq!(c.norm_sqr(), ns);
assert_eq!(c.norm(), ns.sqrt())
}
test(_0_0i, 0.0);
test(_1_0i, 1.0);
test(_1_1i, 2.0);
test(_neg1_1i, 2.0);
test(_05_05i, 0.5);
}
#[test]
fn test_scale_unscale() {
assert_eq!(_05_05i.scale(2.0), _1_1i);
assert_eq!(_1_1i.unscale(2.0), _05_05i);
for &c in all_consts.iter() {
assert_eq!(c.scale(2.0).unscale(2.0), c);
}
}
#[test]
fn test_conj() {
for &c in all_consts.iter() {
assert_eq!(c.conj(), Complex::new(c.re, -c.im));
assert_eq!(c.conj().conj(), c);
}
}
#[test]
fn test_inv() {
assert_eq!(_1_1i.inv(), _05_05i.conj());
assert_eq!(_1_0i.inv(), _1_0i.inv());
}
#[test]
#[should_fail]
fn test_divide_by_zero_natural() {
let n = Complex::new(2i, 3i);
let d = Complex::new(0, 0);
let _x = n / d;
}
#[test]
#[should_fail]
#[ignore]
fn test_inv_zero() {
// FIXME #5736: should this really fail, or just NaN?
_0_0i.inv();
}
#[test]
fn test_arg() {
fn test(c: Complex64, arg: f64) {
assert!((c.arg() - arg).abs() < 1.0e-6)
}
test(_1_0i, 0.0);
test(_1_1i, 0.25 * Float::pi());
test(_neg1_1i, 0.75 * Float::pi());
test(_05_05i, 0.25 * Float::pi());
}
#[test]
fn test_polar_conv() {
fn test(c: Complex64) {
let (r, theta) = c.to_polar();
assert!((c - Complex::from_polar(&r, &theta)).norm() < 1e-6);
}
for &c in all_consts.iter() { test(c); }
}
mod arith {
use super::{_0_0i, _1_0i, _1_1i, _0_1i, _neg1_1i, _05_05i, all_consts};
use std::num::Zero;
#[test]
fn test_add() {
assert_eq!(_05_05i + _05_05i, _1_1i);
assert_eq!(_0_1i + _1_0i, _1_1i);
assert_eq!(_1_0i + _neg1_1i, _0_1i);
for &c in all_consts.iter() {
assert_eq!(_0_0i + c, c);
assert_eq!(c + _0_0i, c);
}
}
#[test]
fn test_sub() {
assert_eq!(_05_05i - _05_05i, _0_0i);
assert_eq!(_0_1i - _1_0i, _neg1_1i);
assert_eq!(_0_1i - _neg1_1i, _1_0i);
for &c in all_consts.iter() {
assert_eq!(c - _0_0i, c);
assert_eq!(c - c, _0_0i);
}
}
#[test]
fn test_mul() {
assert_eq!(_05_05i * _05_05i, _0_1i.unscale(2.0));
assert_eq!(_1_1i * _0_1i, _neg1_1i);
// i^2 & i^4
assert_eq!(_0_1i * _0_1i, -_1_0i);
assert_eq!(_0_1i * _0_1i * _0_1i * _0_1i, _1_0i);
for &c in all_consts.iter() {
assert_eq!(c * _1_0i, c);
assert_eq!(_1_0i * c, c);
}
}
#[test]
fn test_div() {
assert_eq!(_neg1_1i / _0_1i, _1_1i);
for &c in all_consts.iter() {
if c != Zero::zero() {
assert_eq!(c / c, _1_0i);
}
}
}
#[test]
fn test_neg() {
assert_eq!(-_1_0i + _0_1i, _neg1_1i);
assert_eq!((-_0_1i) * _0_1i, _1_0i);
for &c in all_consts.iter() {
assert_eq!(-(-c), c);
}
}
}
#[test]
fn test_to_string() {
fn test(c : Complex64, s: String) {
assert_eq!(c.to_string(), s);
}
test(_0_0i, "0+0i".to_string());
test(_1_0i, "1+0i".to_string());
test(_0_1i, "0+1i".to_string());
test(_1_1i, "1+1i".to_string());
test(_neg1_1i, "-1+1i".to_string());
test(-_neg1_1i, "1-1i".to_string());
test(_05_05i, "0.5+0.5i".to_string());
}
#[test]
fn test_hash() {
let a = Complex::new(0i32, 0i32);
let b = Complex::new(1i32, 0i32);
let c = Complex::new(0i32, 1i32);
assert!(hash(&a) != hash(&b));
assert!(hash(&b) != hash(&c));
assert!(hash(&c) != hash(&a));
}
}

496
src/integer.rs Normal file
View File

@ -0,0 +1,496 @@
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Integer trait and functions.
pub trait Integer: Num + PartialOrd
+ Div<Self, Self>
+ Rem<Self, Self> {
/// Floored integer division.
///
/// # Examples
///
/// ~~~
/// # use num::Integer;
/// assert!(( 8i).div_floor(& 3) == 2);
/// assert!(( 8i).div_floor(&-3) == -3);
/// assert!((-8i).div_floor(& 3) == -3);
/// assert!((-8i).div_floor(&-3) == 2);
///
/// assert!(( 1i).div_floor(& 2) == 0);
/// assert!(( 1i).div_floor(&-2) == -1);
/// assert!((-1i).div_floor(& 2) == -1);
/// assert!((-1i).div_floor(&-2) == 0);
/// ~~~
fn div_floor(&self, other: &Self) -> Self;
/// Floored integer modulo, satisfying:
///
/// ~~~
/// # use num::Integer;
/// # let n = 1i; let d = 1i;
/// assert!(n.div_floor(&d) * d + n.mod_floor(&d) == n)
/// ~~~
///
/// # Examples
///
/// ~~~
/// # use num::Integer;
/// assert!(( 8i).mod_floor(& 3) == 2);
/// assert!(( 8i).mod_floor(&-3) == -1);
/// assert!((-8i).mod_floor(& 3) == 1);
/// assert!((-8i).mod_floor(&-3) == -2);
///
/// assert!(( 1i).mod_floor(& 2) == 1);
/// assert!(( 1i).mod_floor(&-2) == -1);
/// assert!((-1i).mod_floor(& 2) == 1);
/// assert!((-1i).mod_floor(&-2) == -1);
/// ~~~
fn mod_floor(&self, other: &Self) -> Self;
/// Greatest Common Divisor (GCD).
///
/// # Examples
///
/// ~~~
/// # use num::Integer;
/// assert_eq!(6i.gcd(&8), 2);
/// assert_eq!(7i.gcd(&3), 1);
/// ~~~
fn gcd(&self, other: &Self) -> Self;
/// Lowest Common Multiple (LCM).
///
/// # Examples
///
/// ~~~
/// # use num::Integer;
/// assert_eq!(7i.lcm(&3), 21);
/// assert_eq!(2i.lcm(&4), 4);
/// ~~~
fn lcm(&self, other: &Self) -> Self;
/// Deprecated, use `is_multiple_of` instead.
#[deprecated = "function renamed to `is_multiple_of`"]
fn divides(&self, other: &Self) -> bool;
/// Returns `true` if `other` is a multiple of `self`.
///
/// # Examples
///
/// ~~~
/// # use num::Integer;
/// assert_eq!(9i.is_multiple_of(&3), true);
/// assert_eq!(3i.is_multiple_of(&9), false);
/// ~~~
fn is_multiple_of(&self, other: &Self) -> bool;
/// Returns `true` if the number is even.
///
/// # Examples
///
/// ~~~
/// # use num::Integer;
/// assert_eq!(3i.is_even(), false);
/// assert_eq!(4i.is_even(), true);
/// ~~~
fn is_even(&self) -> bool;
/// Returns `true` if the number is odd.
///
/// # Examples
///
/// ~~~
/// # use num::Integer;
/// assert_eq!(3i.is_odd(), true);
/// assert_eq!(4i.is_odd(), false);
/// ~~~
fn is_odd(&self) -> bool;
/// Simultaneous truncated integer division and modulus.
/// Returns `(quotient, remainder)`.
///
/// # Examples
///
/// ~~~
/// # use num::Integer;
/// assert_eq!(( 8i).div_rem( &3), ( 2, 2));
/// assert_eq!(( 8i).div_rem(&-3), (-2, 2));
/// assert_eq!((-8i).div_rem( &3), (-2, -2));
/// assert_eq!((-8i).div_rem(&-3), ( 2, -2));
///
/// assert_eq!(( 1i).div_rem( &2), ( 0, 1));
/// assert_eq!(( 1i).div_rem(&-2), ( 0, 1));
/// assert_eq!((-1i).div_rem( &2), ( 0, -1));
/// assert_eq!((-1i).div_rem(&-2), ( 0, -1));
/// ~~~
#[inline]
fn div_rem(&self, other: &Self) -> (Self, Self) {
(*self / *other, *self % *other)
}
/// Simultaneous floored integer division and modulus.
/// Returns `(quotient, remainder)`.
///
/// # Examples
///
/// ~~~
/// # use num::Integer;
/// assert_eq!(( 8i).div_mod_floor( &3), ( 2, 2));
/// assert_eq!(( 8i).div_mod_floor(&-3), (-3, -1));
/// assert_eq!((-8i).div_mod_floor( &3), (-3, 1));
/// assert_eq!((-8i).div_mod_floor(&-3), ( 2, -2));
///
/// assert_eq!(( 1i).div_mod_floor( &2), ( 0, 1));
/// assert_eq!(( 1i).div_mod_floor(&-2), (-1, -1));
/// assert_eq!((-1i).div_mod_floor( &2), (-1, 1));
/// assert_eq!((-1i).div_mod_floor(&-2), ( 0, -1));
/// ~~~
fn div_mod_floor(&self, other: &Self) -> (Self, Self) {
(self.div_floor(other), self.mod_floor(other))
}
}
/// Simultaneous integer division and modulus
#[inline] pub fn div_rem<T: Integer>(x: T, y: T) -> (T, T) { x.div_rem(&y) }
/// Floored integer division
#[inline] pub fn div_floor<T: Integer>(x: T, y: T) -> T { x.div_floor(&y) }
/// Floored integer modulus
#[inline] pub fn mod_floor<T: Integer>(x: T, y: T) -> T { x.mod_floor(&y) }
/// Simultaneous floored integer division and modulus
#[inline] pub fn div_mod_floor<T: Integer>(x: T, y: T) -> (T, T) { x.div_mod_floor(&y) }
/// Calculates the Greatest Common Divisor (GCD) of the number and `other`. The
/// result is always positive.
#[inline(always)] pub fn gcd<T: Integer>(x: T, y: T) -> T { x.gcd(&y) }
/// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
#[inline(always)] pub fn lcm<T: Integer>(x: T, y: T) -> T { x.lcm(&y) }
macro_rules! impl_integer_for_int {
($T:ty, $test_mod:ident) => (
impl Integer for $T {
/// Floored integer division
#[inline]
fn div_floor(&self, other: &$T) -> $T {
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
match self.div_rem(other) {
(d, r) if (r > 0 && *other < 0)
|| (r < 0 && *other > 0) => d - 1,
(d, _) => d,
}
}
/// Floored integer modulo
#[inline]
fn mod_floor(&self, other: &$T) -> $T {
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
match *self % *other {
r if (r > 0 && *other < 0)
|| (r < 0 && *other > 0) => r + *other,
r => r,
}
}
/// Calculates `div_floor` and `mod_floor` simultaneously
#[inline]
fn div_mod_floor(&self, other: &$T) -> ($T,$T) {
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
match self.div_rem(other) {
(d, r) if (r > 0 && *other < 0)
|| (r < 0 && *other > 0) => (d - 1, r + *other),
(d, r) => (d, r),
}
}
/// Calculates the Greatest Common Divisor (GCD) of the number and
/// `other`. The result is always positive.
#[inline]
fn gcd(&self, other: &$T) -> $T {
// Use Euclid's algorithm
let mut m = *self;
let mut n = *other;
while m != 0 {
let temp = m;
m = n % temp;
n = temp;
}
n.abs()
}
/// Calculates the Lowest Common Multiple (LCM) of the number and
/// `other`.
#[inline]
fn lcm(&self, other: &$T) -> $T {
// should not have to recalculate abs
((*self * *other) / self.gcd(other)).abs()
}
/// Deprecated, use `is_multiple_of` instead.
#[deprecated = "function renamed to `is_multiple_of`"]
#[inline]
fn divides(&self, other: &$T) -> bool { return self.is_multiple_of(other); }
/// Returns `true` if the number is a multiple of `other`.
#[inline]
fn is_multiple_of(&self, other: &$T) -> bool { *self % *other == 0 }
/// Returns `true` if the number is divisible by `2`
#[inline]
fn is_even(&self) -> bool { self & 1 == 0 }
/// Returns `true` if the number is not divisible by `2`
#[inline]
fn is_odd(&self) -> bool { !self.is_even() }
}
#[cfg(test)]
mod $test_mod {
use Integer;
/// Checks that the division rule holds for:
///
/// - `n`: numerator (dividend)
/// - `d`: denominator (divisor)
/// - `qr`: quotient and remainder
#[cfg(test)]
fn test_division_rule((n,d): ($T,$T), (q,r): ($T,$T)) {
assert_eq!(d * q + r, n);
}
#[test]
fn test_div_rem() {
fn test_nd_dr(nd: ($T,$T), qr: ($T,$T)) {
let (n,d) = nd;
let separate_div_rem = (n / d, n % d);
let combined_div_rem = n.div_rem(&d);
assert_eq!(separate_div_rem, qr);
assert_eq!(combined_div_rem, qr);
test_division_rule(nd, separate_div_rem);
test_division_rule(nd, combined_div_rem);
}
test_nd_dr(( 8, 3), ( 2, 2));
test_nd_dr(( 8, -3), (-2, 2));
test_nd_dr((-8, 3), (-2, -2));
test_nd_dr((-8, -3), ( 2, -2));
test_nd_dr(( 1, 2), ( 0, 1));
test_nd_dr(( 1, -2), ( 0, 1));
test_nd_dr((-1, 2), ( 0, -1));
test_nd_dr((-1, -2), ( 0, -1));
}
#[test]
fn test_div_mod_floor() {
fn test_nd_dm(nd: ($T,$T), dm: ($T,$T)) {
let (n,d) = nd;
let separate_div_mod_floor = (n.div_floor(&d), n.mod_floor(&d));
let combined_div_mod_floor = n.div_mod_floor(&d);
assert_eq!(separate_div_mod_floor, dm);
assert_eq!(combined_div_mod_floor, dm);
test_division_rule(nd, separate_div_mod_floor);
test_division_rule(nd, combined_div_mod_floor);
}
test_nd_dm(( 8, 3), ( 2, 2));
test_nd_dm(( 8, -3), (-3, -1));
test_nd_dm((-8, 3), (-3, 1));
test_nd_dm((-8, -3), ( 2, -2));
test_nd_dm(( 1, 2), ( 0, 1));
test_nd_dm(( 1, -2), (-1, -1));
test_nd_dm((-1, 2), (-1, 1));
test_nd_dm((-1, -2), ( 0, -1));
}
#[test]
fn test_gcd() {
assert_eq!((10 as $T).gcd(&2), 2 as $T);
assert_eq!((10 as $T).gcd(&3), 1 as $T);
assert_eq!((0 as $T).gcd(&3), 3 as $T);
assert_eq!((3 as $T).gcd(&3), 3 as $T);
assert_eq!((56 as $T).gcd(&42), 14 as $T);
assert_eq!((3 as $T).gcd(&-3), 3 as $T);
assert_eq!((-6 as $T).gcd(&3), 3 as $T);
assert_eq!((-4 as $T).gcd(&-2), 2 as $T);
}
#[test]
fn test_lcm() {
assert_eq!((1 as $T).lcm(&0), 0 as $T);
assert_eq!((0 as $T).lcm(&1), 0 as $T);
assert_eq!((1 as $T).lcm(&1), 1 as $T);
assert_eq!((-1 as $T).lcm(&1), 1 as $T);
assert_eq!((1 as $T).lcm(&-1), 1 as $T);
assert_eq!((-1 as $T).lcm(&-1), 1 as $T);
assert_eq!((8 as $T).lcm(&9), 72 as $T);
assert_eq!((11 as $T).lcm(&5), 55 as $T);
}
#[test]
fn test_even() {
assert_eq!((-4 as $T).is_even(), true);
assert_eq!((-3 as $T).is_even(), false);
assert_eq!((-2 as $T).is_even(), true);
assert_eq!((-1 as $T).is_even(), false);
assert_eq!((0 as $T).is_even(), true);
assert_eq!((1 as $T).is_even(), false);
assert_eq!((2 as $T).is_even(), true);
assert_eq!((3 as $T).is_even(), false);
assert_eq!((4 as $T).is_even(), true);
}
#[test]
fn test_odd() {
assert_eq!((-4 as $T).is_odd(), false);
assert_eq!((-3 as $T).is_odd(), true);
assert_eq!((-2 as $T).is_odd(), false);
assert_eq!((-1 as $T).is_odd(), true);
assert_eq!((0 as $T).is_odd(), false);
assert_eq!((1 as $T).is_odd(), true);
assert_eq!((2 as $T).is_odd(), false);
assert_eq!((3 as $T).is_odd(), true);
assert_eq!((4 as $T).is_odd(), false);
}
}
)
}
impl_integer_for_int!(i8, test_integer_i8)
impl_integer_for_int!(i16, test_integer_i16)
impl_integer_for_int!(i32, test_integer_i32)
impl_integer_for_int!(i64, test_integer_i64)
impl_integer_for_int!(int, test_integer_int)
macro_rules! impl_integer_for_uint {
($T:ty, $test_mod:ident) => (
impl Integer for $T {
/// Unsigned integer division. Returns the same result as `div` (`/`).
#[inline]
fn div_floor(&self, other: &$T) -> $T { *self / *other }
/// Unsigned integer modulo operation. Returns the same result as `rem` (`%`).
#[inline]
fn mod_floor(&self, other: &$T) -> $T { *self % *other }
/// Calculates the Greatest Common Divisor (GCD) of the number and `other`
#[inline]
fn gcd(&self, other: &$T) -> $T {
// Use Euclid's algorithm
let mut m = *self;
let mut n = *other;
while m != 0 {
let temp = m;
m = n % temp;
n = temp;
}
n
}
/// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
#[inline]
fn lcm(&self, other: &$T) -> $T {
(*self * *other) / self.gcd(other)
}
/// Deprecated, use `is_multiple_of` instead.
#[deprecated = "function renamed to `is_multiple_of`"]
#[inline]
fn divides(&self, other: &$T) -> bool { return self.is_multiple_of(other); }
/// Returns `true` if the number is a multiple of `other`.
#[inline]
fn is_multiple_of(&self, other: &$T) -> bool { *self % *other == 0 }
/// Returns `true` if the number is divisible by `2`.
#[inline]
fn is_even(&self) -> bool { self & 1 == 0 }
/// Returns `true` if the number is not divisible by `2`.
#[inline]
fn is_odd(&self) -> bool { !self.is_even() }
}
#[cfg(test)]
mod $test_mod {
use Integer;
#[test]
fn test_div_mod_floor() {
assert_eq!((10 as $T).div_floor(&(3 as $T)), 3 as $T);
assert_eq!((10 as $T).mod_floor(&(3 as $T)), 1 as $T);
assert_eq!((10 as $T).div_mod_floor(&(3 as $T)), (3 as $T, 1 as $T));
assert_eq!((5 as $T).div_floor(&(5 as $T)), 1 as $T);
assert_eq!((5 as $T).mod_floor(&(5 as $T)), 0 as $T);
assert_eq!((5 as $T).div_mod_floor(&(5 as $T)), (1 as $T, 0 as $T));
assert_eq!((3 as $T).div_floor(&(7 as $T)), 0 as $T);
assert_eq!((3 as $T).mod_floor(&(7 as $T)), 3 as $T);
assert_eq!((3 as $T).div_mod_floor(&(7 as $T)), (0 as $T, 3 as $T));
}
#[test]
fn test_gcd() {
assert_eq!((10 as $T).gcd(&2), 2 as $T);
assert_eq!((10 as $T).gcd(&3), 1 as $T);
assert_eq!((0 as $T).gcd(&3), 3 as $T);
assert_eq!((3 as $T).gcd(&3), 3 as $T);
assert_eq!((56 as $T).gcd(&42), 14 as $T);
}
#[test]
fn test_lcm() {
assert_eq!((1 as $T).lcm(&0), 0 as $T);
assert_eq!((0 as $T).lcm(&1), 0 as $T);
assert_eq!((1 as $T).lcm(&1), 1 as $T);
assert_eq!((8 as $T).lcm(&9), 72 as $T);
assert_eq!((11 as $T).lcm(&5), 55 as $T);
assert_eq!((99 as $T).lcm(&17), 1683 as $T);
}
#[test]
fn test_is_multiple_of() {
assert!((6 as $T).is_multiple_of(&(6 as $T)));
assert!((6 as $T).is_multiple_of(&(3 as $T)));
assert!((6 as $T).is_multiple_of(&(1 as $T)));
}
#[test]
fn test_even() {
assert_eq!((0 as $T).is_even(), true);
assert_eq!((1 as $T).is_even(), false);
assert_eq!((2 as $T).is_even(), true);
assert_eq!((3 as $T).is_even(), false);
assert_eq!((4 as $T).is_even(), true);
}
#[test]
fn test_odd() {
assert_eq!((0 as $T).is_odd(), false);
assert_eq!((1 as $T).is_odd(), true);
assert_eq!((2 as $T).is_odd(), false);
assert_eq!((3 as $T).is_odd(), true);
assert_eq!((4 as $T).is_odd(), false);
}
}
)
}
impl_integer_for_uint!(u8, test_integer_u8)
impl_integer_for_uint!(u16, test_integer_u16)
impl_integer_for_uint!(u32, test_integer_u32)
impl_integer_for_uint!(u64, test_integer_u64)
impl_integer_for_uint!(uint, test_integer_uint)

69
src/lib.rs Normal file
View File

@ -0,0 +1,69 @@
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Simple numerics.
//!
//! This crate contains arbitrary-sized integer, rational, and complex types.
//!
//! ## Example
//!
//! This example uses the BigRational type and [Newton's method][newt] to
//! approximate a square root to arbitrary precision:
//!
//! ```
//! extern crate num;
//!
//! use num::bigint::BigInt;
//! use num::rational::{Ratio, BigRational};
//!
//! fn approx_sqrt(number: u64, iterations: uint) -> BigRational {
//! let start: Ratio<BigInt> = Ratio::from_integer(FromPrimitive::from_u64(number).unwrap());
//! let mut approx = start.clone();
//!
//! for _ in range(0, iterations) {
//! approx = (approx + (start / approx)) /
//! Ratio::from_integer(FromPrimitive::from_u64(2).unwrap());
//! }
//!
//! approx
//! }
//!
//! fn main() {
//! println!("{}", approx_sqrt(10, 4)); // prints 4057691201/1283082416
//! }
//! ```
//!
//! [newt]: https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method
#![feature(macro_rules)]
#![feature(default_type_params)]
#![crate_name = "num"]
#![experimental]
#![crate_type = "rlib"]
#![crate_type = "dylib"]
#![license = "MIT/ASL2"]
#![doc(html_logo_url = "http://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
html_favicon_url = "http://www.rust-lang.org/favicon.ico",
html_root_url = "http://doc.rust-lang.org/master/",
html_playground_url = "http://play.rust-lang.org/")]
#![allow(deprecated)] // from_str_radix
extern crate rand;
pub use bigint::{BigInt, BigUint};
pub use rational::{Rational, BigRational};
pub use complex::Complex;
pub use integer::Integer;
pub mod bigint;
pub mod complex;
pub mod integer;
pub mod rational;

761
src/rational.rs Normal file
View File

@ -0,0 +1,761 @@
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Rational numbers
use Integer;
use std::cmp;
use std::fmt;
use std::from_str::FromStr;
use std::num;
use std::num::{Zero, One, ToStrRadix, FromStrRadix};
use bigint::{BigInt, BigUint, Sign, Plus, Minus};
/// Represents the ratio between 2 numbers.
#[deriving(Clone, Hash)]
#[allow(missing_doc)]
pub struct Ratio<T> {
numer: T,
denom: T
}
/// Alias for a `Ratio` of machine-sized integers.
pub type Rational = Ratio<int>;
pub type Rational32 = Ratio<i32>;
pub type Rational64 = Ratio<i64>;
/// Alias for arbitrary precision rationals.
pub type BigRational = Ratio<BigInt>;
impl<T: Clone + Integer + PartialOrd>
Ratio<T> {
/// Creates a ratio representing the integer `t`.
#[inline]
pub fn from_integer(t: T) -> Ratio<T> {
Ratio::new_raw(t, One::one())
}
/// Creates a ratio without checking for `denom == 0` or reducing.
#[inline]
pub fn new_raw(numer: T, denom: T) -> Ratio<T> {
Ratio { numer: numer, denom: denom }
}
/// Create a new Ratio. Fails if `denom == 0`.
#[inline]
pub fn new(numer: T, denom: T) -> Ratio<T> {
if denom == Zero::zero() {
fail!("denominator == 0");
}
let mut ret = Ratio::new_raw(numer, denom);
ret.reduce();
ret
}
/// Converts to an integer.
#[inline]
pub fn to_integer(&self) -> T {
self.trunc().numer
}
/// Gets an immutable reference to the numerator.
#[inline]
pub fn numer<'a>(&'a self) -> &'a T {
&self.numer
}
/// Gets an immutable reference to the denominator.
#[inline]
pub fn denom<'a>(&'a self) -> &'a T {
&self.denom
}
/// Returns true if the rational number is an integer (denominator is 1).
#[inline]
pub fn is_integer(&self) -> bool {
self.denom == One::one()
}
/// Put self into lowest terms, with denom > 0.
fn reduce(&mut self) {
let g : T = self.numer.gcd(&self.denom);
// FIXME(#5992): assignment operator overloads
// self.numer /= g;
self.numer = self.numer / g;
// FIXME(#5992): assignment operator overloads
// self.denom /= g;
self.denom = self.denom / g;
// keep denom positive!
if self.denom < Zero::zero() {
self.numer = -self.numer;
self.denom = -self.denom;
}
}
/// Returns a `reduce`d copy of self.
pub fn reduced(&self) -> Ratio<T> {
let mut ret = self.clone();
ret.reduce();
ret
}
/// Returns the reciprocal.
#[inline]
pub fn recip(&self) -> Ratio<T> {
Ratio::new_raw(self.denom.clone(), self.numer.clone())
}
/// Rounds towards minus infinity.
#[inline]
pub fn floor(&self) -> Ratio<T> {
if *self < Zero::zero() {
Ratio::from_integer((self.numer - self.denom + One::one()) / self.denom)
} else {
Ratio::from_integer(self.numer / self.denom)
}
}
/// Rounds towards plus infinity.
#[inline]
pub fn ceil(&self) -> Ratio<T> {
if *self < Zero::zero() {
Ratio::from_integer(self.numer / self.denom)
} else {
Ratio::from_integer((self.numer + self.denom - One::one()) / self.denom)
}
}
/// Rounds to the nearest integer. Rounds half-way cases away from zero.
#[inline]
pub fn round(&self) -> Ratio<T> {
if *self < Zero::zero() {
// a/b - 1/2 = (2*a - b)/(2*b)
Ratio::from_integer((self.numer + self.numer - self.denom) / (self.denom + self.denom))
} else {
// a/b + 1/2 = (2*a + b)/(2*b)
Ratio::from_integer((self.numer + self.numer + self.denom) / (self.denom + self.denom))
}
}
/// Rounds towards zero.
#[inline]
pub fn trunc(&self) -> Ratio<T> {
Ratio::from_integer(self.numer / self.denom)
}
/// Returns the fractional part of a number.
#[inline]
pub fn fract(&self) -> Ratio<T> {
Ratio::new_raw(self.numer % self.denom, self.denom.clone())
}
}
impl Ratio<BigInt> {
/// Converts a float into a rational number.
pub fn from_float<T: Float>(f: T) -> Option<BigRational> {
if !f.is_finite() {
return None;
}
let (mantissa, exponent, sign) = f.integer_decode();
let bigint_sign: Sign = if sign == 1 { Plus } else { Minus };
if exponent < 0 {
let one: BigInt = One::one();
let denom: BigInt = one << ((-exponent) as uint);
let numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap();
Some(Ratio::new(BigInt::from_biguint(bigint_sign, numer), denom))
} else {
let mut numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap();
numer = numer << (exponent as uint);
Some(Ratio::from_integer(BigInt::from_biguint(bigint_sign, numer)))
}
}
}
/* Comparisons */
// comparing a/b and c/d is the same as comparing a*d and b*c, so we
// abstract that pattern. The following macro takes a trait and either
// a comma-separated list of "method name -> return value" or just
// "method name" (return value is bool in that case)
macro_rules! cmp_impl {
(impl $imp:ident, $($method:ident),+) => {
cmp_impl!(impl $imp, $($method -> bool),+)
};
// return something other than a Ratio<T>
(impl $imp:ident, $($method:ident -> $res:ty),*) => {
impl<T: Mul<T,T> + $imp> $imp for Ratio<T> {
$(
#[inline]
fn $method(&self, other: &Ratio<T>) -> $res {
(self.numer * other.denom). $method (&(self.denom*other.numer))
}
)*
}
};
}
cmp_impl!(impl PartialEq, eq, ne)
cmp_impl!(impl PartialOrd, lt -> bool, gt -> bool, le -> bool, ge -> bool,
partial_cmp -> Option<cmp::Ordering>)
cmp_impl!(impl Eq, )
cmp_impl!(impl Ord, cmp -> cmp::Ordering)
/* Arithmetic */
// a/b * c/d = (a*c)/(b*d)
impl<T: Clone + Integer + PartialOrd>
Mul<Ratio<T>,Ratio<T>> for Ratio<T> {
#[inline]
fn mul(&self, rhs: &Ratio<T>) -> Ratio<T> {
Ratio::new(self.numer * rhs.numer, self.denom * rhs.denom)
}
}
// (a/b) / (c/d) = (a*d)/(b*c)
impl<T: Clone + Integer + PartialOrd>
Div<Ratio<T>,Ratio<T>> for Ratio<T> {
#[inline]
fn div(&self, rhs: &Ratio<T>) -> Ratio<T> {
Ratio::new(self.numer * rhs.denom, self.denom * rhs.numer)
}
}
// Abstracts the a/b `op` c/d = (a*d `op` b*d) / (b*d) pattern
macro_rules! arith_impl {
(impl $imp:ident, $method:ident) => {
impl<T: Clone + Integer + PartialOrd>
$imp<Ratio<T>,Ratio<T>> for Ratio<T> {
#[inline]
fn $method(&self, rhs: &Ratio<T>) -> Ratio<T> {
Ratio::new((self.numer * rhs.denom).$method(&(self.denom * rhs.numer)),
self.denom * rhs.denom)
}
}
}
}
// a/b + c/d = (a*d + b*c)/(b*d)
arith_impl!(impl Add, add)
// a/b - c/d = (a*d - b*c)/(b*d)
arith_impl!(impl Sub, sub)
// a/b % c/d = (a*d % b*c)/(b*d)
arith_impl!(impl Rem, rem)
impl<T: Clone + Integer + PartialOrd>
Neg<Ratio<T>> for Ratio<T> {
#[inline]
fn neg(&self) -> Ratio<T> {
Ratio::new_raw(-self.numer, self.denom.clone())
}
}
/* Constants */
impl<T: Clone + Integer + PartialOrd>
Zero for Ratio<T> {
#[inline]
fn zero() -> Ratio<T> {
Ratio::new_raw(Zero::zero(), One::one())
}
#[inline]
fn is_zero(&self) -> bool {
*self == Zero::zero()
}
}
impl<T: Clone + Integer + PartialOrd>
One for Ratio<T> {
#[inline]
fn one() -> Ratio<T> {
Ratio::new_raw(One::one(), One::one())
}
}
impl<T: Clone + Integer + PartialOrd>
Num for Ratio<T> {}
impl<T: Clone + Integer + PartialOrd>
num::Signed for Ratio<T> {
#[inline]
fn abs(&self) -> Ratio<T> {
if self.is_negative() { -self.clone() } else { self.clone() }
}
#[inline]
fn abs_sub(&self, other: &Ratio<T>) -> Ratio<T> {
if *self <= *other { Zero::zero() } else { *self - *other }
}
#[inline]
fn signum(&self) -> Ratio<T> {
if *self > Zero::zero() {
num::one()
} else if self.is_zero() {
num::zero()
} else {
- num::one::<Ratio<T>>()
}
}
#[inline]
fn is_positive(&self) -> bool { *self > Zero::zero() }
#[inline]
fn is_negative(&self) -> bool { *self < Zero::zero() }
}
/* String conversions */
impl<T: fmt::Show + Eq + One> fmt::Show for Ratio<T> {
/// Renders as `numer/denom`. If denom=1, renders as numer.
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if self.denom == One::one() {
write!(f, "{}", self.numer)
} else {
write!(f, "{}/{}", self.numer, self.denom)
}
}
}
impl<T: ToStrRadix> ToStrRadix for Ratio<T> {
/// Renders as `numer/denom` where the numbers are in base `radix`.
fn to_str_radix(&self, radix: uint) -> String {
format!("{}/{}",
self.numer.to_str_radix(radix),
self.denom.to_str_radix(radix))
}
}
impl<T: FromStr + Clone + Integer + PartialOrd>
FromStr for Ratio<T> {
/// Parses `numer/denom` or just `numer`.
fn from_str(s: &str) -> Option<Ratio<T>> {
let mut split = s.splitn(1, '/');
let num = split.next().and_then(|n| FromStr::from_str(n));
let den = split.next().or(Some("1")).and_then(|d| FromStr::from_str(d));
match (num, den) {
(Some(n), Some(d)) => Some(Ratio::new(n, d)),
_ => None
}
}
}
impl<T: FromStrRadix + Clone + Integer + PartialOrd>
FromStrRadix for Ratio<T> {
/// Parses `numer/denom` where the numbers are in base `radix`.
fn from_str_radix(s: &str, radix: uint) -> Option<Ratio<T>> {
let split: Vec<&str> = s.splitn(1, '/').collect();
if split.len() < 2 {
None
} else {
let a_option: Option<T> = FromStrRadix::from_str_radix(
*split.get(0),
radix);
a_option.and_then(|a| {
let b_option: Option<T> =
FromStrRadix::from_str_radix(*split.get(1), radix);
b_option.and_then(|b| {
Some(Ratio::new(a.clone(), b.clone()))
})
})
}
}
}
#[cfg(test)]
mod test {
use super::{Ratio, Rational, BigRational};
use std::num::{Zero, One, FromStrRadix, FromPrimitive, ToStrRadix};
use std::from_str::FromStr;
use std::hash::hash;
use std::num;
pub static _0 : Rational = Ratio { numer: 0, denom: 1};
pub static _1 : Rational = Ratio { numer: 1, denom: 1};
pub static _2: Rational = Ratio { numer: 2, denom: 1};
pub static _1_2: Rational = Ratio { numer: 1, denom: 2};
pub static _3_2: Rational = Ratio { numer: 3, denom: 2};
pub static _neg1_2: Rational = Ratio { numer: -1, denom: 2};
pub static _1_3: Rational = Ratio { numer: 1, denom: 3};
pub static _neg1_3: Rational = Ratio { numer: -1, denom: 3};
pub static _2_3: Rational = Ratio { numer: 2, denom: 3};
pub static _neg2_3: Rational = Ratio { numer: -2, denom: 3};
pub fn to_big(n: Rational) -> BigRational {
Ratio::new(
FromPrimitive::from_int(n.numer).unwrap(),
FromPrimitive::from_int(n.denom).unwrap()
)
}
#[test]
fn test_test_constants() {
// check our constants are what Ratio::new etc. would make.
assert_eq!(_0, Zero::zero());
assert_eq!(_1, One::one());
assert_eq!(_2, Ratio::from_integer(2i));
assert_eq!(_1_2, Ratio::new(1i,2i));
assert_eq!(_3_2, Ratio::new(3i,2i));
assert_eq!(_neg1_2, Ratio::new(-1i,2i));
}
#[test]
fn test_new_reduce() {
let one22 = Ratio::new(2i,2);
assert_eq!(one22, One::one());
}
#[test]
#[should_fail]
fn test_new_zero() {
let _a = Ratio::new(1i,0);
}
#[test]
fn test_cmp() {
assert!(_0 == _0 && _1 == _1);
assert!(_0 != _1 && _1 != _0);
assert!(_0 < _1 && !(_1 < _0));
assert!(_1 > _0 && !(_0 > _1));
assert!(_0 <= _0 && _1 <= _1);
assert!(_0 <= _1 && !(_1 <= _0));
assert!(_0 >= _0 && _1 >= _1);
assert!(_1 >= _0 && !(_0 >= _1));
}
#[test]
fn test_to_integer() {
assert_eq!(_0.to_integer(), 0);
assert_eq!(_1.to_integer(), 1);
assert_eq!(_2.to_integer(), 2);
assert_eq!(_1_2.to_integer(), 0);
assert_eq!(_3_2.to_integer(), 1);
assert_eq!(_neg1_2.to_integer(), 0);
}
#[test]
fn test_numer() {
assert_eq!(_0.numer(), &0);
assert_eq!(_1.numer(), &1);
assert_eq!(_2.numer(), &2);
assert_eq!(_1_2.numer(), &1);
assert_eq!(_3_2.numer(), &3);
assert_eq!(_neg1_2.numer(), &(-1));
}
#[test]
fn test_denom() {
assert_eq!(_0.denom(), &1);
assert_eq!(_1.denom(), &1);
assert_eq!(_2.denom(), &1);
assert_eq!(_1_2.denom(), &2);
assert_eq!(_3_2.denom(), &2);
assert_eq!(_neg1_2.denom(), &2);
}
#[test]
fn test_is_integer() {
assert!(_0.is_integer());
assert!(_1.is_integer());
assert!(_2.is_integer());
assert!(!_1_2.is_integer());
assert!(!_3_2.is_integer());
assert!(!_neg1_2.is_integer());
}
#[test]
fn test_show() {
assert_eq!(format!("{}", _2), "2".to_string());
assert_eq!(format!("{}", _1_2), "1/2".to_string());
assert_eq!(format!("{}", _0), "0".to_string());
assert_eq!(format!("{}", Ratio::from_integer(-2i)), "-2".to_string());
}
mod arith {
use super::{_0, _1, _2, _1_2, _3_2, _neg1_2, to_big};
use super::super::{Ratio, Rational};
#[test]
fn test_add() {
fn test(a: Rational, b: Rational, c: Rational) {
assert_eq!(a + b, c);
assert_eq!(to_big(a) + to_big(b), to_big(c));
}
test(_1, _1_2, _3_2);
test(_1, _1, _2);
test(_1_2, _3_2, _2);
test(_1_2, _neg1_2, _0);
}
#[test]
fn test_sub() {
fn test(a: Rational, b: Rational, c: Rational) {
assert_eq!(a - b, c);
assert_eq!(to_big(a) - to_big(b), to_big(c))
}
test(_1, _1_2, _1_2);
test(_3_2, _1_2, _1);
test(_1, _neg1_2, _3_2);
}
#[test]
fn test_mul() {
fn test(a: Rational, b: Rational, c: Rational) {
assert_eq!(a * b, c);
assert_eq!(to_big(a) * to_big(b), to_big(c))
}
test(_1, _1_2, _1_2);
test(_1_2, _3_2, Ratio::new(3i,4i));
test(_1_2, _neg1_2, Ratio::new(-1i, 4i));
}
#[test]
fn test_div() {
fn test(a: Rational, b: Rational, c: Rational) {
assert_eq!(a / b, c);
assert_eq!(to_big(a) / to_big(b), to_big(c))
}
test(_1, _1_2, _2);
test(_3_2, _1_2, _1 + _2);
test(_1, _neg1_2, _neg1_2 + _neg1_2 + _neg1_2 + _neg1_2);
}
#[test]
fn test_rem() {
fn test(a: Rational, b: Rational, c: Rational) {
assert_eq!(a % b, c);
assert_eq!(to_big(a) % to_big(b), to_big(c))
}
test(_3_2, _1, _1_2);
test(_2, _neg1_2, _0);
test(_1_2, _2, _1_2);
}
#[test]
fn test_neg() {
fn test(a: Rational, b: Rational) {
assert_eq!(-a, b);
assert_eq!(-to_big(a), to_big(b))
}
test(_0, _0);
test(_1_2, _neg1_2);
test(-_1, _1);
}
#[test]
fn test_zero() {
assert_eq!(_0 + _0, _0);
assert_eq!(_0 * _0, _0);
assert_eq!(_0 * _1, _0);
assert_eq!(_0 / _neg1_2, _0);
assert_eq!(_0 - _0, _0);
}
#[test]
#[should_fail]
fn test_div_0() {
let _a = _1 / _0;
}
}
#[test]
fn test_round() {
assert_eq!(_1_3.ceil(), _1);
assert_eq!(_1_3.floor(), _0);
assert_eq!(_1_3.round(), _0);
assert_eq!(_1_3.trunc(), _0);
assert_eq!(_neg1_3.ceil(), _0);
assert_eq!(_neg1_3.floor(), -_1);
assert_eq!(_neg1_3.round(), _0);
assert_eq!(_neg1_3.trunc(), _0);
assert_eq!(_2_3.ceil(), _1);
assert_eq!(_2_3.floor(), _0);
assert_eq!(_2_3.round(), _1);
assert_eq!(_2_3.trunc(), _0);
assert_eq!(_neg2_3.ceil(), _0);
assert_eq!(_neg2_3.floor(), -_1);
assert_eq!(_neg2_3.round(), -_1);
assert_eq!(_neg2_3.trunc(), _0);
assert_eq!(_1_2.ceil(), _1);
assert_eq!(_1_2.floor(), _0);
assert_eq!(_1_2.round(), _1);
assert_eq!(_1_2.trunc(), _0);
assert_eq!(_neg1_2.ceil(), _0);
assert_eq!(_neg1_2.floor(), -_1);
assert_eq!(_neg1_2.round(), -_1);
assert_eq!(_neg1_2.trunc(), _0);
assert_eq!(_1.ceil(), _1);
assert_eq!(_1.floor(), _1);
assert_eq!(_1.round(), _1);
assert_eq!(_1.trunc(), _1);
}
#[test]
fn test_fract() {
assert_eq!(_1.fract(), _0);
assert_eq!(_neg1_2.fract(), _neg1_2);
assert_eq!(_1_2.fract(), _1_2);
assert_eq!(_3_2.fract(), _1_2);
}
#[test]
fn test_recip() {
assert_eq!(_1 * _1.recip(), _1);
assert_eq!(_2 * _2.recip(), _1);
assert_eq!(_1_2 * _1_2.recip(), _1);
assert_eq!(_3_2 * _3_2.recip(), _1);
assert_eq!(_neg1_2 * _neg1_2.recip(), _1);
}
#[test]
fn test_to_from_str() {
fn test(r: Rational, s: String) {
assert_eq!(FromStr::from_str(s.as_slice()), Some(r));
assert_eq!(r.to_string(), s);
}
test(_1, "1".to_string());
test(_0, "0".to_string());
test(_1_2, "1/2".to_string());
test(_3_2, "3/2".to_string());
test(_2, "2".to_string());
test(_neg1_2, "-1/2".to_string());
}
#[test]
fn test_from_str_fail() {
fn test(s: &str) {
let rational: Option<Rational> = FromStr::from_str(s);
assert_eq!(rational, None);
}
let xs = ["0 /1", "abc", "", "1/", "--1/2","3/2/1"];
for &s in xs.iter() {
test(s);
}
}
#[test]
fn test_to_from_str_radix() {
fn test(r: Rational, s: String, n: uint) {
assert_eq!(FromStrRadix::from_str_radix(s.as_slice(), n),
Some(r));
assert_eq!(r.to_str_radix(n).to_string(), s);
}
fn test3(r: Rational, s: String) { test(r, s, 3) }
fn test16(r: Rational, s: String) { test(r, s, 16) }
test3(_1, "1/1".to_string());
test3(_0, "0/1".to_string());
test3(_1_2, "1/2".to_string());
test3(_3_2, "10/2".to_string());
test3(_2, "2/1".to_string());
test3(_neg1_2, "-1/2".to_string());
test3(_neg1_2 / _2, "-1/11".to_string());
test16(_1, "1/1".to_string());
test16(_0, "0/1".to_string());
test16(_1_2, "1/2".to_string());
test16(_3_2, "3/2".to_string());
test16(_2, "2/1".to_string());
test16(_neg1_2, "-1/2".to_string());
test16(_neg1_2 / _2, "-1/4".to_string());
test16(Ratio::new(13i,15i), "d/f".to_string());
test16(_1_2*_1_2*_1_2*_1_2, "1/10".to_string());
}
#[test]
fn test_from_str_radix_fail() {
fn test(s: &str) {
let radix: Option<Rational> = FromStrRadix::from_str_radix(s, 3);
assert_eq!(radix, None);
}
let xs = ["0 /1", "abc", "", "1/", "--1/2","3/2/1", "3/2"];
for &s in xs.iter() {
test(s);
}
}
#[test]
fn test_from_float() {
fn test<T: Float>(given: T, (numer, denom): (&str, &str)) {
let ratio: BigRational = Ratio::from_float(given).unwrap();
assert_eq!(ratio, Ratio::new(
FromStr::from_str(numer).unwrap(),
FromStr::from_str(denom).unwrap()));
}
// f32
test(3.14159265359f32, ("13176795", "4194304"));
test(2f32.powf(100.), ("1267650600228229401496703205376", "1"));
test(-2f32.powf(100.), ("-1267650600228229401496703205376", "1"));
test(1.0 / 2f32.powf(100.), ("1", "1267650600228229401496703205376"));
test(684729.48391f32, ("1369459", "2"));
test(-8573.5918555f32, ("-4389679", "512"));
// f64
test(3.14159265359f64, ("3537118876014453", "1125899906842624"));
test(2f64.powf(100.), ("1267650600228229401496703205376", "1"));
test(-2f64.powf(100.), ("-1267650600228229401496703205376", "1"));
test(684729.48391f64, ("367611342500051", "536870912"));
test(-8573.5918555f64, ("-4713381968463931", "549755813888"));
test(1.0 / 2f64.powf(100.), ("1", "1267650600228229401496703205376"));
}
#[test]
fn test_from_float_fail() {
use std::{f32, f64};
assert_eq!(Ratio::from_float(f32::NAN), None);
assert_eq!(Ratio::from_float(f32::INFINITY), None);
assert_eq!(Ratio::from_float(f32::NEG_INFINITY), None);
assert_eq!(Ratio::from_float(f64::NAN), None);
assert_eq!(Ratio::from_float(f64::INFINITY), None);
assert_eq!(Ratio::from_float(f64::NEG_INFINITY), None);
}
#[test]
fn test_signed() {
assert_eq!(_neg1_2.abs(), _1_2);
assert_eq!(_3_2.abs_sub(&_1_2), _1);
assert_eq!(_1_2.abs_sub(&_3_2), Zero::zero());
assert_eq!(_1_2.signum(), One::one());
assert_eq!(_neg1_2.signum(), - num::one::<Ratio<int>>());
assert!(_neg1_2.is_negative());
assert!(! _neg1_2.is_positive());
assert!(! _1_2.is_negative());
}
#[test]
fn test_hash() {
assert!(hash(&_0) != hash(&_1));
assert!(hash(&_0) != hash(&_3_2));
}
}