parent
8be7e7bab5
commit
4e66bbe6a7
121
src/rational.rs
121
src/rational.rs
|
@ -224,33 +224,67 @@ impl Ratio<BigInt> {
|
|||
|
||||
/* Comparisons */
|
||||
|
||||
// comparing a/b and c/d is the same as comparing a*d and b*c, so we
|
||||
// abstract that pattern. The following macro takes a trait and either
|
||||
// a comma-separated list of "method name -> return value" or just
|
||||
// "method name" (return value is bool in that case)
|
||||
macro_rules! cmp_impl {
|
||||
(impl $imp:ident, $($method:ident),+) => {
|
||||
cmp_impl!(impl $imp, $($method -> bool),+);
|
||||
};
|
||||
// return something other than a Ratio<T>
|
||||
(impl $imp:ident, $($method:ident -> $res:ty),*) => {
|
||||
impl<T> $imp for Ratio<T> where
|
||||
T: Clone + Mul<T, Output = T> + $imp
|
||||
{
|
||||
$(
|
||||
#[inline]
|
||||
fn $method(&self, other: &Ratio<T>) -> $res {
|
||||
(self.numer.clone() * other.denom.clone()). $method (&(self.denom.clone()*other.numer.clone()))
|
||||
}
|
||||
)*
|
||||
// Mathematically, comparing a/b and c/d is the same as comparing a*d and b*c, but it's very easy
|
||||
// for those multiplications to overflow fixed-size integers, so we need to take care.
|
||||
|
||||
impl<T: Clone + Integer> Ord for Ratio<T> {
|
||||
#[inline]
|
||||
fn cmp(&self, other: &Self) -> cmp::Ordering {
|
||||
// With equal denominators, the numerators can be directly compared
|
||||
if self.denom == other.denom {
|
||||
let ord = self.numer.cmp(&other.numer);
|
||||
return if self.denom < T::zero() { ord.reverse() } else { ord };
|
||||
}
|
||||
};
|
||||
|
||||
// With equal numerators, the denominators can be inversely compared
|
||||
if self.numer == other.numer {
|
||||
let ord = self.denom.cmp(&other.denom);
|
||||
return if self.numer < T::zero() { ord } else { ord.reverse() };
|
||||
}
|
||||
|
||||
// Unfortunately, we don't have CheckedMul to try. That could sometimes avoid all the
|
||||
// division below, or even always avoid it for BigInt and BigUint.
|
||||
// FIXME- future breaking change to add Checked* to Integer?
|
||||
|
||||
// Compare as floored integers and remainders
|
||||
let (self_int, self_rem) = self.numer.div_mod_floor(&self.denom);
|
||||
let (other_int, other_rem) = other.numer.div_mod_floor(&other.denom);
|
||||
match self_int.cmp(&other_int) {
|
||||
cmp::Ordering::Greater => cmp::Ordering::Greater,
|
||||
cmp::Ordering::Less => cmp::Ordering::Less,
|
||||
cmp::Ordering::Equal => {
|
||||
match (self_rem.is_zero(), other_rem.is_zero()) {
|
||||
(true, true) => cmp::Ordering::Equal,
|
||||
(true, false) => cmp::Ordering::Less,
|
||||
(false, true) => cmp::Ordering::Greater,
|
||||
(false, false) => {
|
||||
// Compare the reciprocals of the remaining fractions in reverse
|
||||
let self_recip = Ratio::new_raw(self.denom.clone(), self_rem);
|
||||
let other_recip = Ratio::new_raw(other.denom.clone(), other_rem);
|
||||
self_recip.cmp(&other_recip).reverse()
|
||||
}
|
||||
}
|
||||
},
|
||||
}
|
||||
}
|
||||
}
|
||||
cmp_impl!(impl PartialEq, eq, ne);
|
||||
cmp_impl!(impl PartialOrd, lt -> bool, gt -> bool, le -> bool, ge -> bool,
|
||||
partial_cmp -> Option<cmp::Ordering>);
|
||||
cmp_impl!(impl Eq, );
|
||||
cmp_impl!(impl Ord, cmp -> cmp::Ordering);
|
||||
|
||||
impl<T: Clone + Integer> PartialOrd for Ratio<T> {
|
||||
#[inline]
|
||||
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
|
||||
Some(self.cmp(other))
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Clone + Integer> PartialEq for Ratio<T> {
|
||||
#[inline]
|
||||
fn eq(&self, other: &Self) -> bool {
|
||||
self.cmp(other) == cmp::Ordering::Equal
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Clone + Integer> Eq for Ratio<T> {}
|
||||
|
||||
|
||||
macro_rules! forward_val_val_binop {
|
||||
(impl $imp:ident, $method:ident) => {
|
||||
|
@ -597,6 +631,43 @@ mod test {
|
|||
assert!(_1 >= _0 && !(_0 >= _1));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_cmp_overflow() {
|
||||
use std::cmp::Ordering;
|
||||
|
||||
// issue #7 example:
|
||||
let big = Ratio::new(128u8, 1);
|
||||
let small = big.recip();
|
||||
assert!(big > small);
|
||||
|
||||
// try a few that are closer together
|
||||
// (some matching numer, some matching denom, some neither)
|
||||
let ratios = vec![
|
||||
Ratio::new(125_i8, 127_i8),
|
||||
Ratio::new(63_i8, 64_i8),
|
||||
Ratio::new(124_i8, 125_i8),
|
||||
Ratio::new(125_i8, 126_i8),
|
||||
Ratio::new(126_i8, 127_i8),
|
||||
Ratio::new(127_i8, 126_i8),
|
||||
];
|
||||
|
||||
fn check_cmp(a: Ratio<i8>, b: Ratio<i8>, ord: Ordering) {
|
||||
println!("comparing {} and {}", a, b);
|
||||
assert_eq!(a.cmp(&b), ord);
|
||||
assert_eq!(b.cmp(&a), ord.reverse());
|
||||
}
|
||||
|
||||
for (i, &a) in ratios.iter().enumerate() {
|
||||
check_cmp(a, a, Ordering::Equal);
|
||||
check_cmp(-a, a, Ordering::Less);
|
||||
for &b in &ratios[i+1..] {
|
||||
check_cmp(a, b, Ordering::Less);
|
||||
check_cmp(-a, -b, Ordering::Greater);
|
||||
check_cmp(a.recip(), b.recip(), Ordering::Greater);
|
||||
check_cmp(-a.recip(), -b.recip(), Ordering::Less);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_to_integer() {
|
||||
|
|
Loading…
Reference in New Issue