bigint::monty: store the inverse as u32

This commit is contained in:
Josh Stone 2017-10-22 15:15:02 -07:00
parent c2fba06787
commit aea5f85216
1 changed files with 6 additions and 11 deletions

View File

@ -7,20 +7,19 @@ use biguint::BigUint;
struct MontyReducer<'a> {
p: &'a BigUint,
n: Vec<u32>,
n0inv: u64
n0inv: u32
}
// Calculate the modular inverse of `num`, using Extended GCD.
//
// Reference:
// Brent & Zimmermann, Modern Computer Arithmetic, v0.5.9, Algorithm 1.20
fn inv_mod_u32(num: u32) -> u64 {
// num needs to be relatively prime to u32::max_value()
fn inv_mod_u32(num: u32) -> u32 {
// num needs to be relatively prime to 2**32 -- i.e. it must be odd.
assert!(num % 2 != 0);
let mut a: i64 = num as i64;
let mut b: i64 = (u32::max_value() as i64) + 1;
let mu = b;
// ExtendedGcd
// Input: positive integers a and b
@ -43,12 +42,8 @@ fn inv_mod_u32(num: u32) -> u64 {
}
assert!(a == 1);
// Ensure returned value is in-range
if u < 0 {
(u + mu) as u64
} else {
u as u64
}
// Downcasting acts like a mod 2^32 too.
u as u32
}
impl<'a> MontyReducer<'a> {
@ -77,7 +72,7 @@ fn monty_redc(a: BigUint, mr: &MontyReducer) -> BigUint {
// equivalent to masking a to 32 bits.
let beta_mask = u32::max_value() as u64;
// mu <- -N^(-1) mod β
let mu = (beta_mask-mr.n0inv)+1;
let mu = (beta_mask-mr.n0inv as u64)+1;
// 1: for i = 0 to (n-1)
for i in 0..n_size {