327: Add general Rem and Num implementations for Complex<T> r=cuviper a=carrutstick

This should address #209 with eyes towards addressing #321.

It was a little tricky to get `Rem` working for a general `Num`, and I had to add a `PartialOrd` constraint to get it working, but I think it should be fairly robust.

I could probably use extra eyes on the `from_str_radix` function, as I mostly lifted the code from the `from_str` function and I may be missing some subtleties in how that works.
This commit is contained in:
bors[bot] 2017-09-19 23:55:32 +00:00
commit 85bd97fcfe
1 changed files with 205 additions and 90 deletions

View File

@ -26,7 +26,7 @@ use std::error::Error;
use std::fmt; use std::fmt;
#[cfg(test)] #[cfg(test)]
use std::hash; use std::hash;
use std::ops::{Add, Div, Mul, Neg, Sub}; use std::ops::{Add, Div, Mul, Neg, Sub, Rem};
use std::str::FromStr; use std::str::FromStr;
use traits::{Zero, One, Num, Float}; use traits::{Zero, One, Num, Float};
@ -261,8 +261,8 @@ impl<T: Clone + Float> Complex<T> {
#[inline] #[inline]
pub fn asin(&self) -> Complex<T> { pub fn asin(&self) -> Complex<T> {
// formula: arcsin(z) = -i ln(sqrt(1-z^2) + iz) // formula: arcsin(z) = -i ln(sqrt(1-z^2) + iz)
let i = Complex::i(); let i = Complex::<T>::i();
-i*((Complex::one() - self*self).sqrt() + i*self).ln() -i*((Complex::<T>::one() - self*self).sqrt() + i*self).ln()
} }
/// Computes the principal value of the inverse cosine of `self`. /// Computes the principal value of the inverse cosine of `self`.
@ -276,8 +276,8 @@ impl<T: Clone + Float> Complex<T> {
#[inline] #[inline]
pub fn acos(&self) -> Complex<T> { pub fn acos(&self) -> Complex<T> {
// formula: arccos(z) = -i ln(i sqrt(1-z^2) + z) // formula: arccos(z) = -i ln(i sqrt(1-z^2) + z)
let i = Complex::i(); let i = Complex::<T>::i();
-i*(i*(Complex::one() - self*self).sqrt() + self).ln() -i*(i*(Complex::<T>::one() - self*self).sqrt() + self).ln()
} }
/// Computes the principal value of the inverse tangent of `self`. /// Computes the principal value of the inverse tangent of `self`.
@ -291,8 +291,8 @@ impl<T: Clone + Float> Complex<T> {
#[inline] #[inline]
pub fn atan(&self) -> Complex<T> { pub fn atan(&self) -> Complex<T> {
// formula: arctan(z) = (ln(1+iz) - ln(1-iz))/(2i) // formula: arctan(z) = (ln(1+iz) - ln(1-iz))/(2i)
let i = Complex::i(); let i = Complex::<T>::i();
let one = Complex::one(); let one = Complex::<T>::one();
let two = one + one; let two = one + one;
if *self == i { if *self == i {
return Complex::new(T::zero(), T::infinity()); return Complex::new(T::zero(), T::infinity());
@ -336,7 +336,7 @@ impl<T: Clone + Float> Complex<T> {
#[inline] #[inline]
pub fn asinh(&self) -> Complex<T> { pub fn asinh(&self) -> Complex<T> {
// formula: arcsinh(z) = ln(z + sqrt(1+z^2)) // formula: arcsinh(z) = ln(z + sqrt(1+z^2))
let one = Complex::one(); let one = Complex::<T>::one();
(self + (one + self * self).sqrt()).ln() (self + (one + self * self).sqrt()).ln()
} }
@ -518,10 +518,27 @@ impl<T: Clone + Num> Div<Complex<T>> for Complex<T> {
} }
} }
forward_all_binop!(impl Rem, rem);
// Attempts to identify the gaussian integer whose product with `modulus`
// is closest to `self`.
impl<T: Clone + Num> Rem<Complex<T>> for Complex<T> {
type Output = Complex<T>;
#[inline]
fn rem(self, modulus: Complex<T>) -> Self {
let Complex { re, im } = self.clone() / modulus.clone();
// This is the gaussian integer corresponding to the true ratio
// rounded towards zero.
let (re0, im0) = (re.clone() - re % T::one(), im.clone() - im % T::one());
self - modulus * Complex::new(re0, im0)
}
}
// Op Assign // Op Assign
mod opassign { mod opassign {
use std::ops::{AddAssign, SubAssign, MulAssign, DivAssign}; use std::ops::{AddAssign, SubAssign, MulAssign, DivAssign, RemAssign};
use traits::NumAssign; use traits::NumAssign;
@ -553,6 +570,12 @@ mod opassign {
} }
} }
impl<T: Clone + NumAssign> RemAssign for Complex<T> {
fn rem_assign(&mut self, other: Complex<T>) {
*self = self.clone() % other;
}
}
impl<T: Clone + NumAssign> AddAssign<T> for Complex<T> { impl<T: Clone + NumAssign> AddAssign<T> for Complex<T> {
fn add_assign(&mut self, other: T) { fn add_assign(&mut self, other: T) {
self.re += other; self.re += other;
@ -579,6 +602,12 @@ mod opassign {
} }
} }
impl<T: Clone + NumAssign> RemAssign<T> for Complex<T> {
fn rem_assign(&mut self, other: T) {
*self = self.clone() % other;
}
}
macro_rules! forward_op_assign { macro_rules! forward_op_assign {
(impl $imp:ident, $method:ident) => { (impl $imp:ident, $method:ident) => {
impl<'a, T: Clone + NumAssign> $imp<&'a Complex<T>> for Complex<T> { impl<'a, T: Clone + NumAssign> $imp<&'a Complex<T>> for Complex<T> {
@ -600,6 +629,19 @@ mod opassign {
forward_op_assign!(impl SubAssign, sub_assign); forward_op_assign!(impl SubAssign, sub_assign);
forward_op_assign!(impl MulAssign, mul_assign); forward_op_assign!(impl MulAssign, mul_assign);
forward_op_assign!(impl DivAssign, div_assign); forward_op_assign!(impl DivAssign, div_assign);
impl<'a, T: Clone + NumAssign> RemAssign<&'a Complex<T>> for Complex<T> {
#[inline]
fn rem_assign(&mut self, other: &Complex<T>) {
self.rem_assign(other.clone())
}
}
impl<'a, T: Clone + NumAssign> RemAssign<&'a T> for Complex<T> {
#[inline]
fn rem_assign(&mut self, other: &T) {
self.rem_assign(other.clone())
}
}
} }
impl<T: Clone + Num + Neg<Output = T>> Neg for Complex<T> { impl<T: Clone + Num + Neg<Output = T>> Neg for Complex<T> {
@ -678,6 +720,7 @@ macro_rules! real_arithmetic {
real_arithmetic!(@forward Sub::sub for $($real),*); real_arithmetic!(@forward Sub::sub for $($real),*);
real_arithmetic!(@forward Mul::mul for $($real),*); real_arithmetic!(@forward Mul::mul for $($real),*);
real_arithmetic!(@forward Div::div for $($real),*); real_arithmetic!(@forward Div::div for $($real),*);
real_arithmetic!(@forward Rem::rem for $($real),*);
$( $(
impl Add<Complex<$real>> for $real { impl Add<Complex<$real>> for $real {
@ -718,6 +761,15 @@ macro_rules! real_arithmetic {
$real::zero() - self * other.im / norm_sqr) $real::zero() - self * other.im / norm_sqr)
} }
} }
impl Rem<Complex<$real>> for $real {
type Output = Complex<$real>;
#[inline]
fn rem(self, other: Complex<$real>) -> Complex<$real> {
Complex::new(self, Self::zero()) % other
}
}
)* )*
); );
} }
@ -758,6 +810,15 @@ impl<T: Clone + Num> Div<T> for Complex<T> {
} }
} }
impl<T: Clone + Num> Rem<T> for Complex<T> {
type Output = Complex<T>;
#[inline]
fn rem(self, other: T) -> Complex<T> {
self % Complex::new(other, T::zero())
}
}
real_arithmetic!(usize, u8, u16, u32, u64, isize, i8, i16, i32, i64, f32, f64); real_arithmetic!(usize, u8, u16, u32, u64, isize, i8, i16, i32, i64, f32, f64);
/* constants */ /* constants */
@ -879,6 +940,91 @@ impl<T> fmt::Binary for Complex<T> where
} }
} }
fn from_str_generic<T, E, F>(s: &str, from: F) -> Result<Complex<T>, ParseComplexError<E>>
where F: Fn(&str) -> Result<T, E>, T: Clone + Num
{
let imag = match s.rfind('j') {
None => 'i',
_ => 'j'
};
let mut b = String::with_capacity(s.len());
let mut first = true;
let char_indices = s.char_indices();
let mut pc = ' ';
let mut split_index = s.len();
for (i, cc) in char_indices {
if cc == '+' && pc != 'e' && pc != 'E' && i > 0 {
// ignore '+' if part of an exponent
if first {
split_index = i;
first = false;
}
// don't carry '+' over into b
pc = ' ';
continue;
} else if cc == '-' && pc != 'e' && pc != 'E' && i > 0 {
// ignore '-' if part of an exponent or begins the string
if first {
split_index = i;
first = false;
}
// DO carry '-' over into b
}
if pc == '-' && cc == ' ' && !first {
// ignore whitespace between minus sign and next number
continue;
}
if !first {
b.push(cc);
}
pc = cc;
}
// split off real and imaginary parts, trim whitespace
let (a, _) = s.split_at(split_index);
let a = a.trim_right();
let mut b = b.trim_left();
// input was either pure real or pure imaginary
if b.is_empty() {
b = match a.ends_with(imag) {
false => "0i",
true => "0"
};
}
let re;
let im;
if a.ends_with(imag) {
im = a; re = b;
} else if b.ends_with(imag) {
re = a; im = b;
} else {
return Err(ParseComplexError::new());
}
// parse re
let re = try!(from(re).map_err(ParseComplexError::from_error));
// pop imaginary unit off
let mut im = &im[..im.len()-1];
// handle im == "i" or im == "-i"
if im.is_empty() || im == "+" {
im = "1";
} else if im == "-" {
im = "-1";
}
// parse im
let im = try!(from(im).map_err(ParseComplexError::from_error));
Ok(Complex::new(re, im))
}
impl<T> FromStr for Complex<T> where impl<T> FromStr for Complex<T> where
T: FromStr + Num + Clone T: FromStr + Num + Clone
{ {
@ -887,86 +1033,18 @@ impl<T> FromStr for Complex<T> where
/// Parses `a +/- bi`; `ai +/- b`; `a`; or `bi` where `a` and `b` are of type `T` /// Parses `a +/- bi`; `ai +/- b`; `a`; or `bi` where `a` and `b` are of type `T`
fn from_str(s: &str) -> Result<Self, Self::Err> fn from_str(s: &str) -> Result<Self, Self::Err>
{ {
let imag = match s.rfind('j') { from_str_generic(s, T::from_str)
None => 'i', }
_ => 'j' }
};
let mut b = String::with_capacity(s.len()); impl<T: Num + Clone> Num for Complex<T> {
let mut first = true; type FromStrRadixErr = ParseComplexError<T::FromStrRadixErr>;
let char_indices = s.char_indices(); /// Parses `a +/- bi`; `ai +/- b`; `a`; or `bi` where `a` and `b` are of type `T`
let mut pc = ' '; fn from_str_radix(s: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr>
let mut split_index = s.len(); {
from_str_generic(s, |x| -> Result<T, T::FromStrRadixErr> {
for (i, cc) in char_indices { T::from_str_radix(x, radix) })
if cc == '+' && pc != 'e' && pc != 'E' && i > 0 {
// ignore '+' if part of an exponent
if first {
split_index = i;
first = false;
}
// don't carry '+' over into b
pc = ' ';
continue;
} else if cc == '-' && pc != 'e' && pc != 'E' && i > 0 {
// ignore '-' if part of an exponent or begins the string
if first {
split_index = i;
first = false;
}
// DO carry '-' over into b
}
if pc == '-' && cc == ' ' && !first {
// ignore whitespace between minus sign and next number
continue;
}
if !first {
b.push(cc);
}
pc = cc;
}
// split off real and imaginary parts, trim whitespace
let (a, _) = s.split_at(split_index);
let a = a.trim_right();
let mut b = b.trim_left();
// input was either pure real or pure imaginary
if b.is_empty() {
b = match a.ends_with(imag) {
false => "0i",
true => "0"
};
}
let re;
let im;
if a.ends_with(imag) {
im = a; re = b;
} else if b.ends_with(imag) {
re = a; im = b;
} else {
return Err(ParseComplexError::new());
}
// parse re
let re = try!(T::from_str(re).map_err(ParseComplexError::from_error));
// pop imaginary unit off
let mut im = &im[..im.len()-1];
// handle im == "i" or im == "-i"
if im.is_empty() || im == "+" {
im = "1";
} else if im == "-" {
im = "-1";
}
// parse im
let im = try!(T::from_str(im).map_err(ParseComplexError::from_error));
Ok(Complex::new(re, im))
} }
} }
@ -1055,7 +1133,7 @@ mod test {
use std::f64; use std::f64;
use std::str::FromStr; use std::str::FromStr;
use traits::{Zero, One, Float}; use traits::{Zero, One, Float, Num};
pub const _0_0i : Complex64 = Complex { re: 0.0, im: 0.0 }; pub const _0_0i : Complex64 = Complex { re: 0.0, im: 0.0 };
pub const _1_0i : Complex64 = Complex { re: 1.0, im: 0.0 }; pub const _1_0i : Complex64 = Complex { re: 1.0, im: 0.0 };
@ -1512,6 +1590,10 @@ mod test {
assert_eq!($a / $b, $answer); assert_eq!($a / $b, $answer);
assert_eq!({ let mut x = $a; x /= $b; x}, $answer); assert_eq!({ let mut x = $a; x /= $b; x}, $answer);
}; };
($a:ident % $b:expr, $answer:expr) => {
assert_eq!($a % $b, $answer);
assert_eq!({ let mut x = $a; x %= $b; x}, $answer);
}
} }
// Test both a + b and a + &b // Test both a + b and a + &b
@ -1523,7 +1605,7 @@ mod test {
} }
mod complex_arithmetic { mod complex_arithmetic {
use super::{_0_0i, _1_0i, _1_1i, _0_1i, _neg1_1i, _05_05i, all_consts}; use super::{_0_0i, _1_0i, _1_1i, _0_1i, _neg1_1i, _05_05i, _4_2i, all_consts};
use traits::Zero; use traits::Zero;
#[test] #[test]
@ -1575,6 +1657,16 @@ mod test {
} }
} }
#[test]
fn test_rem() {
test_op!(_neg1_1i % _0_1i, _0_0i);
test_op!(_4_2i % _0_1i, _0_0i);
test_op!(_05_05i % _0_1i, _05_05i);
test_op!(_05_05i % _1_1i, _05_05i);
assert_eq!((_4_2i + _05_05i) % _0_1i, _05_05i);
assert_eq!((_4_2i + _05_05i) % _1_1i, _05_05i);
}
#[test] #[test]
fn test_neg() { fn test_neg() {
assert_eq!(-_1_0i + _0_1i, _neg1_1i); assert_eq!(-_1_0i + _0_1i, _neg1_1i);
@ -1587,7 +1679,7 @@ mod test {
mod real_arithmetic { mod real_arithmetic {
use super::super::Complex; use super::super::Complex;
use super::_4_2i; use super::{_4_2i, _neg1_1i};
#[test] #[test]
fn test_add() { fn test_add() {
@ -1612,6 +1704,15 @@ mod test {
assert_eq!(_4_2i / 0.5, Complex::new(8.0, 4.0)); assert_eq!(_4_2i / 0.5, Complex::new(8.0, 4.0));
assert_eq!(0.5 / _4_2i, Complex::new(0.1, -0.05)); assert_eq!(0.5 / _4_2i, Complex::new(0.1, -0.05));
} }
#[test]
fn test_rem() {
assert_eq!(_4_2i % 2.0, Complex::new(0.0, 0.0));
assert_eq!(_4_2i % 3.0, Complex::new(1.0, 2.0));
assert_eq!(3.0 % _4_2i, Complex::new(3.0, 0.0));
assert_eq!(_neg1_1i % 2.0, _neg1_1i);
assert_eq!(-_4_2i % 3.0, Complex::new(-1.0, -2.0));
}
} }
#[test] #[test]
@ -1766,6 +1867,20 @@ mod test {
test(_05_05i, "0.05e+1j + 50E-2"); test(_05_05i, "0.05e+1j + 50E-2");
} }
#[test]
fn test_from_str_radix() {
fn test(z: Complex64, s: &str, radix: u32) {
let res: Result<Complex64, <Complex64 as Num>::FromStrRadixErr>
= Num::from_str_radix(s, radix);
assert_eq!(res.unwrap(), z)
}
test(_4_2i, "4+2i", 10);
test(Complex::new(15.0, 32.0), "F+20i", 16);
test(Complex::new(15.0, 32.0), "1111+100000i", 2);
test(Complex::new(-15.0, -32.0), "-F-20i", 16);
test(Complex::new(-15.0, -32.0), "-1111-100000i", 2);
}
#[test] #[test]
fn test_from_str_fail() { fn test_from_str_fail() {
fn test(s: &str) { fn test(s: &str) {