Auto merge of #301 - cuviper:revert-296, r=cuviper

Revert "Auto merge of #296 - vks:no_std, r=cuviper"

This reverts commit 8b5d4ac24e, reversing
changes made to ef752e4687.

See #297 -- it's a breaking change to feature-gate existing APIs.
This commit is contained in:
Homu 2017-06-10 02:26:53 +09:00
commit 5cd52741c4
11 changed files with 79 additions and 339 deletions

View File

@ -10,7 +10,3 @@ name = "num-traits"
version = "0.1.38"
[dependencies]
[features]
default = ["std"]
std = []

View File

@ -1,7 +1,7 @@
use core::{usize, u8, u16, u32, u64};
use core::{isize, i8, i16, i32, i64};
use core::{f32, f64};
use core::num::Wrapping;
use std::{usize, u8, u16, u32, u64};
use std::{isize, i8, i16, i32, i64};
use std::{f32, f64};
use std::num::Wrapping;
/// Numbers which have upper and lower bounds
pub trait Bounded {

View File

@ -1,9 +1,8 @@
use core::mem::size_of;
use core::num::Wrapping;
use std::mem::size_of;
use std::num::Wrapping;
use identities::Zero;
use bounds::Bounded;
use float::Float;
/// A generic trait for converting a value to a number.
pub trait ToPrimitive {
@ -227,8 +226,8 @@ macro_rules! impl_to_primitive_float_to_float {
// Make sure the value is in range for the cast.
// NaN and +-inf are cast as they are.
let n = $slf as f64;
let max_value: $DstT = ::core::$DstT::MAX;
if !Float::is_finite(n) || (-max_value as f64 <= n && n <= max_value as f64) {
let max_value: $DstT = ::std::$DstT::MAX;
if !n.is_finite() || (-max_value as f64 <= n && n <= max_value as f64) {
Some($slf as $DstT)
} else {
None
@ -455,8 +454,8 @@ impl<T: NumCast> NumCast for Wrapping<T> {
#[test]
fn to_primitive_float() {
use core::f32;
use core::f64;
use std::f32;
use std::f64;
let f32_toolarge = 1e39f64;
assert_eq!(f32_toolarge.to_f32(), None);

View File

@ -1,20 +1,15 @@
use core::mem;
use core::ops::Neg;
use core::num::FpCategory;
use std::mem;
use std::ops::Neg;
use std::num::FpCategory;
// Used for default implementation of `epsilon`
use core::f32;
use std::f32;
use {ToPrimitive, Num, NumCast};
use {Num, NumCast};
// FIXME: these doctests aren't actually helpful, because they're using and
// testing the inherent methods directly, not going through `Float`.
/// Floating point operations.
///
/// Please note that some methods are disabled for `no_std`. If you implement it
/// only for `no_std`, the build will fail if anyone else in the dependency
/// graph enables `num-traits/std`.
pub trait Float
: Num
+ Copy
@ -32,7 +27,6 @@ pub trait Float
/// assert!(nan.is_nan());
/// ```
fn nan() -> Self;
/// Returns the infinite value.
///
/// ```
@ -46,7 +40,6 @@ pub trait Float
/// assert!(infinity > f32::MAX);
/// ```
fn infinity() -> Self;
/// Returns the negative infinite value.
///
/// ```
@ -60,7 +53,6 @@ pub trait Float
/// assert!(neg_infinity < f32::MIN);
/// ```
fn neg_infinity() -> Self;
/// Returns `-0.0`.
///
/// ```
@ -74,10 +66,7 @@ pub trait Float
/// assert_eq!(7.0f32/inf, zero);
/// assert_eq!(zero * 10.0, zero);
/// ```
#[inline]
fn neg_zero() -> Self {
-Self::zero()
}
fn neg_zero() -> Self;
/// Returns the smallest finite value that this type can represent.
///
@ -145,10 +134,7 @@ pub trait Float
/// assert!(nan.is_nan());
/// assert!(!f.is_nan());
/// ```
#[inline]
fn is_nan(self) -> bool {
self != self
}
fn is_nan(self) -> bool;
/// Returns `true` if this value is positive infinity or negative infinity and
/// false otherwise.
@ -168,10 +154,7 @@ pub trait Float
/// assert!(inf.is_infinite());
/// assert!(neg_inf.is_infinite());
/// ```
#[inline]
fn is_infinite(self) -> bool {
self == Self::infinity() || self == Self::neg_infinity()
}
fn is_infinite(self) -> bool;
/// Returns `true` if this number is neither infinite nor `NaN`.
///
@ -190,10 +173,7 @@ pub trait Float
/// assert!(!inf.is_finite());
/// assert!(!neg_inf.is_finite());
/// ```
#[inline]
fn is_finite(self) -> bool {
!(self.is_nan() || self.is_infinite())
}
fn is_finite(self) -> bool;
/// Returns `true` if the number is neither zero, infinite,
/// [subnormal][subnormal], or `NaN`.
@ -217,10 +197,7 @@ pub trait Float
/// assert!(!lower_than_min.is_normal());
/// ```
/// [subnormal]: http://en.wikipedia.org/wiki/Denormal_number
#[inline]
fn is_normal(self) -> bool {
self.classify() == FpCategory::Normal
}
fn is_normal(self) -> bool;
/// Returns the floating point category of the number. If only one property
/// is going to be tested, it is generally faster to use the specific
@ -250,7 +227,6 @@ pub trait Float
/// assert_eq!(f.floor(), 3.0);
/// assert_eq!(g.floor(), 3.0);
/// ```
#[cfg(feature = "std")]
fn floor(self) -> Self;
/// Returns the smallest integer greater than or equal to a number.
@ -264,7 +240,6 @@ pub trait Float
/// assert_eq!(f.ceil(), 4.0);
/// assert_eq!(g.ceil(), 4.0);
/// ```
#[cfg(feature = "std")]
fn ceil(self) -> Self;
/// Returns the nearest integer to a number. Round half-way cases away from
@ -279,7 +254,6 @@ pub trait Float
/// assert_eq!(f.round(), 3.0);
/// assert_eq!(g.round(), -3.0);
/// ```
#[cfg(feature = "std")]
fn round(self) -> Self;
/// Return the integer part of a number.
@ -293,7 +267,6 @@ pub trait Float
/// assert_eq!(f.trunc(), 3.0);
/// assert_eq!(g.trunc(), -3.0);
/// ```
#[cfg(feature = "std")]
fn trunc(self) -> Self;
/// Returns the fractional part of a number.
@ -309,7 +282,6 @@ pub trait Float
/// assert!(abs_difference_x < 1e-10);
/// assert!(abs_difference_y < 1e-10);
/// ```
#[cfg(feature = "std")]
fn fract(self) -> Self;
/// Computes the absolute value of `self`. Returns `Float::nan()` if the
@ -330,16 +302,7 @@ pub trait Float
///
/// assert!(f64::NAN.abs().is_nan());
/// ```
#[inline]
fn abs(self) -> Self {
if self.is_sign_positive() {
return self;
}
if self.is_sign_negative() {
return -self;
}
Self::nan()
}
fn abs(self) -> Self;
/// Returns a number that represents the sign of `self`.
///
@ -358,16 +321,7 @@ pub trait Float
///
/// assert!(f64::NAN.signum().is_nan());
/// ```
#[inline]
fn signum(self) -> Self {
if self.is_sign_positive() {
return Self::one();
}
if self.is_sign_negative() {
return -Self::one();
}
Self::nan()
}
fn signum(self) -> Self;
/// Returns `true` if `self` is positive, including `+0.0` and
/// `Float::infinity()`.
@ -386,10 +340,7 @@ pub trait Float
/// // Requires both tests to determine if is `NaN`
/// assert!(!nan.is_sign_positive() && !nan.is_sign_negative());
/// ```
#[inline]
fn is_sign_positive(self) -> bool {
self > Self::zero() || (Self::one() / self) == Self::infinity()
}
fn is_sign_positive(self) -> bool;
/// Returns `true` if `self` is negative, including `-0.0` and
/// `Float::neg_infinity()`.
@ -408,10 +359,7 @@ pub trait Float
/// // Requires both tests to determine if is `NaN`.
/// assert!(!nan.is_sign_positive() && !nan.is_sign_negative());
/// ```
#[inline]
fn is_sign_negative(self) -> bool {
self < Self::zero() || (Self::one() / self) == Self::neg_infinity()
}
fn is_sign_negative(self) -> bool;
/// Fused multiply-add. Computes `(self * a) + b` with only one rounding
/// error. This produces a more accurate result with better performance than
@ -429,9 +377,7 @@ pub trait Float
///
/// assert!(abs_difference < 1e-10);
/// ```
#[cfg(feature = "std")]
fn mul_add(self, a: Self, b: Self) -> Self;
/// Take the reciprocal (inverse) of a number, `1/x`.
///
/// ```
@ -442,10 +388,7 @@ pub trait Float
///
/// assert!(abs_difference < 1e-10);
/// ```
#[inline]
fn recip(self) -> Self {
Self::one() / self
}
fn recip(self) -> Self;
/// Raise a number to an integer power.
///
@ -459,15 +402,7 @@ pub trait Float
///
/// assert!(abs_difference < 1e-10);
/// ```
#[inline]
fn powi(mut self, mut exp: i32) -> Self {
if exp < 0 {
self = self.recip();
exp = -exp;
}
// It should always be possible to convert a positive `i32` to a `usize`.
super::pow(self, exp.to_usize().unwrap())
}
fn powi(self, n: i32) -> Self;
/// Raise a number to a floating point power.
///
@ -479,7 +414,6 @@ pub trait Float
///
/// assert!(abs_difference < 1e-10);
/// ```
#[cfg(feature = "std")]
fn powf(self, n: Self) -> Self;
/// Take the square root of a number.
@ -497,7 +431,6 @@ pub trait Float
/// assert!(abs_difference < 1e-10);
/// assert!(negative.sqrt().is_nan());
/// ```
#[cfg(feature = "std")]
fn sqrt(self) -> Self;
/// Returns `e^(self)`, (the exponential function).
@ -514,7 +447,6 @@ pub trait Float
///
/// assert!(abs_difference < 1e-10);
/// ```
#[cfg(feature = "std")]
fn exp(self) -> Self;
/// Returns `2^(self)`.
@ -529,7 +461,6 @@ pub trait Float
///
/// assert!(abs_difference < 1e-10);
/// ```
#[cfg(feature = "std")]
fn exp2(self) -> Self;
/// Returns the natural logarithm of the number.
@ -546,7 +477,6 @@ pub trait Float
///
/// assert!(abs_difference < 1e-10);
/// ```
#[cfg(feature = "std")]
fn ln(self) -> Self;
/// Returns the logarithm of the number with respect to an arbitrary base.
@ -566,7 +496,6 @@ pub trait Float
/// assert!(abs_difference_10 < 1e-10);
/// assert!(abs_difference_2 < 1e-10);
/// ```
#[cfg(feature = "std")]
fn log(self, base: Self) -> Self;
/// Returns the base 2 logarithm of the number.
@ -581,7 +510,6 @@ pub trait Float
///
/// assert!(abs_difference < 1e-10);
/// ```
#[cfg(feature = "std")]
fn log2(self) -> Self;
/// Returns the base 10 logarithm of the number.
@ -596,7 +524,6 @@ pub trait Float
///
/// assert!(abs_difference < 1e-10);
/// ```
#[cfg(feature = "std")]
fn log10(self) -> Self;
/// Converts radians to degrees.
@ -610,7 +537,6 @@ pub trait Float
///
/// assert!(abs_difference < 1e-10);
/// ```
#[cfg(feature = "std")]
#[inline]
fn to_degrees(self) -> Self {
let halfpi = Self::zero().acos();
@ -618,20 +544,6 @@ pub trait Float
self * ninety / halfpi
}
/// Converts radians to degrees.
///
/// ```
/// use std::f64::consts;
///
/// let angle = consts::PI;
///
/// let abs_difference = (angle.to_degrees() - 180.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
#[cfg(not(feature = "std"))]
fn to_degrees(self) -> Self;
/// Converts degrees to radians.
///
/// ```
@ -643,7 +555,6 @@ pub trait Float
///
/// assert!(abs_difference < 1e-10);
/// ```
#[cfg(feature = "std")]
#[inline]
fn to_radians(self) -> Self {
let halfpi = Self::zero().acos();
@ -651,24 +562,8 @@ pub trait Float
self * halfpi / ninety
}
/// Converts degrees to radians.
///
/// ```
/// use std::f64::consts;
///
/// let angle = 180.0_f64;
///
/// let abs_difference = (angle.to_radians() - consts::PI).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
#[cfg(not(feature = "std"))]
fn to_radians(self) -> Self;
/// Returns the maximum of the two numbers.
///
/// If one of the arguments is NaN, then the other argument is returned.
///
/// ```
/// use num_traits::Float;
///
@ -677,21 +572,10 @@ pub trait Float
///
/// assert_eq!(x.max(y), y);
/// ```
#[inline]
fn max(self, other: Self) -> Self {
if self.is_nan() {
return other;
}
if other.is_nan() {
return self;
}
if self > other { self } else { other }
}
fn max(self, other: Self) -> Self;
/// Returns the minimum of the two numbers.
///
/// If one of the arguments is NaN, then the other argument is returned.
///
/// ```
/// use num_traits::Float;
///
@ -700,16 +584,7 @@ pub trait Float
///
/// assert_eq!(x.min(y), x);
/// ```
#[inline]
fn min(self, other: Self) -> Self {
if self.is_nan() {
return other;
}
if other.is_nan() {
return self;
}
if self < other { self } else { other }
}
fn min(self, other: Self) -> Self;
/// The positive difference of two numbers.
///
@ -728,7 +603,6 @@ pub trait Float
/// assert!(abs_difference_x < 1e-10);
/// assert!(abs_difference_y < 1e-10);
/// ```
#[cfg(feature = "std")]
fn abs_sub(self, other: Self) -> Self;
/// Take the cubic root of a number.
@ -743,7 +617,6 @@ pub trait Float
///
/// assert!(abs_difference < 1e-10);
/// ```
#[cfg(feature = "std")]
fn cbrt(self) -> Self;
/// Calculate the length of the hypotenuse of a right-angle triangle given
@ -760,7 +633,6 @@ pub trait Float
///
/// assert!(abs_difference < 1e-10);
/// ```
#[cfg(feature = "std")]
fn hypot(self, other: Self) -> Self;
/// Computes the sine of a number (in radians).
@ -775,7 +647,6 @@ pub trait Float
///
/// assert!(abs_difference < 1e-10);
/// ```
#[cfg(feature = "std")]
fn sin(self) -> Self;
/// Computes the cosine of a number (in radians).
@ -790,7 +661,6 @@ pub trait Float
///
/// assert!(abs_difference < 1e-10);
/// ```
#[cfg(feature = "std")]
fn cos(self) -> Self;
/// Computes the tangent of a number (in radians).
@ -804,7 +674,6 @@ pub trait Float
///
/// assert!(abs_difference < 1e-14);
/// ```
#[cfg(feature = "std")]
fn tan(self) -> Self;
/// Computes the arcsine of a number. Return value is in radians in
@ -822,7 +691,6 @@ pub trait Float
///
/// assert!(abs_difference < 1e-10);
/// ```
#[cfg(feature = "std")]
fn asin(self) -> Self;
/// Computes the arccosine of a number. Return value is in radians in
@ -840,7 +708,6 @@ pub trait Float
///
/// assert!(abs_difference < 1e-10);
/// ```
#[cfg(feature = "std")]
fn acos(self) -> Self;
/// Computes the arctangent of a number. Return value is in radians in the
@ -856,7 +723,6 @@ pub trait Float
///
/// assert!(abs_difference < 1e-10);
/// ```
#[cfg(feature = "std")]
fn atan(self) -> Self;
/// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`).
@ -886,7 +752,6 @@ pub trait Float
/// assert!(abs_difference_1 < 1e-10);
/// assert!(abs_difference_2 < 1e-10);
/// ```
#[cfg(feature = "std")]
fn atan2(self, other: Self) -> Self;
/// Simultaneously computes the sine and cosine of the number, `x`. Returns
@ -905,7 +770,6 @@ pub trait Float
/// assert!(abs_difference_0 < 1e-10);
/// assert!(abs_difference_0 < 1e-10);
/// ```
#[cfg(feature = "std")]
fn sin_cos(self) -> (Self, Self);
/// Returns `e^(self) - 1` in a way that is accurate even if the
@ -921,7 +785,6 @@ pub trait Float
///
/// assert!(abs_difference < 1e-10);
/// ```
#[cfg(feature = "std")]
fn exp_m1(self) -> Self;
/// Returns `ln(1+n)` (natural logarithm) more accurately than if
@ -938,7 +801,6 @@ pub trait Float
///
/// assert!(abs_difference < 1e-10);
/// ```
#[cfg(feature = "std")]
fn ln_1p(self) -> Self;
/// Hyperbolic sine function.
@ -957,7 +819,6 @@ pub trait Float
///
/// assert!(abs_difference < 1e-10);
/// ```
#[cfg(feature = "std")]
fn sinh(self) -> Self;
/// Hyperbolic cosine function.
@ -976,7 +837,6 @@ pub trait Float
/// // Same result
/// assert!(abs_difference < 1.0e-10);
/// ```
#[cfg(feature = "std")]
fn cosh(self) -> Self;
/// Hyperbolic tangent function.
@ -995,7 +855,6 @@ pub trait Float
///
/// assert!(abs_difference < 1.0e-10);
/// ```
#[cfg(feature = "std")]
fn tanh(self) -> Self;
/// Inverse hyperbolic sine function.
@ -1010,7 +869,6 @@ pub trait Float
///
/// assert!(abs_difference < 1.0e-10);
/// ```
#[cfg(feature = "std")]
fn asinh(self) -> Self;
/// Inverse hyperbolic cosine function.
@ -1025,7 +883,6 @@ pub trait Float
///
/// assert!(abs_difference < 1.0e-10);
/// ```
#[cfg(feature = "std")]
fn acosh(self) -> Self;
/// Inverse hyperbolic tangent function.
@ -1041,7 +898,6 @@ pub trait Float
///
/// assert!(abs_difference < 1.0e-10);
/// ```
#[cfg(feature = "std")]
fn atanh(self) -> Self;
@ -1070,21 +926,21 @@ pub trait Float
}
macro_rules! float_impl {
($T:ident $decode:ident $classify:ident) => (
($T:ident $decode:ident) => (
impl Float for $T {
#[inline]
fn nan() -> Self {
::core::$T::NAN
::std::$T::NAN
}
#[inline]
fn infinity() -> Self {
::core::$T::INFINITY
::std::$T::INFINITY
}
#[inline]
fn neg_infinity() -> Self {
::core::$T::NEG_INFINITY
::std::$T::NEG_INFINITY
}
#[inline]
@ -1094,326 +950,264 @@ macro_rules! float_impl {
#[inline]
fn min_value() -> Self {
::core::$T::MIN
::std::$T::MIN
}
#[inline]
fn min_positive_value() -> Self {
::core::$T::MIN_POSITIVE
::std::$T::MIN_POSITIVE
}
#[inline]
fn epsilon() -> Self {
::core::$T::EPSILON
::std::$T::EPSILON
}
#[inline]
fn max_value() -> Self {
::core::$T::MAX
::std::$T::MAX
}
#[cfg(feature = "std")]
#[inline]
fn is_nan(self) -> bool {
<$T>::is_nan(self)
}
#[cfg(feature = "std")]
#[inline]
fn is_infinite(self) -> bool {
<$T>::is_infinite(self)
}
#[cfg(feature = "std")]
#[inline]
fn is_finite(self) -> bool {
<$T>::is_finite(self)
}
#[cfg(feature = "std")]
#[inline]
fn is_normal(self) -> bool {
<$T>::is_normal(self)
}
#[cfg(feature = "std")]
#[inline]
fn classify(self) -> FpCategory {
<$T>::classify(self)
}
#[cfg(not(feature = "std"))]
#[inline]
fn classify(self) -> FpCategory {
$classify(self)
}
#[cfg(feature = "std")]
#[inline]
fn floor(self) -> Self {
<$T>::floor(self)
}
#[cfg(feature = "std")]
#[inline]
fn ceil(self) -> Self {
<$T>::ceil(self)
}
#[cfg(feature = "std")]
#[inline]
fn round(self) -> Self {
<$T>::round(self)
}
#[cfg(feature = "std")]
#[inline]
fn trunc(self) -> Self {
<$T>::trunc(self)
}
#[cfg(feature = "std")]
#[inline]
fn fract(self) -> Self {
<$T>::fract(self)
}
#[cfg(feature = "std")]
#[inline]
fn abs(self) -> Self {
<$T>::abs(self)
}
#[cfg(feature = "std")]
#[inline]
fn signum(self) -> Self {
<$T>::signum(self)
}
#[cfg(feature = "std")]
#[inline]
fn is_sign_positive(self) -> bool {
<$T>::is_sign_positive(self)
}
#[cfg(feature = "std")]
#[inline]
fn is_sign_negative(self) -> bool {
<$T>::is_sign_negative(self)
}
#[cfg(feature = "std")]
#[inline]
fn mul_add(self, a: Self, b: Self) -> Self {
<$T>::mul_add(self, a, b)
}
#[cfg(feature = "std")]
#[inline]
fn recip(self) -> Self {
<$T>::recip(self)
}
#[cfg(feature = "std")]
#[inline]
fn powi(self, n: i32) -> Self {
<$T>::powi(self, n)
}
#[cfg(feature = "std")]
#[inline]
fn powf(self, n: Self) -> Self {
<$T>::powf(self, n)
}
#[cfg(feature = "std")]
#[inline]
fn sqrt(self) -> Self {
<$T>::sqrt(self)
}
#[cfg(feature = "std")]
#[inline]
fn exp(self) -> Self {
<$T>::exp(self)
}
#[cfg(feature = "std")]
#[inline]
fn exp2(self) -> Self {
<$T>::exp2(self)
}
#[cfg(feature = "std")]
#[inline]
fn ln(self) -> Self {
<$T>::ln(self)
}
#[cfg(feature = "std")]
#[inline]
fn log(self, base: Self) -> Self {
<$T>::log(self, base)
}
#[cfg(feature = "std")]
#[inline]
fn log2(self) -> Self {
<$T>::log2(self)
}
#[cfg(feature = "std")]
#[inline]
fn log10(self) -> Self {
<$T>::log10(self)
}
#[cfg(feature = "std")]
#[inline]
fn to_degrees(self) -> Self {
<$T>::to_degrees(self)
// NB: `f32` didn't stabilize this until 1.7
// <$T>::to_degrees(self)
self * (180. / ::std::$T::consts::PI)
}
#[cfg(feature = "std")]
#[inline]
fn to_radians(self) -> Self {
<$T>::to_radians(self)
// NB: `f32` didn't stabilize this until 1.7
// <$T>::to_radians(self)
self * (::std::$T::consts::PI / 180.)
}
#[cfg(not(feature = "std"))]
#[inline]
fn to_degrees(self) -> Self {
self * (180. / ::core::$T::consts::PI)
}
#[cfg(not(feature = "std"))]
#[inline]
fn to_radians(self) -> Self {
self * (::core::$T::consts::PI / 180.)
}
#[cfg(feature = "std")]
#[inline]
fn max(self, other: Self) -> Self {
<$T>::max(self, other)
}
#[cfg(feature = "std")]
#[inline]
fn min(self, other: Self) -> Self {
<$T>::min(self, other)
}
#[cfg(feature = "std")]
#[inline]
#[allow(deprecated)]
fn abs_sub(self, other: Self) -> Self {
<$T>::abs_sub(self, other)
}
#[cfg(feature = "std")]
#[inline]
fn cbrt(self) -> Self {
<$T>::cbrt(self)
}
#[cfg(feature = "std")]
#[inline]
fn hypot(self, other: Self) -> Self {
<$T>::hypot(self, other)
}
#[cfg(feature = "std")]
#[inline]
fn sin(self) -> Self {
<$T>::sin(self)
}
#[cfg(feature = "std")]
#[inline]
fn cos(self) -> Self {
<$T>::cos(self)
}
#[cfg(feature = "std")]
#[inline]
fn tan(self) -> Self {
<$T>::tan(self)
}
#[cfg(feature = "std")]
#[inline]
fn asin(self) -> Self {
<$T>::asin(self)
}
#[cfg(feature = "std")]
#[inline]
fn acos(self) -> Self {
<$T>::acos(self)
}
#[cfg(feature = "std")]
#[inline]
fn atan(self) -> Self {
<$T>::atan(self)
}
#[cfg(feature = "std")]
#[inline]
fn atan2(self, other: Self) -> Self {
<$T>::atan2(self, other)
}
#[cfg(feature = "std")]
#[inline]
fn sin_cos(self) -> (Self, Self) {
<$T>::sin_cos(self)
}
#[cfg(feature = "std")]
#[inline]
fn exp_m1(self) -> Self {
<$T>::exp_m1(self)
}
#[cfg(feature = "std")]
#[inline]
fn ln_1p(self) -> Self {
<$T>::ln_1p(self)
}
#[cfg(feature = "std")]
#[inline]
fn sinh(self) -> Self {
<$T>::sinh(self)
}
#[cfg(feature = "std")]
#[inline]
fn cosh(self) -> Self {
<$T>::cosh(self)
}
#[cfg(feature = "std")]
#[inline]
fn tanh(self) -> Self {
<$T>::tanh(self)
}
#[cfg(feature = "std")]
#[inline]
fn asinh(self) -> Self {
<$T>::asinh(self)
}
#[cfg(feature = "std")]
#[inline]
fn acosh(self) -> Self {
<$T>::acosh(self)
}
#[cfg(feature = "std")]
#[inline]
fn atanh(self) -> Self {
<$T>::atanh(self)
@ -1445,21 +1239,6 @@ fn integer_decode_f32(f: f32) -> (u64, i16, i8) {
(mantissa as u64, exponent, sign)
}
#[cfg(not(feature = "std"))]
fn classify_f32(f: f32) -> FpCategory {
const EXP_MASK: u32 = 0x7f800000;
const MAN_MASK: u32 = 0x007fffff;
let bits: u32 = unsafe { mem::transmute(f) };
match (bits & MAN_MASK, bits & EXP_MASK) {
(0, 0) => FpCategory::Zero,
(_, 0) => FpCategory::Subnormal,
(0, EXP_MASK) => FpCategory::Infinite,
(_, EXP_MASK) => FpCategory::Nan,
_ => FpCategory::Normal,
}
}
fn integer_decode_f64(f: f64) -> (u64, i16, i8) {
let bits: u64 = unsafe { mem::transmute(f) };
let sign: i8 = if bits >> 63 == 0 {
@ -1478,23 +1257,8 @@ fn integer_decode_f64(f: f64) -> (u64, i16, i8) {
(mantissa, exponent, sign)
}
#[cfg(not(feature = "std"))]
fn classify_f64(f: f64) -> FpCategory {
const EXP_MASK: u64 = 0x7ff0000000000000;
const MAN_MASK: u64 = 0x000fffffffffffff;
let bits: u64 = unsafe { mem::transmute(f) };
match (bits & MAN_MASK, bits & EXP_MASK) {
(0, 0) => FpCategory::Zero,
(_, 0) => FpCategory::Subnormal,
(0, EXP_MASK) => FpCategory::Infinite,
(_, EXP_MASK) => FpCategory::Nan,
_ => FpCategory::Normal,
}
}
float_impl!(f32 integer_decode_f32 classify_f32);
float_impl!(f64 integer_decode_f64 classify_f64);
float_impl!(f32 integer_decode_f32);
float_impl!(f64 integer_decode_f64);
macro_rules! float_const_impl {
($(#[$doc:meta] $constant:ident,)+) => (
@ -1510,7 +1274,7 @@ macro_rules! float_const_impl {
$(
#[inline]
fn $constant() -> Self {
::core::$T::consts::$constant
::std::$T::consts::$constant
}
)+
}
@ -1555,34 +1319,20 @@ float_const_impl! {
#[cfg(test)]
mod tests {
use Float;
use core::f64::consts;
const DEG_RAD_PAIRS: [(f64, f64); 7] = [
(0.0, 0.),
(22.5, consts::FRAC_PI_8),
(30.0, consts::FRAC_PI_6),
(45.0, consts::FRAC_PI_4),
(60.0, consts::FRAC_PI_3),
(90.0, consts::FRAC_PI_2),
(180.0, consts::PI),
];
#[test]
fn convert_deg_rad_core() {
for &(deg, rad) in &DEG_RAD_PAIRS {
assert!((Float::to_degrees(rad) - deg).abs() < 1e-6);
assert!((Float::to_radians(deg) - rad).abs() < 1e-6);
fn convert_deg_rad() {
use std::f64::consts;
let (deg, rad) = (deg as f32, rad as f32);
assert!((Float::to_degrees(rad) - deg).abs() < 1e-6);
assert!((Float::to_radians(deg) - rad).abs() < 1e-6);
}
}
#[cfg(feature = "std")]
#[test]
fn convert_deg_rad_std() {
use Float;
const DEG_RAD_PAIRS: [(f64, f64); 7] = [
(0.0, 0.),
(22.5, consts::FRAC_PI_8),
(30.0, consts::FRAC_PI_6),
(45.0, consts::FRAC_PI_4),
(60.0, consts::FRAC_PI_3),
(90.0, consts::FRAC_PI_2),
(180.0, consts::PI),
];
for &(deg, rad) in &DEG_RAD_PAIRS {
assert!((Float::to_degrees(rad) - deg).abs() < 1e-6);

View File

@ -1,5 +1,5 @@
use core::ops::{Add, Mul};
use core::num::Wrapping;
use std::ops::{Add, Mul};
use std::num::Wrapping;
/// Defines an additive identity element for `Self`.
pub trait Zero: Sized + Add<Self, Output = Self> {

View File

@ -1,4 +1,4 @@
use core::ops::{Not, BitAnd, BitOr, BitXor, Shl, Shr};
use std::ops::{Not, BitAnd, BitOr, BitXor, Shl, Shr};
use {Num, NumCast};
use bounds::Bounded;

View File

@ -14,15 +14,9 @@
html_root_url = "https://rust-num.github.io/num/",
html_playground_url = "http://play.integer32.com/")]
#![deny(unconditional_recursion)]
#![cfg_attr(not(feature = "std"), no_std)]
#[cfg(feature = "std")]
extern crate core;
use core::ops::{Add, Sub, Mul, Div, Rem};
use core::ops::{AddAssign, SubAssign, MulAssign, DivAssign, RemAssign};
use core::num::Wrapping;
use std::ops::{Add, Sub, Mul, Div, Rem};
use std::ops::{AddAssign, SubAssign, MulAssign, DivAssign, RemAssign};
use std::num::Wrapping;
pub use bounds::Bounded;
pub use float::{Float, FloatConst};
@ -135,10 +129,10 @@ impl<T> NumAssignRef for T where T: NumAssign + for<'r> NumAssignOps<&'r T> {}
macro_rules! int_trait_impl {
($name:ident for $($t:ty)*) => ($(
impl $name for $t {
type FromStrRadixErr = ::core::num::ParseIntError;
type FromStrRadixErr = ::std::num::ParseIntError;
#[inline]
fn from_str_radix(s: &str, radix: u32)
-> Result<Self, ::core::num::ParseIntError>
-> Result<Self, ::std::num::ParseIntError>
{
<$t>::from_str_radix(s, radix)
}
@ -164,7 +158,7 @@ pub enum FloatErrorKind {
Empty,
Invalid,
}
// FIXME: core::num::ParseFloatError is stable in 1.0, but opaque to us,
// FIXME: std::num::ParseFloatError is stable in 1.0, but opaque to us,
// so there's not really any way for us to reuse it.
#[derive(Debug)]
pub struct ParseFloatError {
@ -311,8 +305,8 @@ macro_rules! float_trait_impl {
};
match (is_positive, exp) {
(true, Ok(exp)) => Float::powi(base, exp as i32),
(false, Ok(exp)) => 1.0 / Float::powi(base, exp as i32),
(true, Ok(exp)) => base.powi(exp as i32),
(false, Ok(exp)) => 1.0 / base.powi(exp as i32),
(_, Err(_)) => return Err(PFE { kind: Invalid }),
}
},

View File

@ -1,4 +1,4 @@
use core::ops::{Add, Sub, Mul, Div};
use std::ops::{Add, Sub, Mul, Div};
/// Performs addition that returns `None` instead of wrapping around on
/// overflow.

View File

@ -1,5 +1,5 @@
use core::ops::{Add, Sub, Mul};
use core::num::Wrapping;
use std::ops::{Add, Sub, Mul};
use std::num::Wrapping;
macro_rules! wrapping_impl {
($trait_name:ident, $method:ident, $t:ty) => {

View File

@ -1,4 +1,4 @@
use core::ops::Mul;
use std::ops::Mul;
use {One, CheckedMul};
/// Raises a value to the power of exp, using exponentiation by squaring.

View File

@ -1,8 +1,8 @@
use core::ops::Neg;
use core::{f32, f64};
use core::num::Wrapping;
use std::ops::Neg;
use std::{f32, f64};
use std::num::Wrapping;
use {Num, Float};
use Num;
/// Useful functions for signed numbers (i.e. numbers that can be negative).
pub trait Signed: Sized + Num + Neg<Output = Self> {
@ -104,15 +104,16 @@ macro_rules! signed_float_impl {
/// Computes the absolute value. Returns `NAN` if the number is `NAN`.
#[inline]
fn abs(&self) -> $t {
(*self).abs()
<$t>::abs(*self)
}
/// The positive difference of two numbers. Returns `0.0` if the number is
/// less than or equal to `other`, otherwise the difference between`self`
/// and `other` is returned.
#[inline]
#[allow(deprecated)]
fn abs_sub(&self, other: &$t) -> $t {
if *self <= *other { 0. } else { *self - *other }
<$t>::abs_sub(*self, *other)
}
/// # Returns
@ -122,7 +123,7 @@ macro_rules! signed_float_impl {
/// - `NAN` if the number is NaN
#[inline]
fn signum(&self) -> $t {
Float::signum(*self)
<$t>::signum(*self)
}
/// Returns `true` if the number is positive, including `+0.0` and `INFINITY`