diff --git a/src/bigint.rs b/src/bigint.rs index 69be4be..82bbb6d 100644 --- a/src/bigint.rs +++ b/src/bigint.rs @@ -68,11 +68,13 @@ use std::ops::{Add, BitAnd, BitOr, BitXor, Div, Mul, Neg, Rem, Shl, Shr, Sub}; use std::str::{self, FromStr}; use std::fmt; use std::cmp::Ordering::{self, Less, Greater, Equal}; +use std::{f32, f64}; use std::{u8, i64, u64}; use rand::Rng; use traits::{ToPrimitive, FromPrimitive}; +use traits::Float; use {Num, Unsigned, CheckedAdd, CheckedSub, CheckedMul, CheckedDiv, Signed, Zero, One}; use self::Sign::{Minus, NoSign, Plus}; @@ -1168,6 +1170,71 @@ impl ToPrimitive for BigUint { _ => None } } + + // `DoubleBigDigit` size dependent + #[inline] + fn to_f32(&self) -> Option { + match self.data.len() { + 0 => Some(f32::zero()), + 1 => Some(self.data[0] as f32), + len => { + // prevent overflow of exponant + if len > (f32::MAX_EXP as usize) / big_digit::BITS { + None + } else { + let exponant = (len - 2) * big_digit::BITS; + // we need 25 significant digits, 24 to be stored and 1 for rounding + // this gives at least 33 significant digits + let mantissa = big_digit::to_doublebigdigit(self.data[len - 1], self.data[len - 2]); + // this cast handles rounding + let ret = (mantissa as f32) * 2.0.powi(exponant as i32); + if ret.is_infinite() { + None + } else { + Some(ret) + } + } + } + } + } + + // `DoubleBigDigit` size dependent + #[inline] + fn to_f64(&self) -> Option { + match self.data.len() { + 0 => Some(f64::zero()), + 1 => Some(self.data[0] as f64), + 2 => Some(big_digit::to_doublebigdigit(self.data[1], self.data[0]) as f64), + len => { + // this will prevent any overflow of exponant + if len > (f64::MAX_EXP as usize) / big_digit::BITS { + None + } else { + let mut exponant = (len - 2) * big_digit::BITS; + let mut mantissa = big_digit::to_doublebigdigit(self.data[len - 1], self.data[len - 2]); + // we need at least 54 significant bit digits, 53 to be stored and 1 for rounding + // so we take enough from the next BigDigit to make it up if needed + let needed = (f64::MANTISSA_DIGITS as usize) + 1; + let bits = (2 * big_digit::BITS) - (mantissa.leading_zeros() as usize); + if needed > bits { + let diff = needed - bits; + mantissa <<= diff; + exponant -= diff; + let mut x = self.data[len - 3]; + x >>= big_digit::BITS - diff; + mantissa |= x as u64; + } + // this cast handles rounding + let ret = (mantissa as f64) * 2.0.powi(exponant as i32); + if ret.is_infinite() { + None + } else { + Some(ret) + } + } + } + } + } } impl FromPrimitive for BigUint { @@ -1184,6 +1251,41 @@ impl FromPrimitive for BigUint { fn from_u64(n: u64) -> Option { Some(BigUint::from(n)) } + + #[inline] + fn from_f32(n: f32) -> Option { + BigUint::from_f64(n as f64) + } + + #[inline] + fn from_f64(mut n: f64) -> Option { + // handle NAN, INFINITY, NEG_INFINITY + if !n.is_finite() { + return None; + } + + // match the rounding of casting from float to int + n = n.trunc(); + + // handle 0.x, -0.x + if n.is_zero() { + return Some(BigUint::zero()); + } + + let (mantissa, exponent, sign) = Float::integer_decode(n); + + if sign == -1 { + return None; + } + + let mut ret = BigUint::from(mantissa); + if exponent > 0 { + ret = ret << exponent as usize; + } else if exponent < 0 { + ret = ret >> (-exponent) as usize; + } + Some(ret) + } } impl From for BigUint { @@ -1261,6 +1363,8 @@ impl_to_biguint!(u8, FromPrimitive::from_u8); impl_to_biguint!(u16, FromPrimitive::from_u16); impl_to_biguint!(u32, FromPrimitive::from_u32); impl_to_biguint!(u64, FromPrimitive::from_u64); +impl_to_biguint!(f32, FromPrimitive::from_f32); +impl_to_biguint!(f64, FromPrimitive::from_f64); // Extract bitwise digits that evenly divide BigDigit fn to_bitwise_digits_le(u: &BigUint, bits: usize) -> Vec { @@ -2123,6 +2227,16 @@ impl ToPrimitive for BigInt { Minus => None } } + + #[inline] + fn to_f32(&self) -> Option { + self.data.to_f32().map(|n| if self.sign == Minus { -n } else { n }) + } + + #[inline] + fn to_f64(&self) -> Option { + self.data.to_f64().map(|n| if self.sign == Minus { -n } else { n }) + } } impl FromPrimitive for BigInt { @@ -2135,6 +2249,24 @@ impl FromPrimitive for BigInt { fn from_u64(n: u64) -> Option { Some(BigInt::from(n)) } + + #[inline] + fn from_f32(n: f32) -> Option { + if n >= 0.0 { + BigUint::from_f32(n).map(|x| BigInt::from_biguint(Plus, x)) + } else { + BigUint::from_f32(-n).map(|x| BigInt::from_biguint(Minus, x)) + } + } + + #[inline] + fn from_f64(n: f64) -> Option { + if n >= 0.0 { + BigUint::from_f64(n).map(|x| BigInt::from_biguint(Plus, x)) + } else { + BigUint::from_f64(-n).map(|x| BigInt::from_biguint(Minus, x)) + } + } } impl From for BigInt { @@ -2248,6 +2380,8 @@ impl_to_bigint!(u8, FromPrimitive::from_u8); impl_to_bigint!(u16, FromPrimitive::from_u16); impl_to_bigint!(u32, FromPrimitive::from_u32); impl_to_bigint!(u64, FromPrimitive::from_u64); +impl_to_bigint!(f32, FromPrimitive::from_f32); +impl_to_bigint!(f64, FromPrimitive::from_f64); pub trait RandBigInt { /// Generate a random `BigUint` of the given bit size. @@ -2544,6 +2678,7 @@ mod biguint_tests { use super::Sign::Plus; use std::cmp::Ordering::{Less, Equal, Greater}; + use std::{f32, f64}; use std::i64; use std::iter::repeat; use std::str::FromStr; @@ -2552,6 +2687,7 @@ mod biguint_tests { use rand::thread_rng; use {Num, Zero, One, CheckedAdd, CheckedSub, CheckedMul, CheckedDiv}; use {ToPrimitive, FromPrimitive}; + use Float; /// Assert that an op works for all val/ref combinations macro_rules! assert_op { @@ -3031,6 +3167,137 @@ mod biguint_tests { assert_eq!(BigUint::new(vec!(N1, N1, N1)).to_u64(), None); } + #[test] + fn test_convert_f32() { + fn check(b1: &BigUint, f: f32) { + let b2 = BigUint::from_f32(f).unwrap(); + assert_eq!(b1, &b2); + assert_eq!(b1.to_f32().unwrap(), f); + } + + check(&BigUint::zero(), 0.0); + check(&BigUint::one(), 1.0); + check(&BigUint::from(u16::MAX), 2.0.powi(16) - 1.0); + check(&BigUint::from(1u64 << 32), 2.0.powi(32)); + check(&BigUint::from_slice(&[0, 0, 1]), 2.0.powi(64)); + check(&((BigUint::one() << 100) + (BigUint::one() << 123)), 2.0.powi(100) + 2.0.powi(123)); + check(&(BigUint::one() << 127), 2.0.powi(127)); + check(&(BigUint::from((1u64 << 24) - 1) << (128 - 24)), f32::MAX); + + // keeping all 24 digits with the bits at different offsets to the BigDigits + let x: u32 = 0b00000000101111011111011011011101; + let mut f = x as f32; + let mut b = BigUint::from(x); + for _ in 0..64 { + check(&b, f); + f *= 2.0; + b = b << 1; + } + + // this number when rounded to f64 then f32 isn't the same as when rounded straight to f32 + let n: u64 = 0b0000000000111111111111111111111111011111111111111111111111111111; + assert!((n as f64) as f32 != n as f32); + assert_eq!(BigUint::from(n).to_f32(), Some(n as f32)); + + // test rounding up with the bits at different offsets to the BigDigits + let mut f = ((1u64 << 25) - 1) as f32; + let mut b = BigUint::from(1u64 << 25); + for _ in 0..64 { + assert_eq!(b.to_f32(), Some(f)); + f *= 2.0; + b = b << 1; + } + + // rounding + assert_eq!(BigUint::from_f32(-1.0), None); + assert_eq!(BigUint::from_f32(-0.99999), Some(BigUint::zero())); + assert_eq!(BigUint::from_f32(-0.5), Some(BigUint::zero())); + assert_eq!(BigUint::from_f32(-0.0), Some(BigUint::zero())); + assert_eq!(BigUint::from_f32(f32::MIN_POSITIVE / 2.0), Some(BigUint::zero())); + assert_eq!(BigUint::from_f32(f32::MIN_POSITIVE), Some(BigUint::zero())); + assert_eq!(BigUint::from_f32(0.5), Some(BigUint::zero())); + assert_eq!(BigUint::from_f32(0.99999), Some(BigUint::zero())); + assert_eq!(BigUint::from_f32(f32::consts::E), Some(BigUint::from(2u32))); + assert_eq!(BigUint::from_f32(f32::consts::PI), Some(BigUint::from(3u32))); + + // special float values + assert_eq!(BigUint::from_f32(f32::NAN), None); + assert_eq!(BigUint::from_f32(f32::INFINITY), None); + assert_eq!(BigUint::from_f32(f32::NEG_INFINITY), None); + assert_eq!(BigUint::from_f32(f32::MIN), None); + + // largest BigUint that will round to a finite f32 value + let big_num = (BigUint::one() << 128) - BigUint::one() - (BigUint::one() << (128 - 25)); + assert_eq!(big_num.to_f32(), Some(f32::MAX)); + assert_eq!((big_num + BigUint::one()).to_f32(), None); + + assert_eq!(((BigUint::one() << 128) - BigUint::one()).to_f32(), None); + assert_eq!((BigUint::one() << 128).to_f32(), None); + } + + #[test] + fn test_convert_f64() { + fn check(b1: &BigUint, f: f64) { + let b2 = BigUint::from_f64(f).unwrap(); + assert_eq!(b1, &b2); + assert_eq!(b1.to_f64().unwrap(), f); + } + + check(&BigUint::zero(), 0.0); + check(&BigUint::one(), 1.0); + check(&BigUint::from(u32::MAX), 2.0.powi(32) - 1.0); + check(&BigUint::from(1u64 << 32), 2.0.powi(32)); + check(&BigUint::from_slice(&[0, 0, 1]), 2.0.powi(64)); + check(&((BigUint::one() << 100) + (BigUint::one() << 152)), 2.0.powi(100) + 2.0.powi(152)); + check(&(BigUint::one() << 1023), 2.0.powi(1023)); + check(&(BigUint::from((1u64 << 53) - 1) << (1024 - 53)), f64::MAX); + + // keeping all 53 digits with the bits at different offsets to the BigDigits + let x: u64 = 0b0000000000011110111110110111111101110111101111011111011011011101; + let mut f = x as f64; + let mut b = BigUint::from(x); + for _ in 0..128 { + check(&b, f); + f *= 2.0; + b = b << 1; + } + + // test rounding up with the bits at different offsets to the BigDigits + let mut f = ((1u64 << 54) - 1) as f64; + let mut b = BigUint::from(1u64 << 54); + for _ in 0..128 { + assert_eq!(b.to_f64(), Some(f)); + f *= 2.0; + b = b << 1; + } + + // rounding + assert_eq!(BigUint::from_f64(-1.0), None); + assert_eq!(BigUint::from_f64(-0.99999), Some(BigUint::zero())); + assert_eq!(BigUint::from_f64(-0.5), Some(BigUint::zero())); + assert_eq!(BigUint::from_f64(-0.0), Some(BigUint::zero())); + assert_eq!(BigUint::from_f64(f64::MIN_POSITIVE / 2.0), Some(BigUint::zero())); + assert_eq!(BigUint::from_f64(f64::MIN_POSITIVE), Some(BigUint::zero())); + assert_eq!(BigUint::from_f64(0.5), Some(BigUint::zero())); + assert_eq!(BigUint::from_f64(0.99999), Some(BigUint::zero())); + assert_eq!(BigUint::from_f64(f64::consts::E), Some(BigUint::from(2u32))); + assert_eq!(BigUint::from_f64(f64::consts::PI), Some(BigUint::from(3u32))); + + // special float values + assert_eq!(BigUint::from_f64(f64::NAN), None); + assert_eq!(BigUint::from_f64(f64::INFINITY), None); + assert_eq!(BigUint::from_f64(f64::NEG_INFINITY), None); + assert_eq!(BigUint::from_f64(f64::MIN), None); + + // largest BigUint that will round to a finite f64 value + let big_num = (BigUint::one() << 1024) - BigUint::one() - (BigUint::one() << (1024 - 54)); + assert_eq!(big_num.to_f64(), Some(f64::MAX)); + assert_eq!((big_num + BigUint::one()).to_f64(), None); + + assert_eq!(((BigInt::one() << 1024) - BigInt::one()).to_f64(), None); + assert_eq!((BigUint::one() << 1024).to_f64(), None); + } + #[test] fn test_convert_to_bigint() { fn check(n: BigUint, ans: BigInt) { @@ -3585,6 +3852,7 @@ mod bigint_tests { use super::Sign::{Minus, NoSign, Plus}; use std::cmp::Ordering::{Less, Equal, Greater}; + use std::{f32, f64}; use std::{i8, i16, i32, i64, isize}; use std::iter::repeat; use std::{u8, u16, u32, u64, usize}; @@ -3593,6 +3861,7 @@ mod bigint_tests { use rand::thread_rng; use {Zero, One, Signed, ToPrimitive, FromPrimitive, Num}; + use Float; /// Assert that an op works for all val/ref combinations macro_rules! assert_op { @@ -3793,6 +4062,156 @@ mod bigint_tests { assert_eq!(BigInt::from_biguint(Minus, BigUint::new(vec!(1, 2, 3, 4, 5))).to_u64(), None); } + #[test] + fn test_convert_f32() { + fn check(b1: &BigInt, f: f32) { + let b2 = BigInt::from_f32(f).unwrap(); + assert_eq!(b1, &b2); + assert_eq!(b1.to_f32().unwrap(), f); + let neg_b1 = -b1; + let neg_b2 = BigInt::from_f32(-f).unwrap(); + assert_eq!(neg_b1, neg_b2); + assert_eq!(neg_b1.to_f32().unwrap(), -f); + } + + check(&BigInt::zero(), 0.0); + check(&BigInt::one(), 1.0); + check(&BigInt::from(u16::MAX), 2.0.powi(16) - 1.0); + check(&BigInt::from(1u64 << 32), 2.0.powi(32)); + check(&BigInt::from_slice(Plus, &[0, 0, 1]), 2.0.powi(64)); + check(&((BigInt::one() << 100) + (BigInt::one() << 123)), 2.0.powi(100) + 2.0.powi(123)); + check(&(BigInt::one() << 127), 2.0.powi(127)); + check(&(BigInt::from((1u64 << 24) - 1) << (128 - 24)), f32::MAX); + + // keeping all 24 digits with the bits at different offsets to the BigDigits + let x: u32 = 0b00000000101111011111011011011101; + let mut f = x as f32; + let mut b = BigInt::from(x); + for _ in 0..64 { + check(&b, f); + f *= 2.0; + b = b << 1; + } + + // this number when rounded to f64 then f32 isn't the same as when rounded straight to f32 + let mut n: i64 = 0b0000000000111111111111111111111111011111111111111111111111111111; + assert!((n as f64) as f32 != n as f32); + assert_eq!(BigInt::from(n).to_f32(), Some(n as f32)); + n = -n; + assert!((n as f64) as f32 != n as f32); + assert_eq!(BigInt::from(n).to_f32(), Some(n as f32)); + + // test rounding up with the bits at different offsets to the BigDigits + let mut f = ((1u64 << 25) - 1) as f32; + let mut b = BigInt::from(1u64 << 25); + for _ in 0..64 { + assert_eq!(b.to_f32(), Some(f)); + f *= 2.0; + b = b << 1; + } + + // rounding + assert_eq!(BigInt::from_f32(-f32::consts::PI), Some(BigInt::from(-3i32))); + assert_eq!(BigInt::from_f32(-f32::consts::E), Some(BigInt::from(-2i32))); + assert_eq!(BigInt::from_f32(-0.99999), Some(BigInt::zero())); + assert_eq!(BigInt::from_f32(-0.5), Some(BigInt::zero())); + assert_eq!(BigInt::from_f32(-0.0), Some(BigInt::zero())); + assert_eq!(BigInt::from_f32(f32::MIN_POSITIVE / 2.0), Some(BigInt::zero())); + assert_eq!(BigInt::from_f32(f32::MIN_POSITIVE), Some(BigInt::zero())); + assert_eq!(BigInt::from_f32(0.5), Some(BigInt::zero())); + assert_eq!(BigInt::from_f32(0.99999), Some(BigInt::zero())); + assert_eq!(BigInt::from_f32(f32::consts::E), Some(BigInt::from(2u32))); + assert_eq!(BigInt::from_f32(f32::consts::PI), Some(BigInt::from(3u32))); + + // special float values + assert_eq!(BigInt::from_f32(f32::NAN), None); + assert_eq!(BigInt::from_f32(f32::INFINITY), None); + assert_eq!(BigInt::from_f32(f32::NEG_INFINITY), None); + + // largest BigInt that will round to a finite f32 value + let big_num = (BigInt::one() << 128) - BigInt::one() - (BigInt::one() << (128 - 25)); + assert_eq!(big_num.to_f32(), Some(f32::MAX)); + assert_eq!((&big_num + BigInt::one()).to_f32(), None); + assert_eq!((-&big_num).to_f32(), Some(f32::MIN)); + assert_eq!(((-&big_num) - BigInt::one()).to_f32(), None); + + assert_eq!(((BigInt::one() << 128) - BigInt::one()).to_f32(), None); + assert_eq!((BigInt::one() << 128).to_f32(), None); + assert_eq!((-((BigInt::one() << 128) - BigInt::one())).to_f32(), None); + assert_eq!((-(BigInt::one() << 128)).to_f32(), None); + } + + #[test] + fn test_convert_f64() { + fn check(b1: &BigInt, f: f64) { + let b2 = BigInt::from_f64(f).unwrap(); + assert_eq!(b1, &b2); + assert_eq!(b1.to_f64().unwrap(), f); + let neg_b1 = -b1; + let neg_b2 = BigInt::from_f64(-f).unwrap(); + assert_eq!(neg_b1, neg_b2); + assert_eq!(neg_b1.to_f64().unwrap(), -f); + } + + check(&BigInt::zero(), 0.0); + check(&BigInt::one(), 1.0); + check(&BigInt::from(u32::MAX), 2.0.powi(32) - 1.0); + check(&BigInt::from(1u64 << 32), 2.0.powi(32)); + check(&BigInt::from_slice(Plus, &[0, 0, 1]), 2.0.powi(64)); + check(&((BigInt::one() << 100) + (BigInt::one() << 152)), 2.0.powi(100) + 2.0.powi(152)); + check(&(BigInt::one() << 1023), 2.0.powi(1023)); + check(&(BigInt::from((1u64 << 53) - 1) << (1024 - 53)), f64::MAX); + + // keeping all 53 digits with the bits at different offsets to the BigDigits + let x: u64 = 0b0000000000011110111110110111111101110111101111011111011011011101; + let mut f = x as f64; + let mut b = BigInt::from(x); + for _ in 0..128 { + check(&b, f); + f *= 2.0; + b = b << 1; + } + + // test rounding up with the bits at different offsets to the BigDigits + let mut f = ((1u64 << 54) - 1) as f64; + let mut b = BigInt::from(1u64 << 54); + for _ in 0..128 { + assert_eq!(b.to_f64(), Some(f)); + f *= 2.0; + b = b << 1; + } + + // rounding + assert_eq!(BigInt::from_f64(-f64::consts::PI), Some(BigInt::from(-3i32))); + assert_eq!(BigInt::from_f64(-f64::consts::E), Some(BigInt::from(-2i32))); + assert_eq!(BigInt::from_f64(-0.99999), Some(BigInt::zero())); + assert_eq!(BigInt::from_f64(-0.5), Some(BigInt::zero())); + assert_eq!(BigInt::from_f64(-0.0), Some(BigInt::zero())); + assert_eq!(BigInt::from_f64(f64::MIN_POSITIVE / 2.0), Some(BigInt::zero())); + assert_eq!(BigInt::from_f64(f64::MIN_POSITIVE), Some(BigInt::zero())); + assert_eq!(BigInt::from_f64(0.5), Some(BigInt::zero())); + assert_eq!(BigInt::from_f64(0.99999), Some(BigInt::zero())); + assert_eq!(BigInt::from_f64(f64::consts::E), Some(BigInt::from(2u32))); + assert_eq!(BigInt::from_f64(f64::consts::PI), Some(BigInt::from(3u32))); + + // special float values + assert_eq!(BigInt::from_f64(f64::NAN), None); + assert_eq!(BigInt::from_f64(f64::INFINITY), None); + assert_eq!(BigInt::from_f64(f64::NEG_INFINITY), None); + + // largest BigInt that will round to a finite f64 value + let big_num = (BigInt::one() << 1024) - BigInt::one() - (BigInt::one() << (1024 - 54)); + assert_eq!(big_num.to_f64(), Some(f64::MAX)); + assert_eq!((&big_num + BigInt::one()).to_f64(), None); + assert_eq!((-&big_num).to_f64(), Some(f64::MIN)); + assert_eq!(((-&big_num) - BigInt::one()).to_f64(), None); + + assert_eq!(((BigInt::one() << 1024) - BigInt::one()).to_f64(), None); + assert_eq!((BigInt::one() << 1024).to_f64(), None); + assert_eq!((-((BigInt::one() << 1024) - BigInt::one())).to_f64(), None); + assert_eq!((-(BigInt::one() << 1024)).to_f64(), None); + } + #[test] fn test_convert_to_biguint() { fn check(n: BigInt, ans_1: BigUint) {