bigint::monty: store the inverse as u32
This commit is contained in:
parent
c2fba06787
commit
aea5f85216
|
@ -7,20 +7,19 @@ use biguint::BigUint;
|
|||
struct MontyReducer<'a> {
|
||||
p: &'a BigUint,
|
||||
n: Vec<u32>,
|
||||
n0inv: u64
|
||||
n0inv: u32
|
||||
}
|
||||
|
||||
// Calculate the modular inverse of `num`, using Extended GCD.
|
||||
//
|
||||
// Reference:
|
||||
// Brent & Zimmermann, Modern Computer Arithmetic, v0.5.9, Algorithm 1.20
|
||||
fn inv_mod_u32(num: u32) -> u64 {
|
||||
// num needs to be relatively prime to u32::max_value()
|
||||
fn inv_mod_u32(num: u32) -> u32 {
|
||||
// num needs to be relatively prime to 2**32 -- i.e. it must be odd.
|
||||
assert!(num % 2 != 0);
|
||||
|
||||
let mut a: i64 = num as i64;
|
||||
let mut b: i64 = (u32::max_value() as i64) + 1;
|
||||
let mu = b;
|
||||
|
||||
// ExtendedGcd
|
||||
// Input: positive integers a and b
|
||||
|
@ -43,12 +42,8 @@ fn inv_mod_u32(num: u32) -> u64 {
|
|||
}
|
||||
|
||||
assert!(a == 1);
|
||||
// Ensure returned value is in-range
|
||||
if u < 0 {
|
||||
(u + mu) as u64
|
||||
} else {
|
||||
u as u64
|
||||
}
|
||||
// Downcasting acts like a mod 2^32 too.
|
||||
u as u32
|
||||
}
|
||||
|
||||
impl<'a> MontyReducer<'a> {
|
||||
|
@ -77,7 +72,7 @@ fn monty_redc(a: BigUint, mr: &MontyReducer) -> BigUint {
|
|||
// equivalent to masking a to 32 bits.
|
||||
let beta_mask = u32::max_value() as u64;
|
||||
// mu <- -N^(-1) mod β
|
||||
let mu = (beta_mask-mr.n0inv)+1;
|
||||
let mu = (beta_mask-mr.n0inv as u64)+1;
|
||||
|
||||
// 1: for i = 0 to (n-1)
|
||||
for i in 0..n_size {
|
||||
|
|
Loading…
Reference in New Issue