Merge #327
327: Add general Rem and Num implementations for Complex<T> r=cuviper a=carrutstick This should address #209 with eyes towards addressing #321. It was a little tricky to get `Rem` working for a general `Num`, and I had to add a `PartialOrd` constraint to get it working, but I think it should be fairly robust. I could probably use extra eyes on the `from_str_radix` function, as I mostly lifted the code from the `from_str` function and I may be missing some subtleties in how that works.
This commit is contained in:
commit
85bd97fcfe
|
@ -26,7 +26,7 @@ use std::error::Error;
|
||||||
use std::fmt;
|
use std::fmt;
|
||||||
#[cfg(test)]
|
#[cfg(test)]
|
||||||
use std::hash;
|
use std::hash;
|
||||||
use std::ops::{Add, Div, Mul, Neg, Sub};
|
use std::ops::{Add, Div, Mul, Neg, Sub, Rem};
|
||||||
use std::str::FromStr;
|
use std::str::FromStr;
|
||||||
|
|
||||||
use traits::{Zero, One, Num, Float};
|
use traits::{Zero, One, Num, Float};
|
||||||
|
@ -261,8 +261,8 @@ impl<T: Clone + Float> Complex<T> {
|
||||||
#[inline]
|
#[inline]
|
||||||
pub fn asin(&self) -> Complex<T> {
|
pub fn asin(&self) -> Complex<T> {
|
||||||
// formula: arcsin(z) = -i ln(sqrt(1-z^2) + iz)
|
// formula: arcsin(z) = -i ln(sqrt(1-z^2) + iz)
|
||||||
let i = Complex::i();
|
let i = Complex::<T>::i();
|
||||||
-i*((Complex::one() - self*self).sqrt() + i*self).ln()
|
-i*((Complex::<T>::one() - self*self).sqrt() + i*self).ln()
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Computes the principal value of the inverse cosine of `self`.
|
/// Computes the principal value of the inverse cosine of `self`.
|
||||||
|
@ -276,8 +276,8 @@ impl<T: Clone + Float> Complex<T> {
|
||||||
#[inline]
|
#[inline]
|
||||||
pub fn acos(&self) -> Complex<T> {
|
pub fn acos(&self) -> Complex<T> {
|
||||||
// formula: arccos(z) = -i ln(i sqrt(1-z^2) + z)
|
// formula: arccos(z) = -i ln(i sqrt(1-z^2) + z)
|
||||||
let i = Complex::i();
|
let i = Complex::<T>::i();
|
||||||
-i*(i*(Complex::one() - self*self).sqrt() + self).ln()
|
-i*(i*(Complex::<T>::one() - self*self).sqrt() + self).ln()
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Computes the principal value of the inverse tangent of `self`.
|
/// Computes the principal value of the inverse tangent of `self`.
|
||||||
|
@ -291,8 +291,8 @@ impl<T: Clone + Float> Complex<T> {
|
||||||
#[inline]
|
#[inline]
|
||||||
pub fn atan(&self) -> Complex<T> {
|
pub fn atan(&self) -> Complex<T> {
|
||||||
// formula: arctan(z) = (ln(1+iz) - ln(1-iz))/(2i)
|
// formula: arctan(z) = (ln(1+iz) - ln(1-iz))/(2i)
|
||||||
let i = Complex::i();
|
let i = Complex::<T>::i();
|
||||||
let one = Complex::one();
|
let one = Complex::<T>::one();
|
||||||
let two = one + one;
|
let two = one + one;
|
||||||
if *self == i {
|
if *self == i {
|
||||||
return Complex::new(T::zero(), T::infinity());
|
return Complex::new(T::zero(), T::infinity());
|
||||||
|
@ -336,7 +336,7 @@ impl<T: Clone + Float> Complex<T> {
|
||||||
#[inline]
|
#[inline]
|
||||||
pub fn asinh(&self) -> Complex<T> {
|
pub fn asinh(&self) -> Complex<T> {
|
||||||
// formula: arcsinh(z) = ln(z + sqrt(1+z^2))
|
// formula: arcsinh(z) = ln(z + sqrt(1+z^2))
|
||||||
let one = Complex::one();
|
let one = Complex::<T>::one();
|
||||||
(self + (one + self * self).sqrt()).ln()
|
(self + (one + self * self).sqrt()).ln()
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -518,10 +518,27 @@ impl<T: Clone + Num> Div<Complex<T>> for Complex<T> {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
forward_all_binop!(impl Rem, rem);
|
||||||
|
|
||||||
|
// Attempts to identify the gaussian integer whose product with `modulus`
|
||||||
|
// is closest to `self`.
|
||||||
|
impl<T: Clone + Num> Rem<Complex<T>> for Complex<T> {
|
||||||
|
type Output = Complex<T>;
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
fn rem(self, modulus: Complex<T>) -> Self {
|
||||||
|
let Complex { re, im } = self.clone() / modulus.clone();
|
||||||
|
// This is the gaussian integer corresponding to the true ratio
|
||||||
|
// rounded towards zero.
|
||||||
|
let (re0, im0) = (re.clone() - re % T::one(), im.clone() - im % T::one());
|
||||||
|
self - modulus * Complex::new(re0, im0)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// Op Assign
|
// Op Assign
|
||||||
|
|
||||||
mod opassign {
|
mod opassign {
|
||||||
use std::ops::{AddAssign, SubAssign, MulAssign, DivAssign};
|
use std::ops::{AddAssign, SubAssign, MulAssign, DivAssign, RemAssign};
|
||||||
|
|
||||||
use traits::NumAssign;
|
use traits::NumAssign;
|
||||||
|
|
||||||
|
@ -553,6 +570,12 @@ mod opassign {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
impl<T: Clone + NumAssign> RemAssign for Complex<T> {
|
||||||
|
fn rem_assign(&mut self, other: Complex<T>) {
|
||||||
|
*self = self.clone() % other;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
impl<T: Clone + NumAssign> AddAssign<T> for Complex<T> {
|
impl<T: Clone + NumAssign> AddAssign<T> for Complex<T> {
|
||||||
fn add_assign(&mut self, other: T) {
|
fn add_assign(&mut self, other: T) {
|
||||||
self.re += other;
|
self.re += other;
|
||||||
|
@ -579,6 +602,12 @@ mod opassign {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
impl<T: Clone + NumAssign> RemAssign<T> for Complex<T> {
|
||||||
|
fn rem_assign(&mut self, other: T) {
|
||||||
|
*self = self.clone() % other;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
macro_rules! forward_op_assign {
|
macro_rules! forward_op_assign {
|
||||||
(impl $imp:ident, $method:ident) => {
|
(impl $imp:ident, $method:ident) => {
|
||||||
impl<'a, T: Clone + NumAssign> $imp<&'a Complex<T>> for Complex<T> {
|
impl<'a, T: Clone + NumAssign> $imp<&'a Complex<T>> for Complex<T> {
|
||||||
|
@ -600,6 +629,19 @@ mod opassign {
|
||||||
forward_op_assign!(impl SubAssign, sub_assign);
|
forward_op_assign!(impl SubAssign, sub_assign);
|
||||||
forward_op_assign!(impl MulAssign, mul_assign);
|
forward_op_assign!(impl MulAssign, mul_assign);
|
||||||
forward_op_assign!(impl DivAssign, div_assign);
|
forward_op_assign!(impl DivAssign, div_assign);
|
||||||
|
|
||||||
|
impl<'a, T: Clone + NumAssign> RemAssign<&'a Complex<T>> for Complex<T> {
|
||||||
|
#[inline]
|
||||||
|
fn rem_assign(&mut self, other: &Complex<T>) {
|
||||||
|
self.rem_assign(other.clone())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
impl<'a, T: Clone + NumAssign> RemAssign<&'a T> for Complex<T> {
|
||||||
|
#[inline]
|
||||||
|
fn rem_assign(&mut self, other: &T) {
|
||||||
|
self.rem_assign(other.clone())
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<T: Clone + Num + Neg<Output = T>> Neg for Complex<T> {
|
impl<T: Clone + Num + Neg<Output = T>> Neg for Complex<T> {
|
||||||
|
@ -678,6 +720,7 @@ macro_rules! real_arithmetic {
|
||||||
real_arithmetic!(@forward Sub::sub for $($real),*);
|
real_arithmetic!(@forward Sub::sub for $($real),*);
|
||||||
real_arithmetic!(@forward Mul::mul for $($real),*);
|
real_arithmetic!(@forward Mul::mul for $($real),*);
|
||||||
real_arithmetic!(@forward Div::div for $($real),*);
|
real_arithmetic!(@forward Div::div for $($real),*);
|
||||||
|
real_arithmetic!(@forward Rem::rem for $($real),*);
|
||||||
|
|
||||||
$(
|
$(
|
||||||
impl Add<Complex<$real>> for $real {
|
impl Add<Complex<$real>> for $real {
|
||||||
|
@ -718,6 +761,15 @@ macro_rules! real_arithmetic {
|
||||||
$real::zero() - self * other.im / norm_sqr)
|
$real::zero() - self * other.im / norm_sqr)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
impl Rem<Complex<$real>> for $real {
|
||||||
|
type Output = Complex<$real>;
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
fn rem(self, other: Complex<$real>) -> Complex<$real> {
|
||||||
|
Complex::new(self, Self::zero()) % other
|
||||||
|
}
|
||||||
|
}
|
||||||
)*
|
)*
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
@ -758,6 +810,15 @@ impl<T: Clone + Num> Div<T> for Complex<T> {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
impl<T: Clone + Num> Rem<T> for Complex<T> {
|
||||||
|
type Output = Complex<T>;
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
fn rem(self, other: T) -> Complex<T> {
|
||||||
|
self % Complex::new(other, T::zero())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
real_arithmetic!(usize, u8, u16, u32, u64, isize, i8, i16, i32, i64, f32, f64);
|
real_arithmetic!(usize, u8, u16, u32, u64, isize, i8, i16, i32, i64, f32, f64);
|
||||||
|
|
||||||
/* constants */
|
/* constants */
|
||||||
|
@ -879,6 +940,91 @@ impl<T> fmt::Binary for Complex<T> where
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
fn from_str_generic<T, E, F>(s: &str, from: F) -> Result<Complex<T>, ParseComplexError<E>>
|
||||||
|
where F: Fn(&str) -> Result<T, E>, T: Clone + Num
|
||||||
|
{
|
||||||
|
let imag = match s.rfind('j') {
|
||||||
|
None => 'i',
|
||||||
|
_ => 'j'
|
||||||
|
};
|
||||||
|
|
||||||
|
let mut b = String::with_capacity(s.len());
|
||||||
|
let mut first = true;
|
||||||
|
|
||||||
|
let char_indices = s.char_indices();
|
||||||
|
let mut pc = ' ';
|
||||||
|
let mut split_index = s.len();
|
||||||
|
|
||||||
|
for (i, cc) in char_indices {
|
||||||
|
if cc == '+' && pc != 'e' && pc != 'E' && i > 0 {
|
||||||
|
// ignore '+' if part of an exponent
|
||||||
|
if first {
|
||||||
|
split_index = i;
|
||||||
|
first = false;
|
||||||
|
}
|
||||||
|
// don't carry '+' over into b
|
||||||
|
pc = ' ';
|
||||||
|
continue;
|
||||||
|
} else if cc == '-' && pc != 'e' && pc != 'E' && i > 0 {
|
||||||
|
// ignore '-' if part of an exponent or begins the string
|
||||||
|
if first {
|
||||||
|
split_index = i;
|
||||||
|
first = false;
|
||||||
|
}
|
||||||
|
// DO carry '-' over into b
|
||||||
|
}
|
||||||
|
|
||||||
|
if pc == '-' && cc == ' ' && !first {
|
||||||
|
// ignore whitespace between minus sign and next number
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
if !first {
|
||||||
|
b.push(cc);
|
||||||
|
}
|
||||||
|
pc = cc;
|
||||||
|
}
|
||||||
|
|
||||||
|
// split off real and imaginary parts, trim whitespace
|
||||||
|
let (a, _) = s.split_at(split_index);
|
||||||
|
let a = a.trim_right();
|
||||||
|
let mut b = b.trim_left();
|
||||||
|
// input was either pure real or pure imaginary
|
||||||
|
if b.is_empty() {
|
||||||
|
b = match a.ends_with(imag) {
|
||||||
|
false => "0i",
|
||||||
|
true => "0"
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
let re;
|
||||||
|
let im;
|
||||||
|
if a.ends_with(imag) {
|
||||||
|
im = a; re = b;
|
||||||
|
} else if b.ends_with(imag) {
|
||||||
|
re = a; im = b;
|
||||||
|
} else {
|
||||||
|
return Err(ParseComplexError::new());
|
||||||
|
}
|
||||||
|
|
||||||
|
// parse re
|
||||||
|
let re = try!(from(re).map_err(ParseComplexError::from_error));
|
||||||
|
|
||||||
|
// pop imaginary unit off
|
||||||
|
let mut im = &im[..im.len()-1];
|
||||||
|
// handle im == "i" or im == "-i"
|
||||||
|
if im.is_empty() || im == "+" {
|
||||||
|
im = "1";
|
||||||
|
} else if im == "-" {
|
||||||
|
im = "-1";
|
||||||
|
}
|
||||||
|
|
||||||
|
// parse im
|
||||||
|
let im = try!(from(im).map_err(ParseComplexError::from_error));
|
||||||
|
|
||||||
|
Ok(Complex::new(re, im))
|
||||||
|
}
|
||||||
|
|
||||||
impl<T> FromStr for Complex<T> where
|
impl<T> FromStr for Complex<T> where
|
||||||
T: FromStr + Num + Clone
|
T: FromStr + Num + Clone
|
||||||
{
|
{
|
||||||
|
@ -887,86 +1033,18 @@ impl<T> FromStr for Complex<T> where
|
||||||
/// Parses `a +/- bi`; `ai +/- b`; `a`; or `bi` where `a` and `b` are of type `T`
|
/// Parses `a +/- bi`; `ai +/- b`; `a`; or `bi` where `a` and `b` are of type `T`
|
||||||
fn from_str(s: &str) -> Result<Self, Self::Err>
|
fn from_str(s: &str) -> Result<Self, Self::Err>
|
||||||
{
|
{
|
||||||
let imag = match s.rfind('j') {
|
from_str_generic(s, T::from_str)
|
||||||
None => 'i',
|
}
|
||||||
_ => 'j'
|
}
|
||||||
};
|
|
||||||
|
|
||||||
let mut b = String::with_capacity(s.len());
|
impl<T: Num + Clone> Num for Complex<T> {
|
||||||
let mut first = true;
|
type FromStrRadixErr = ParseComplexError<T::FromStrRadixErr>;
|
||||||
|
|
||||||
let char_indices = s.char_indices();
|
/// Parses `a +/- bi`; `ai +/- b`; `a`; or `bi` where `a` and `b` are of type `T`
|
||||||
let mut pc = ' ';
|
fn from_str_radix(s: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr>
|
||||||
let mut split_index = s.len();
|
{
|
||||||
|
from_str_generic(s, |x| -> Result<T, T::FromStrRadixErr> {
|
||||||
for (i, cc) in char_indices {
|
T::from_str_radix(x, radix) })
|
||||||
if cc == '+' && pc != 'e' && pc != 'E' && i > 0 {
|
|
||||||
// ignore '+' if part of an exponent
|
|
||||||
if first {
|
|
||||||
split_index = i;
|
|
||||||
first = false;
|
|
||||||
}
|
|
||||||
// don't carry '+' over into b
|
|
||||||
pc = ' ';
|
|
||||||
continue;
|
|
||||||
} else if cc == '-' && pc != 'e' && pc != 'E' && i > 0 {
|
|
||||||
// ignore '-' if part of an exponent or begins the string
|
|
||||||
if first {
|
|
||||||
split_index = i;
|
|
||||||
first = false;
|
|
||||||
}
|
|
||||||
// DO carry '-' over into b
|
|
||||||
}
|
|
||||||
|
|
||||||
if pc == '-' && cc == ' ' && !first {
|
|
||||||
// ignore whitespace between minus sign and next number
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
|
|
||||||
if !first {
|
|
||||||
b.push(cc);
|
|
||||||
}
|
|
||||||
pc = cc;
|
|
||||||
}
|
|
||||||
|
|
||||||
// split off real and imaginary parts, trim whitespace
|
|
||||||
let (a, _) = s.split_at(split_index);
|
|
||||||
let a = a.trim_right();
|
|
||||||
let mut b = b.trim_left();
|
|
||||||
// input was either pure real or pure imaginary
|
|
||||||
if b.is_empty() {
|
|
||||||
b = match a.ends_with(imag) {
|
|
||||||
false => "0i",
|
|
||||||
true => "0"
|
|
||||||
};
|
|
||||||
}
|
|
||||||
|
|
||||||
let re;
|
|
||||||
let im;
|
|
||||||
if a.ends_with(imag) {
|
|
||||||
im = a; re = b;
|
|
||||||
} else if b.ends_with(imag) {
|
|
||||||
re = a; im = b;
|
|
||||||
} else {
|
|
||||||
return Err(ParseComplexError::new());
|
|
||||||
}
|
|
||||||
|
|
||||||
// parse re
|
|
||||||
let re = try!(T::from_str(re).map_err(ParseComplexError::from_error));
|
|
||||||
|
|
||||||
// pop imaginary unit off
|
|
||||||
let mut im = &im[..im.len()-1];
|
|
||||||
// handle im == "i" or im == "-i"
|
|
||||||
if im.is_empty() || im == "+" {
|
|
||||||
im = "1";
|
|
||||||
} else if im == "-" {
|
|
||||||
im = "-1";
|
|
||||||
}
|
|
||||||
|
|
||||||
// parse im
|
|
||||||
let im = try!(T::from_str(im).map_err(ParseComplexError::from_error));
|
|
||||||
|
|
||||||
Ok(Complex::new(re, im))
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1055,7 +1133,7 @@ mod test {
|
||||||
use std::f64;
|
use std::f64;
|
||||||
use std::str::FromStr;
|
use std::str::FromStr;
|
||||||
|
|
||||||
use traits::{Zero, One, Float};
|
use traits::{Zero, One, Float, Num};
|
||||||
|
|
||||||
pub const _0_0i : Complex64 = Complex { re: 0.0, im: 0.0 };
|
pub const _0_0i : Complex64 = Complex { re: 0.0, im: 0.0 };
|
||||||
pub const _1_0i : Complex64 = Complex { re: 1.0, im: 0.0 };
|
pub const _1_0i : Complex64 = Complex { re: 1.0, im: 0.0 };
|
||||||
|
@ -1512,6 +1590,10 @@ mod test {
|
||||||
assert_eq!($a / $b, $answer);
|
assert_eq!($a / $b, $answer);
|
||||||
assert_eq!({ let mut x = $a; x /= $b; x}, $answer);
|
assert_eq!({ let mut x = $a; x /= $b; x}, $answer);
|
||||||
};
|
};
|
||||||
|
($a:ident % $b:expr, $answer:expr) => {
|
||||||
|
assert_eq!($a % $b, $answer);
|
||||||
|
assert_eq!({ let mut x = $a; x %= $b; x}, $answer);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Test both a + b and a + &b
|
// Test both a + b and a + &b
|
||||||
|
@ -1523,7 +1605,7 @@ mod test {
|
||||||
}
|
}
|
||||||
|
|
||||||
mod complex_arithmetic {
|
mod complex_arithmetic {
|
||||||
use super::{_0_0i, _1_0i, _1_1i, _0_1i, _neg1_1i, _05_05i, all_consts};
|
use super::{_0_0i, _1_0i, _1_1i, _0_1i, _neg1_1i, _05_05i, _4_2i, all_consts};
|
||||||
use traits::Zero;
|
use traits::Zero;
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
|
@ -1575,6 +1657,16 @@ mod test {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_rem() {
|
||||||
|
test_op!(_neg1_1i % _0_1i, _0_0i);
|
||||||
|
test_op!(_4_2i % _0_1i, _0_0i);
|
||||||
|
test_op!(_05_05i % _0_1i, _05_05i);
|
||||||
|
test_op!(_05_05i % _1_1i, _05_05i);
|
||||||
|
assert_eq!((_4_2i + _05_05i) % _0_1i, _05_05i);
|
||||||
|
assert_eq!((_4_2i + _05_05i) % _1_1i, _05_05i);
|
||||||
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_neg() {
|
fn test_neg() {
|
||||||
assert_eq!(-_1_0i + _0_1i, _neg1_1i);
|
assert_eq!(-_1_0i + _0_1i, _neg1_1i);
|
||||||
|
@ -1587,7 +1679,7 @@ mod test {
|
||||||
|
|
||||||
mod real_arithmetic {
|
mod real_arithmetic {
|
||||||
use super::super::Complex;
|
use super::super::Complex;
|
||||||
use super::_4_2i;
|
use super::{_4_2i, _neg1_1i};
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_add() {
|
fn test_add() {
|
||||||
|
@ -1612,6 +1704,15 @@ mod test {
|
||||||
assert_eq!(_4_2i / 0.5, Complex::new(8.0, 4.0));
|
assert_eq!(_4_2i / 0.5, Complex::new(8.0, 4.0));
|
||||||
assert_eq!(0.5 / _4_2i, Complex::new(0.1, -0.05));
|
assert_eq!(0.5 / _4_2i, Complex::new(0.1, -0.05));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_rem() {
|
||||||
|
assert_eq!(_4_2i % 2.0, Complex::new(0.0, 0.0));
|
||||||
|
assert_eq!(_4_2i % 3.0, Complex::new(1.0, 2.0));
|
||||||
|
assert_eq!(3.0 % _4_2i, Complex::new(3.0, 0.0));
|
||||||
|
assert_eq!(_neg1_1i % 2.0, _neg1_1i);
|
||||||
|
assert_eq!(-_4_2i % 3.0, Complex::new(-1.0, -2.0));
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
|
@ -1766,6 +1867,20 @@ mod test {
|
||||||
test(_05_05i, "0.05e+1j + 50E-2");
|
test(_05_05i, "0.05e+1j + 50E-2");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_from_str_radix() {
|
||||||
|
fn test(z: Complex64, s: &str, radix: u32) {
|
||||||
|
let res: Result<Complex64, <Complex64 as Num>::FromStrRadixErr>
|
||||||
|
= Num::from_str_radix(s, radix);
|
||||||
|
assert_eq!(res.unwrap(), z)
|
||||||
|
}
|
||||||
|
test(_4_2i, "4+2i", 10);
|
||||||
|
test(Complex::new(15.0, 32.0), "F+20i", 16);
|
||||||
|
test(Complex::new(15.0, 32.0), "1111+100000i", 2);
|
||||||
|
test(Complex::new(-15.0, -32.0), "-F-20i", 16);
|
||||||
|
test(Complex::new(-15.0, -32.0), "-1111-100000i", 2);
|
||||||
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_from_str_fail() {
|
fn test_from_str_fail() {
|
||||||
fn test(s: &str) {
|
fn test(s: &str) {
|
||||||
|
|
Loading…
Reference in New Issue