32: Implement CoreFloat trait r=cuviper a=vks

This is a subset of the `Float` trait, but works with `no_std`.
Some code was simplified by using `CoreFloat`.
This commit is contained in:
bors[bot] 2018-02-07 22:26:47 +00:00
commit bfd62d4638
5 changed files with 265 additions and 58 deletions

View File

@ -33,7 +33,8 @@ version = "0.2"
default-features = false
```
The `Float` and `Real` traits are only available when `std` is enabled.
The `Float` and `Real` traits are only available when `std` is enabled. The
`FloatCore` trait is always available.
## Releases

View File

@ -4,6 +4,7 @@ use core::num::Wrapping;
use identities::Zero;
use bounds::Bounded;
use float::FloatCore;
/// A generic trait for converting a value to a number.
pub trait ToPrimitive {
@ -228,8 +229,7 @@ macro_rules! impl_to_primitive_float_to_float {
// NaN and +-inf are cast as they are.
let n = $slf as f64;
let max_value: $DstT = ::core::$DstT::MAX;
if n != n || n == f64::INFINITY || n == f64::NEG_INFINITY
|| (-max_value as f64 <= n && n <= max_value as f64)
if !FloatCore::is_finite(n) || (-max_value as f64 <= n && n <= max_value as f64)
{
Some($slf as $DstT)
} else {

View File

@ -1,16 +1,237 @@
#[cfg(feature = "std")]
use std::mem;
#[cfg(feature = "std")]
use std::ops::Neg;
#[cfg(feature = "std")]
use std::num::FpCategory;
use core::mem;
use core::ops::Neg;
use core::num::FpCategory;
// Used for default implementation of `epsilon`
#[cfg(feature = "std")]
use std::f32;
use {Num, ToPrimitive};
#[cfg(feature = "std")]
use {Num, NumCast};
use NumCast;
/// Generic trait for floating point numbers that works with `no_std`.
///
/// This trait implements a subset of the `Float` trait.
pub trait FloatCore: Num + Neg<Output = Self> + PartialOrd + Copy {
/// Returns positive infinity.
fn infinity() -> Self;
/// Returns negative infinity.
fn neg_infinity() -> Self;
/// Returns NaN.
fn nan() -> Self;
/// Returns `true` if the number is NaN.
#[inline]
fn is_nan(self) -> bool {
self != self
}
/// Returns `true` if the number is infinite.
#[inline]
fn is_infinite(self) -> bool {
self == Self::infinity() || self == Self::neg_infinity()
}
/// Returns `true` if the number is neither infinite or NaN.
#[inline]
fn is_finite(self) -> bool {
!(self.is_nan() || self.is_infinite())
}
/// Returns `true` if the number is neither zero, infinite, subnormal or NaN.
#[inline]
fn is_normal(self) -> bool {
self.classify() == FpCategory::Normal
}
/// Returns the floating point category of the number. If only one property
/// is going to be tested, it is generally faster to use the specific
/// predicate instead.
fn classify(self) -> FpCategory;
/// Computes the absolute value of `self`. Returns `FloatCore::nan()` if the
/// number is `FloatCore::nan()`.
#[inline]
fn abs(self) -> Self {
if self.is_sign_positive() {
return self;
}
if self.is_sign_negative() {
return -self;
}
Self::nan()
}
/// Returns a number that represents the sign of `self`.
///
/// - `1.0` if the number is positive, `+0.0` or `FloatCore::infinity()`
/// - `-1.0` if the number is negative, `-0.0` or `FloatCore::neg_infinity()`
/// - `FloatCore::nan()` if the number is `FloatCore::nan()`
#[inline]
fn signum(self) -> Self {
if self.is_sign_positive() {
return Self::one();
}
if self.is_sign_negative() {
return -Self::one();
}
Self::nan()
}
/// Returns `true` if `self` is positive, including `+0.0` and
/// `FloatCore::infinity()`.
#[inline]
fn is_sign_positive(self) -> bool {
self > Self::zero() || (Self::one() / self) == Self::infinity()
}
/// Returns `true` if `self` is negative, including `-0.0` and
/// `FloatCore::neg_infinity()`.
#[inline]
fn is_sign_negative(self) -> bool {
self < Self::zero() || (Self::one() / self) == Self::neg_infinity()
}
/// Returns the minimum of the two numbers.
///
/// If one of the arguments is NaN, then the other argument is returned.
#[inline]
fn min(self, other: Self) -> Self {
if self.is_nan() {
return other;
}
if other.is_nan() {
return self;
}
if self < other { self } else { other }
}
/// Returns the maximum of the two numbers.
///
/// If one of the arguments is NaN, then the other argument is returned.
#[inline]
fn max(self, other: Self) -> Self {
if self.is_nan() {
return other;
}
if other.is_nan() {
return self;
}
if self > other { self } else { other }
}
/// Returns the reciprocal (multiplicative inverse) of the number.
#[inline]
fn recip(self) -> Self {
Self::one() / self
}
/// Raise a number to an integer power.
///
/// Using this function is generally faster than using `powf`
#[inline]
fn powi(mut self, mut exp: i32) -> Self {
if exp < 0 {
exp = -exp;
self = self.recip();
}
// It should always be possible to convert a positive `i32` to a `usize`.
super::pow(self, exp.to_usize().unwrap())
}
/// Converts to degrees, assuming the number is in radians.
fn to_degrees(self) -> Self;
/// Converts to radians, assuming the number is in degrees.
fn to_radians(self) -> Self;
}
impl FloatCore for f32 {
#[inline]
fn infinity() -> Self {
::core::f32::INFINITY
}
#[inline]
fn neg_infinity() -> Self {
::core::f32::NEG_INFINITY
}
#[inline]
fn nan() -> Self {
::core::f32::NAN
}
#[inline]
fn classify(self) -> FpCategory {
const EXP_MASK: u32 = 0x7f800000;
const MAN_MASK: u32 = 0x007fffff;
let bits: u32 = unsafe { mem::transmute(self) };
match (bits & MAN_MASK, bits & EXP_MASK) {
(0, 0) => FpCategory::Zero,
(_, 0) => FpCategory::Subnormal,
(0, EXP_MASK) => FpCategory::Infinite,
(_, EXP_MASK) => FpCategory::Nan,
_ => FpCategory::Normal,
}
}
#[inline]
fn to_degrees(self) -> Self {
self * (180.0 / ::core::f32::consts::PI)
}
#[inline]
fn to_radians(self) -> Self {
self * (::core::f32::consts::PI / 180.0)
}
}
impl FloatCore for f64 {
#[inline]
fn infinity() -> Self {
::core::f64::INFINITY
}
#[inline]
fn neg_infinity() -> Self {
::core::f64::NEG_INFINITY
}
#[inline]
fn nan() -> Self {
::core::f64::NAN
}
#[inline]
fn classify(self) -> FpCategory {
const EXP_MASK: u64 = 0x7ff0000000000000;
const MAN_MASK: u64 = 0x000fffffffffffff;
let bits: u64 = unsafe { mem::transmute(self) };
match (bits & MAN_MASK, bits & EXP_MASK) {
(0, 0) => FpCategory::Zero,
(_, 0) => FpCategory::Subnormal,
(0, EXP_MASK) => FpCategory::Infinite,
(_, EXP_MASK) => FpCategory::Nan,
_ => FpCategory::Normal,
}
}
#[inline]
fn to_degrees(self) -> Self {
self * (180.0 / ::core::f64::consts::PI)
}
#[inline]
fn to_radians(self) -> Self {
self * (::core::f64::consts::PI / 180.0)
}
}
// FIXME: these doctests aren't actually helpful, because they're using and
// testing the inherent methods directly, not going through `Float`.
@ -1328,25 +1549,40 @@ float_const_impl! {
SQRT_2,
}
#[cfg(all(test, feature = "std"))]
#[cfg(test)]
mod tests {
use Float;
use core::f64::consts;
const DEG_RAD_PAIRS: [(f64, f64); 7] = [
(0.0, 0.),
(22.5, consts::FRAC_PI_8),
(30.0, consts::FRAC_PI_6),
(45.0, consts::FRAC_PI_4),
(60.0, consts::FRAC_PI_3),
(90.0, consts::FRAC_PI_2),
(180.0, consts::PI),
];
#[test]
fn convert_deg_rad() {
use core::f64::consts;
const DEG_RAD_PAIRS: [(f64, f64); 7] = [
(0.0, 0.),
(22.5, consts::FRAC_PI_8),
(30.0, consts::FRAC_PI_6),
(45.0, consts::FRAC_PI_4),
(60.0, consts::FRAC_PI_3),
(90.0, consts::FRAC_PI_2),
(180.0, consts::PI),
];
use float::FloatCore;
for &(deg, rad) in &DEG_RAD_PAIRS {
assert!((FloatCore::to_degrees(rad) - deg).abs() < 1e-6);
assert!((FloatCore::to_radians(deg) - rad).abs() < 1e-6);
let (deg, rad) = (deg as f32, rad as f32);
assert!((FloatCore::to_degrees(rad) - deg).abs() < 1e-6);
assert!((FloatCore::to_radians(deg) - rad).abs() < 1e-6);
}
}
#[cfg(feature = "std")]
#[test]
fn convert_deg_rad_std() {
for &(deg, rad) in &DEG_RAD_PAIRS {
use Float;
assert!((Float::to_degrees(rad) - deg).abs() < 1e-6);
assert!((Float::to_radians(deg) - rad).abs() < 1e-6);

View File

@ -31,7 +31,7 @@ pub use bounds::Bounded;
#[cfg(feature = "std")]
pub use float::Float;
pub use float::FloatConst;
// pub use real::Real; // NOTE: Don't do this, it breaks `use num_traits::*;`.
// pub use real::{FloatCore, Real}; // NOTE: Don't do this, it breaks `use num_traits::*;`.
pub use identities::{Zero, One, zero, one};
pub use ops::checked::{CheckedAdd, CheckedSub, CheckedMul, CheckedDiv, CheckedShl, CheckedShr};
pub use ops::wrapping::{WrappingAdd, WrappingMul, WrappingSub};

View File

@ -3,6 +3,8 @@ use core::{f32, f64};
use core::num::Wrapping;
use Num;
#[cfg(not(feature = "std"))]
use float::FloatCore;
/// Useful functions for signed numbers (i.e. numbers that can be negative).
pub trait Signed: Sized + Num + Neg<Output = Self> {
@ -103,24 +105,10 @@ macro_rules! signed_float_impl {
impl Signed for $t {
/// Computes the absolute value. Returns `NAN` if the number is `NAN`.
#[inline]
#[cfg(feature = "std")]
fn abs(&self) -> $t {
(*self).abs()
}
/// Computes the absolute value. Returns `NAN` if the number is `NAN`.
#[inline]
#[cfg(not(feature = "std"))]
fn abs(&self) -> $t {
if self.is_positive() {
*self
} else if self.is_negative() {
-*self
} else {
$nan
}
}
/// The positive difference of two numbers. Returns `0.0` if the number is
/// less than or equal to `other`, otherwise the difference between`self`
/// and `other` is returned.
@ -135,27 +123,9 @@ macro_rules! signed_float_impl {
/// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
/// - `NAN` if the number is NaN
#[inline]
#[cfg(feature = "std")]
fn signum(&self) -> $t {
use Float;
Float::signum(*self)
}
/// # Returns
///
/// - `1.0` if the number is positive, `+0.0` or `INFINITY`
/// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
/// - `NAN` if the number is NaN
#[inline]
#[cfg(not(feature = "std"))]
fn signum(&self) -> $t {
if self.is_positive() {
1.0
} else if self.is_negative() {
-1.0
} else {
$nan
}
use float::FloatCore;
FloatCore::signum(*self)
}
/// Returns `true` if the number is positive, including `+0.0` and `INFINITY`