Move traits to separate crate
This commit is contained in:
parent
7eb666f6b8
commit
c124be549f
|
@ -18,6 +18,9 @@ rand = { version = "0.3.8", optional = true }
|
||||||
rustc-serialize = { version = "0.3.13", optional = true }
|
rustc-serialize = { version = "0.3.13", optional = true }
|
||||||
serde = { version = "^0.7.0", optional = true }
|
serde = { version = "^0.7.0", optional = true }
|
||||||
|
|
||||||
|
[dependencies.num-traits]
|
||||||
|
path = "./traits"
|
||||||
|
|
||||||
[dev-dependencies]
|
[dev-dependencies]
|
||||||
# Some tests of non-rand functionality still use rand because the tests
|
# Some tests of non-rand functionality still use rand because the tests
|
||||||
# themselves are randomized.
|
# themselves are randomized.
|
||||||
|
|
|
@ -0,0 +1,6 @@
|
||||||
|
[package]
|
||||||
|
name = "integer"
|
||||||
|
version = "0.1.0"
|
||||||
|
authors = ["Łukasz Jan Niemier <lukasz@niemier.pl>"]
|
||||||
|
|
||||||
|
[dependencies]
|
|
@ -0,0 +1,630 @@
|
||||||
|
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
|
||||||
|
// file at the top-level directory of this distribution and at
|
||||||
|
// http://rust-lang.org/COPYRIGHT.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
||||||
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
||||||
|
// option. This file may not be copied, modified, or distributed
|
||||||
|
// except according to those terms.
|
||||||
|
|
||||||
|
//! Integer trait and functions.
|
||||||
|
|
||||||
|
use {Num, Signed};
|
||||||
|
|
||||||
|
pub trait Integer
|
||||||
|
: Sized
|
||||||
|
+ Num
|
||||||
|
+ PartialOrd + Ord + Eq
|
||||||
|
{
|
||||||
|
/// Floored integer division.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ~~~
|
||||||
|
/// # use num::Integer;
|
||||||
|
/// assert!(( 8).div_floor(& 3) == 2);
|
||||||
|
/// assert!(( 8).div_floor(&-3) == -3);
|
||||||
|
/// assert!((-8).div_floor(& 3) == -3);
|
||||||
|
/// assert!((-8).div_floor(&-3) == 2);
|
||||||
|
///
|
||||||
|
/// assert!(( 1).div_floor(& 2) == 0);
|
||||||
|
/// assert!(( 1).div_floor(&-2) == -1);
|
||||||
|
/// assert!((-1).div_floor(& 2) == -1);
|
||||||
|
/// assert!((-1).div_floor(&-2) == 0);
|
||||||
|
/// ~~~
|
||||||
|
fn div_floor(&self, other: &Self) -> Self;
|
||||||
|
|
||||||
|
/// Floored integer modulo, satisfying:
|
||||||
|
///
|
||||||
|
/// ~~~
|
||||||
|
/// # use num::Integer;
|
||||||
|
/// # let n = 1; let d = 1;
|
||||||
|
/// assert!(n.div_floor(&d) * d + n.mod_floor(&d) == n)
|
||||||
|
/// ~~~
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ~~~
|
||||||
|
/// # use num::Integer;
|
||||||
|
/// assert!(( 8).mod_floor(& 3) == 2);
|
||||||
|
/// assert!(( 8).mod_floor(&-3) == -1);
|
||||||
|
/// assert!((-8).mod_floor(& 3) == 1);
|
||||||
|
/// assert!((-8).mod_floor(&-3) == -2);
|
||||||
|
///
|
||||||
|
/// assert!(( 1).mod_floor(& 2) == 1);
|
||||||
|
/// assert!(( 1).mod_floor(&-2) == -1);
|
||||||
|
/// assert!((-1).mod_floor(& 2) == 1);
|
||||||
|
/// assert!((-1).mod_floor(&-2) == -1);
|
||||||
|
/// ~~~
|
||||||
|
fn mod_floor(&self, other: &Self) -> Self;
|
||||||
|
|
||||||
|
/// Greatest Common Divisor (GCD).
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ~~~
|
||||||
|
/// # use num::Integer;
|
||||||
|
/// assert_eq!(6.gcd(&8), 2);
|
||||||
|
/// assert_eq!(7.gcd(&3), 1);
|
||||||
|
/// ~~~
|
||||||
|
fn gcd(&self, other: &Self) -> Self;
|
||||||
|
|
||||||
|
/// Lowest Common Multiple (LCM).
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ~~~
|
||||||
|
/// # use num::Integer;
|
||||||
|
/// assert_eq!(7.lcm(&3), 21);
|
||||||
|
/// assert_eq!(2.lcm(&4), 4);
|
||||||
|
/// ~~~
|
||||||
|
fn lcm(&self, other: &Self) -> Self;
|
||||||
|
|
||||||
|
/// Deprecated, use `is_multiple_of` instead.
|
||||||
|
fn divides(&self, other: &Self) -> bool;
|
||||||
|
|
||||||
|
/// Returns `true` if `other` is a multiple of `self`.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ~~~
|
||||||
|
/// # use num::Integer;
|
||||||
|
/// assert_eq!(9.is_multiple_of(&3), true);
|
||||||
|
/// assert_eq!(3.is_multiple_of(&9), false);
|
||||||
|
/// ~~~
|
||||||
|
fn is_multiple_of(&self, other: &Self) -> bool;
|
||||||
|
|
||||||
|
/// Returns `true` if the number is even.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ~~~
|
||||||
|
/// # use num::Integer;
|
||||||
|
/// assert_eq!(3.is_even(), false);
|
||||||
|
/// assert_eq!(4.is_even(), true);
|
||||||
|
/// ~~~
|
||||||
|
fn is_even(&self) -> bool;
|
||||||
|
|
||||||
|
/// Returns `true` if the number is odd.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ~~~
|
||||||
|
/// # use num::Integer;
|
||||||
|
/// assert_eq!(3.is_odd(), true);
|
||||||
|
/// assert_eq!(4.is_odd(), false);
|
||||||
|
/// ~~~
|
||||||
|
fn is_odd(&self) -> bool;
|
||||||
|
|
||||||
|
/// Simultaneous truncated integer division and modulus.
|
||||||
|
/// Returns `(quotient, remainder)`.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ~~~
|
||||||
|
/// # use num::Integer;
|
||||||
|
/// assert_eq!(( 8).div_rem( &3), ( 2, 2));
|
||||||
|
/// assert_eq!(( 8).div_rem(&-3), (-2, 2));
|
||||||
|
/// assert_eq!((-8).div_rem( &3), (-2, -2));
|
||||||
|
/// assert_eq!((-8).div_rem(&-3), ( 2, -2));
|
||||||
|
///
|
||||||
|
/// assert_eq!(( 1).div_rem( &2), ( 0, 1));
|
||||||
|
/// assert_eq!(( 1).div_rem(&-2), ( 0, 1));
|
||||||
|
/// assert_eq!((-1).div_rem( &2), ( 0, -1));
|
||||||
|
/// assert_eq!((-1).div_rem(&-2), ( 0, -1));
|
||||||
|
/// ~~~
|
||||||
|
#[inline]
|
||||||
|
fn div_rem(&self, other: &Self) -> (Self, Self);
|
||||||
|
|
||||||
|
/// Simultaneous floored integer division and modulus.
|
||||||
|
/// Returns `(quotient, remainder)`.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ~~~
|
||||||
|
/// # use num::Integer;
|
||||||
|
/// assert_eq!(( 8).div_mod_floor( &3), ( 2, 2));
|
||||||
|
/// assert_eq!(( 8).div_mod_floor(&-3), (-3, -1));
|
||||||
|
/// assert_eq!((-8).div_mod_floor( &3), (-3, 1));
|
||||||
|
/// assert_eq!((-8).div_mod_floor(&-3), ( 2, -2));
|
||||||
|
///
|
||||||
|
/// assert_eq!(( 1).div_mod_floor( &2), ( 0, 1));
|
||||||
|
/// assert_eq!(( 1).div_mod_floor(&-2), (-1, -1));
|
||||||
|
/// assert_eq!((-1).div_mod_floor( &2), (-1, 1));
|
||||||
|
/// assert_eq!((-1).div_mod_floor(&-2), ( 0, -1));
|
||||||
|
/// ~~~
|
||||||
|
fn div_mod_floor(&self, other: &Self) -> (Self, Self) {
|
||||||
|
(self.div_floor(other), self.mod_floor(other))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Simultaneous integer division and modulus
|
||||||
|
#[inline] pub fn div_rem<T: Integer>(x: T, y: T) -> (T, T) { x.div_rem(&y) }
|
||||||
|
/// Floored integer division
|
||||||
|
#[inline] pub fn div_floor<T: Integer>(x: T, y: T) -> T { x.div_floor(&y) }
|
||||||
|
/// Floored integer modulus
|
||||||
|
#[inline] pub fn mod_floor<T: Integer>(x: T, y: T) -> T { x.mod_floor(&y) }
|
||||||
|
/// Simultaneous floored integer division and modulus
|
||||||
|
#[inline] pub fn div_mod_floor<T: Integer>(x: T, y: T) -> (T, T) { x.div_mod_floor(&y) }
|
||||||
|
|
||||||
|
/// Calculates the Greatest Common Divisor (GCD) of the number and `other`. The
|
||||||
|
/// result is always positive.
|
||||||
|
#[inline(always)] pub fn gcd<T: Integer>(x: T, y: T) -> T { x.gcd(&y) }
|
||||||
|
/// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
|
||||||
|
#[inline(always)] pub fn lcm<T: Integer>(x: T, y: T) -> T { x.lcm(&y) }
|
||||||
|
|
||||||
|
macro_rules! impl_integer_for_isize {
|
||||||
|
($T:ty, $test_mod:ident) => (
|
||||||
|
impl Integer for $T {
|
||||||
|
/// Floored integer division
|
||||||
|
#[inline]
|
||||||
|
fn div_floor(&self, other: &$T) -> $T {
|
||||||
|
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
|
||||||
|
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
|
||||||
|
match self.div_rem(other) {
|
||||||
|
(d, r) if (r > 0 && *other < 0)
|
||||||
|
|| (r < 0 && *other > 0) => d - 1,
|
||||||
|
(d, _) => d,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Floored integer modulo
|
||||||
|
#[inline]
|
||||||
|
fn mod_floor(&self, other: &$T) -> $T {
|
||||||
|
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
|
||||||
|
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
|
||||||
|
match *self % *other {
|
||||||
|
r if (r > 0 && *other < 0)
|
||||||
|
|| (r < 0 && *other > 0) => r + *other,
|
||||||
|
r => r,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Calculates `div_floor` and `mod_floor` simultaneously
|
||||||
|
#[inline]
|
||||||
|
fn div_mod_floor(&self, other: &$T) -> ($T,$T) {
|
||||||
|
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
|
||||||
|
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
|
||||||
|
match self.div_rem(other) {
|
||||||
|
(d, r) if (r > 0 && *other < 0)
|
||||||
|
|| (r < 0 && *other > 0) => (d - 1, r + *other),
|
||||||
|
(d, r) => (d, r),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Calculates the Greatest Common Divisor (GCD) of the number and
|
||||||
|
/// `other`. The result is always positive.
|
||||||
|
#[inline]
|
||||||
|
fn gcd(&self, other: &$T) -> $T {
|
||||||
|
// Use Stein's algorithm
|
||||||
|
let mut m = *self;
|
||||||
|
let mut n = *other;
|
||||||
|
if m == 0 || n == 0 { return (m | n).abs() }
|
||||||
|
|
||||||
|
// find common factors of 2
|
||||||
|
let shift = (m | n).trailing_zeros();
|
||||||
|
|
||||||
|
// The algorithm needs positive numbers, but the minimum value
|
||||||
|
// can't be represented as a positive one.
|
||||||
|
// It's also a power of two, so the gcd can be
|
||||||
|
// calculated by bitshifting in that case
|
||||||
|
|
||||||
|
// Assuming two's complement, the number created by the shift
|
||||||
|
// is positive for all numbers except gcd = abs(min value)
|
||||||
|
// The call to .abs() causes a panic in debug mode
|
||||||
|
if m == <$T>::min_value() || n == <$T>::min_value() {
|
||||||
|
return (1 << shift).abs()
|
||||||
|
}
|
||||||
|
|
||||||
|
// guaranteed to be positive now, rest like unsigned algorithm
|
||||||
|
m = m.abs();
|
||||||
|
n = n.abs();
|
||||||
|
|
||||||
|
// divide n and m by 2 until odd
|
||||||
|
// m inside loop
|
||||||
|
n >>= n.trailing_zeros();
|
||||||
|
|
||||||
|
while m != 0 {
|
||||||
|
m >>= m.trailing_zeros();
|
||||||
|
if n > m { ::std::mem::swap(&mut n, &mut m) }
|
||||||
|
m -= n;
|
||||||
|
}
|
||||||
|
|
||||||
|
n << shift
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Calculates the Lowest Common Multiple (LCM) of the number and
|
||||||
|
/// `other`.
|
||||||
|
#[inline]
|
||||||
|
fn lcm(&self, other: &$T) -> $T {
|
||||||
|
// should not have to recalculate abs
|
||||||
|
((*self * *other) / self.gcd(other)).abs()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Deprecated, use `is_multiple_of` instead.
|
||||||
|
#[inline]
|
||||||
|
fn divides(&self, other: &$T) -> bool { return self.is_multiple_of(other); }
|
||||||
|
|
||||||
|
/// Returns `true` if the number is a multiple of `other`.
|
||||||
|
#[inline]
|
||||||
|
fn is_multiple_of(&self, other: &$T) -> bool { *self % *other == 0 }
|
||||||
|
|
||||||
|
/// Returns `true` if the number is divisible by `2`
|
||||||
|
#[inline]
|
||||||
|
fn is_even(&self) -> bool { (*self) & 1 == 0 }
|
||||||
|
|
||||||
|
/// Returns `true` if the number is not divisible by `2`
|
||||||
|
#[inline]
|
||||||
|
fn is_odd(&self) -> bool { !self.is_even() }
|
||||||
|
|
||||||
|
/// Simultaneous truncated integer division and modulus.
|
||||||
|
#[inline]
|
||||||
|
fn div_rem(&self, other: &$T) -> ($T, $T) {
|
||||||
|
(*self / *other, *self % *other)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod $test_mod {
|
||||||
|
use Integer;
|
||||||
|
|
||||||
|
/// Checks that the division rule holds for:
|
||||||
|
///
|
||||||
|
/// - `n`: numerator (dividend)
|
||||||
|
/// - `d`: denominator (divisor)
|
||||||
|
/// - `qr`: quotient and remainder
|
||||||
|
#[cfg(test)]
|
||||||
|
fn test_division_rule((n,d): ($T,$T), (q,r): ($T,$T)) {
|
||||||
|
assert_eq!(d * q + r, n);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_div_rem() {
|
||||||
|
fn test_nd_dr(nd: ($T,$T), qr: ($T,$T)) {
|
||||||
|
let (n,d) = nd;
|
||||||
|
let separate_div_rem = (n / d, n % d);
|
||||||
|
let combined_div_rem = n.div_rem(&d);
|
||||||
|
|
||||||
|
assert_eq!(separate_div_rem, qr);
|
||||||
|
assert_eq!(combined_div_rem, qr);
|
||||||
|
|
||||||
|
test_division_rule(nd, separate_div_rem);
|
||||||
|
test_division_rule(nd, combined_div_rem);
|
||||||
|
}
|
||||||
|
|
||||||
|
test_nd_dr(( 8, 3), ( 2, 2));
|
||||||
|
test_nd_dr(( 8, -3), (-2, 2));
|
||||||
|
test_nd_dr((-8, 3), (-2, -2));
|
||||||
|
test_nd_dr((-8, -3), ( 2, -2));
|
||||||
|
|
||||||
|
test_nd_dr(( 1, 2), ( 0, 1));
|
||||||
|
test_nd_dr(( 1, -2), ( 0, 1));
|
||||||
|
test_nd_dr((-1, 2), ( 0, -1));
|
||||||
|
test_nd_dr((-1, -2), ( 0, -1));
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_div_mod_floor() {
|
||||||
|
fn test_nd_dm(nd: ($T,$T), dm: ($T,$T)) {
|
||||||
|
let (n,d) = nd;
|
||||||
|
let separate_div_mod_floor = (n.div_floor(&d), n.mod_floor(&d));
|
||||||
|
let combined_div_mod_floor = n.div_mod_floor(&d);
|
||||||
|
|
||||||
|
assert_eq!(separate_div_mod_floor, dm);
|
||||||
|
assert_eq!(combined_div_mod_floor, dm);
|
||||||
|
|
||||||
|
test_division_rule(nd, separate_div_mod_floor);
|
||||||
|
test_division_rule(nd, combined_div_mod_floor);
|
||||||
|
}
|
||||||
|
|
||||||
|
test_nd_dm(( 8, 3), ( 2, 2));
|
||||||
|
test_nd_dm(( 8, -3), (-3, -1));
|
||||||
|
test_nd_dm((-8, 3), (-3, 1));
|
||||||
|
test_nd_dm((-8, -3), ( 2, -2));
|
||||||
|
|
||||||
|
test_nd_dm(( 1, 2), ( 0, 1));
|
||||||
|
test_nd_dm(( 1, -2), (-1, -1));
|
||||||
|
test_nd_dm((-1, 2), (-1, 1));
|
||||||
|
test_nd_dm((-1, -2), ( 0, -1));
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_gcd() {
|
||||||
|
assert_eq!((10 as $T).gcd(&2), 2 as $T);
|
||||||
|
assert_eq!((10 as $T).gcd(&3), 1 as $T);
|
||||||
|
assert_eq!((0 as $T).gcd(&3), 3 as $T);
|
||||||
|
assert_eq!((3 as $T).gcd(&3), 3 as $T);
|
||||||
|
assert_eq!((56 as $T).gcd(&42), 14 as $T);
|
||||||
|
assert_eq!((3 as $T).gcd(&-3), 3 as $T);
|
||||||
|
assert_eq!((-6 as $T).gcd(&3), 3 as $T);
|
||||||
|
assert_eq!((-4 as $T).gcd(&-2), 2 as $T);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_gcd_cmp_with_euclidean() {
|
||||||
|
fn euclidean_gcd(mut m: $T, mut n: $T) -> $T {
|
||||||
|
while m != 0 {
|
||||||
|
::std::mem::swap(&mut m, &mut n);
|
||||||
|
m %= n;
|
||||||
|
}
|
||||||
|
|
||||||
|
n.abs()
|
||||||
|
}
|
||||||
|
|
||||||
|
// gcd(-128, b) = 128 is not representable as positive value
|
||||||
|
// for i8
|
||||||
|
for i in -127..127 {
|
||||||
|
for j in -127..127 {
|
||||||
|
assert_eq!(euclidean_gcd(i,j), i.gcd(&j));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// last value
|
||||||
|
// FIXME: Use inclusive ranges for above loop when implemented
|
||||||
|
let i = 127;
|
||||||
|
for j in -127..127 {
|
||||||
|
assert_eq!(euclidean_gcd(i,j), i.gcd(&j));
|
||||||
|
}
|
||||||
|
assert_eq!(127.gcd(&127), 127);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_gcd_min_val() {
|
||||||
|
let min = <$T>::min_value();
|
||||||
|
let max = <$T>::max_value();
|
||||||
|
let max_pow2 = max / 2 + 1;
|
||||||
|
assert_eq!(min.gcd(&max), 1 as $T);
|
||||||
|
assert_eq!(max.gcd(&min), 1 as $T);
|
||||||
|
assert_eq!(min.gcd(&max_pow2), max_pow2);
|
||||||
|
assert_eq!(max_pow2.gcd(&min), max_pow2);
|
||||||
|
assert_eq!(min.gcd(&42), 2 as $T);
|
||||||
|
assert_eq!((42 as $T).gcd(&min), 2 as $T);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
#[should_panic]
|
||||||
|
fn test_gcd_min_val_min_val() {
|
||||||
|
let min = <$T>::min_value();
|
||||||
|
assert!(min.gcd(&min) >= 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
#[should_panic]
|
||||||
|
fn test_gcd_min_val_0() {
|
||||||
|
let min = <$T>::min_value();
|
||||||
|
assert!(min.gcd(&0) >= 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
#[should_panic]
|
||||||
|
fn test_gcd_0_min_val() {
|
||||||
|
let min = <$T>::min_value();
|
||||||
|
assert!((0 as $T).gcd(&min) >= 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_lcm() {
|
||||||
|
assert_eq!((1 as $T).lcm(&0), 0 as $T);
|
||||||
|
assert_eq!((0 as $T).lcm(&1), 0 as $T);
|
||||||
|
assert_eq!((1 as $T).lcm(&1), 1 as $T);
|
||||||
|
assert_eq!((-1 as $T).lcm(&1), 1 as $T);
|
||||||
|
assert_eq!((1 as $T).lcm(&-1), 1 as $T);
|
||||||
|
assert_eq!((-1 as $T).lcm(&-1), 1 as $T);
|
||||||
|
assert_eq!((8 as $T).lcm(&9), 72 as $T);
|
||||||
|
assert_eq!((11 as $T).lcm(&5), 55 as $T);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_even() {
|
||||||
|
assert_eq!((-4 as $T).is_even(), true);
|
||||||
|
assert_eq!((-3 as $T).is_even(), false);
|
||||||
|
assert_eq!((-2 as $T).is_even(), true);
|
||||||
|
assert_eq!((-1 as $T).is_even(), false);
|
||||||
|
assert_eq!((0 as $T).is_even(), true);
|
||||||
|
assert_eq!((1 as $T).is_even(), false);
|
||||||
|
assert_eq!((2 as $T).is_even(), true);
|
||||||
|
assert_eq!((3 as $T).is_even(), false);
|
||||||
|
assert_eq!((4 as $T).is_even(), true);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_odd() {
|
||||||
|
assert_eq!((-4 as $T).is_odd(), false);
|
||||||
|
assert_eq!((-3 as $T).is_odd(), true);
|
||||||
|
assert_eq!((-2 as $T).is_odd(), false);
|
||||||
|
assert_eq!((-1 as $T).is_odd(), true);
|
||||||
|
assert_eq!((0 as $T).is_odd(), false);
|
||||||
|
assert_eq!((1 as $T).is_odd(), true);
|
||||||
|
assert_eq!((2 as $T).is_odd(), false);
|
||||||
|
assert_eq!((3 as $T).is_odd(), true);
|
||||||
|
assert_eq!((4 as $T).is_odd(), false);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
impl_integer_for_isize!(i8, test_integer_i8);
|
||||||
|
impl_integer_for_isize!(i16, test_integer_i16);
|
||||||
|
impl_integer_for_isize!(i32, test_integer_i32);
|
||||||
|
impl_integer_for_isize!(i64, test_integer_i64);
|
||||||
|
impl_integer_for_isize!(isize, test_integer_isize);
|
||||||
|
|
||||||
|
macro_rules! impl_integer_for_usize {
|
||||||
|
($T:ty, $test_mod:ident) => (
|
||||||
|
impl Integer for $T {
|
||||||
|
/// Unsigned integer division. Returns the same result as `div` (`/`).
|
||||||
|
#[inline]
|
||||||
|
fn div_floor(&self, other: &$T) -> $T { *self / *other }
|
||||||
|
|
||||||
|
/// Unsigned integer modulo operation. Returns the same result as `rem` (`%`).
|
||||||
|
#[inline]
|
||||||
|
fn mod_floor(&self, other: &$T) -> $T { *self % *other }
|
||||||
|
|
||||||
|
/// Calculates the Greatest Common Divisor (GCD) of the number and `other`
|
||||||
|
#[inline]
|
||||||
|
fn gcd(&self, other: &$T) -> $T {
|
||||||
|
// Use Stein's algorithm
|
||||||
|
let mut m = *self;
|
||||||
|
let mut n = *other;
|
||||||
|
if m == 0 || n == 0 { return m | n }
|
||||||
|
|
||||||
|
// find common factors of 2
|
||||||
|
let shift = (m | n).trailing_zeros();
|
||||||
|
|
||||||
|
// divide n and m by 2 until odd
|
||||||
|
// m inside loop
|
||||||
|
n >>= n.trailing_zeros();
|
||||||
|
|
||||||
|
while m != 0 {
|
||||||
|
m >>= m.trailing_zeros();
|
||||||
|
if n > m { ::std::mem::swap(&mut n, &mut m) }
|
||||||
|
m -= n;
|
||||||
|
}
|
||||||
|
|
||||||
|
n << shift
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
|
||||||
|
#[inline]
|
||||||
|
fn lcm(&self, other: &$T) -> $T {
|
||||||
|
(*self * *other) / self.gcd(other)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Deprecated, use `is_multiple_of` instead.
|
||||||
|
#[inline]
|
||||||
|
fn divides(&self, other: &$T) -> bool { return self.is_multiple_of(other); }
|
||||||
|
|
||||||
|
/// Returns `true` if the number is a multiple of `other`.
|
||||||
|
#[inline]
|
||||||
|
fn is_multiple_of(&self, other: &$T) -> bool { *self % *other == 0 }
|
||||||
|
|
||||||
|
/// Returns `true` if the number is divisible by `2`.
|
||||||
|
#[inline]
|
||||||
|
fn is_even(&self) -> bool { (*self) & 1 == 0 }
|
||||||
|
|
||||||
|
/// Returns `true` if the number is not divisible by `2`.
|
||||||
|
#[inline]
|
||||||
|
fn is_odd(&self) -> bool { !(*self).is_even() }
|
||||||
|
|
||||||
|
/// Simultaneous truncated integer division and modulus.
|
||||||
|
#[inline]
|
||||||
|
fn div_rem(&self, other: &$T) -> ($T, $T) {
|
||||||
|
(*self / *other, *self % *other)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod $test_mod {
|
||||||
|
use Integer;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_div_mod_floor() {
|
||||||
|
assert_eq!((10 as $T).div_floor(&(3 as $T)), 3 as $T);
|
||||||
|
assert_eq!((10 as $T).mod_floor(&(3 as $T)), 1 as $T);
|
||||||
|
assert_eq!((10 as $T).div_mod_floor(&(3 as $T)), (3 as $T, 1 as $T));
|
||||||
|
assert_eq!((5 as $T).div_floor(&(5 as $T)), 1 as $T);
|
||||||
|
assert_eq!((5 as $T).mod_floor(&(5 as $T)), 0 as $T);
|
||||||
|
assert_eq!((5 as $T).div_mod_floor(&(5 as $T)), (1 as $T, 0 as $T));
|
||||||
|
assert_eq!((3 as $T).div_floor(&(7 as $T)), 0 as $T);
|
||||||
|
assert_eq!((3 as $T).mod_floor(&(7 as $T)), 3 as $T);
|
||||||
|
assert_eq!((3 as $T).div_mod_floor(&(7 as $T)), (0 as $T, 3 as $T));
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_gcd() {
|
||||||
|
assert_eq!((10 as $T).gcd(&2), 2 as $T);
|
||||||
|
assert_eq!((10 as $T).gcd(&3), 1 as $T);
|
||||||
|
assert_eq!((0 as $T).gcd(&3), 3 as $T);
|
||||||
|
assert_eq!((3 as $T).gcd(&3), 3 as $T);
|
||||||
|
assert_eq!((56 as $T).gcd(&42), 14 as $T);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_gcd_cmp_with_euclidean() {
|
||||||
|
fn euclidean_gcd(mut m: $T, mut n: $T) -> $T {
|
||||||
|
while m != 0 {
|
||||||
|
::std::mem::swap(&mut m, &mut n);
|
||||||
|
m %= n;
|
||||||
|
}
|
||||||
|
n
|
||||||
|
}
|
||||||
|
|
||||||
|
for i in 0..255 {
|
||||||
|
for j in 0..255 {
|
||||||
|
assert_eq!(euclidean_gcd(i,j), i.gcd(&j));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// last value
|
||||||
|
// FIXME: Use inclusive ranges for above loop when implemented
|
||||||
|
let i = 255;
|
||||||
|
for j in 0..255 {
|
||||||
|
assert_eq!(euclidean_gcd(i,j), i.gcd(&j));
|
||||||
|
}
|
||||||
|
assert_eq!(255.gcd(&255), 255);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_lcm() {
|
||||||
|
assert_eq!((1 as $T).lcm(&0), 0 as $T);
|
||||||
|
assert_eq!((0 as $T).lcm(&1), 0 as $T);
|
||||||
|
assert_eq!((1 as $T).lcm(&1), 1 as $T);
|
||||||
|
assert_eq!((8 as $T).lcm(&9), 72 as $T);
|
||||||
|
assert_eq!((11 as $T).lcm(&5), 55 as $T);
|
||||||
|
assert_eq!((15 as $T).lcm(&17), 255 as $T);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_is_multiple_of() {
|
||||||
|
assert!((6 as $T).is_multiple_of(&(6 as $T)));
|
||||||
|
assert!((6 as $T).is_multiple_of(&(3 as $T)));
|
||||||
|
assert!((6 as $T).is_multiple_of(&(1 as $T)));
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_even() {
|
||||||
|
assert_eq!((0 as $T).is_even(), true);
|
||||||
|
assert_eq!((1 as $T).is_even(), false);
|
||||||
|
assert_eq!((2 as $T).is_even(), true);
|
||||||
|
assert_eq!((3 as $T).is_even(), false);
|
||||||
|
assert_eq!((4 as $T).is_even(), true);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_odd() {
|
||||||
|
assert_eq!((0 as $T).is_odd(), false);
|
||||||
|
assert_eq!((1 as $T).is_odd(), true);
|
||||||
|
assert_eq!((2 as $T).is_odd(), false);
|
||||||
|
assert_eq!((3 as $T).is_odd(), true);
|
||||||
|
assert_eq!((4 as $T).is_odd(), false);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
impl_integer_for_usize!(u8, test_integer_u8);
|
||||||
|
impl_integer_for_usize!(u16, test_integer_u16);
|
||||||
|
impl_integer_for_usize!(u32, test_integer_u32);
|
||||||
|
impl_integer_for_usize!(u64, test_integer_u64);
|
||||||
|
impl_integer_for_usize!(usize, test_integer_usize);
|
|
@ -88,8 +88,7 @@ use serde;
|
||||||
#[cfg(any(feature = "rand", test))]
|
#[cfg(any(feature = "rand", test))]
|
||||||
use rand::Rng;
|
use rand::Rng;
|
||||||
|
|
||||||
use traits::{ToPrimitive, FromPrimitive};
|
use traits::{ToPrimitive, FromPrimitive, Float};
|
||||||
use traits::Float;
|
|
||||||
|
|
||||||
use {Num, Unsigned, CheckedAdd, CheckedSub, CheckedMul, CheckedDiv, Signed, Zero, One};
|
use {Num, Unsigned, CheckedAdd, CheckedSub, CheckedMul, CheckedDiv, Signed, Zero, One};
|
||||||
use self::Sign::{Minus, NoSign, Plus};
|
use self::Sign::{Minus, NoSign, Plus};
|
||||||
|
@ -364,7 +363,7 @@ fn from_radix_digits_be(v: &[u8], radix: u32) -> BigUint {
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Num for BigUint {
|
impl Num for BigUint {
|
||||||
type FromStrRadixErr = ParseBigIntError;
|
type Error = ParseBigIntError;
|
||||||
|
|
||||||
/// Creates and initializes a `BigUint`.
|
/// Creates and initializes a `BigUint`.
|
||||||
fn from_str_radix(s: &str, radix: u32) -> Result<BigUint, ParseBigIntError> {
|
fn from_str_radix(s: &str, radix: u32) -> Result<BigUint, ParseBigIntError> {
|
||||||
|
@ -1946,7 +1945,7 @@ impl FromStr for BigInt {
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Num for BigInt {
|
impl Num for BigInt {
|
||||||
type FromStrRadixErr = ParseBigIntError;
|
type Error = ParseBigIntError;
|
||||||
|
|
||||||
/// Creates and initializes a BigInt.
|
/// Creates and initializes a BigInt.
|
||||||
#[inline]
|
#[inline]
|
||||||
|
|
|
@ -57,6 +57,8 @@
|
||||||
html_root_url = "http://rust-num.github.io/num/",
|
html_root_url = "http://rust-num.github.io/num/",
|
||||||
html_playground_url = "http://play.rust-lang.org/")]
|
html_playground_url = "http://play.rust-lang.org/")]
|
||||||
|
|
||||||
|
extern crate num_traits;
|
||||||
|
|
||||||
#[cfg(feature = "rustc-serialize")]
|
#[cfg(feature = "rustc-serialize")]
|
||||||
extern crate rustc_serialize;
|
extern crate rustc_serialize;
|
||||||
|
|
||||||
|
@ -92,7 +94,7 @@ pub mod bigint;
|
||||||
pub mod complex;
|
pub mod complex;
|
||||||
pub mod integer;
|
pub mod integer;
|
||||||
pub mod iter;
|
pub mod iter;
|
||||||
pub mod traits;
|
pub mod traits { pub use num_traits::*; }
|
||||||
#[cfg(feature = "rational")]
|
#[cfg(feature = "rational")]
|
||||||
pub mod rational;
|
pub mod rational;
|
||||||
|
|
||||||
|
|
2552
src/traits.rs
2552
src/traits.rs
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,6 @@
|
||||||
|
[package]
|
||||||
|
name = "num-traits"
|
||||||
|
version = "0.1.0"
|
||||||
|
authors = ["Łukasz Jan Niemier <lukasz@niemier.pl>"]
|
||||||
|
|
||||||
|
[dependencies]
|
|
@ -0,0 +1,69 @@
|
||||||
|
use std::{usize, u8, u16, u32, u64};
|
||||||
|
use std::{isize, i8, i16, i32, i64};
|
||||||
|
use std::{f32, f64};
|
||||||
|
|
||||||
|
/// Numbers which have upper and lower bounds
|
||||||
|
pub trait Bounded {
|
||||||
|
// FIXME (#5527): These should be associated constants
|
||||||
|
/// returns the smallest finite number this type can represent
|
||||||
|
fn min_value() -> Self;
|
||||||
|
/// returns the largest finite number this type can represent
|
||||||
|
fn max_value() -> Self;
|
||||||
|
}
|
||||||
|
|
||||||
|
macro_rules! bounded_impl {
|
||||||
|
($t:ty, $min:expr, $max:expr) => {
|
||||||
|
impl Bounded for $t {
|
||||||
|
#[inline]
|
||||||
|
fn min_value() -> $t { $min }
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
fn max_value() -> $t { $max }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
bounded_impl!(usize, usize::MIN, usize::MAX);
|
||||||
|
bounded_impl!(u8, u8::MIN, u8::MAX);
|
||||||
|
bounded_impl!(u16, u16::MIN, u16::MAX);
|
||||||
|
bounded_impl!(u32, u32::MIN, u32::MAX);
|
||||||
|
bounded_impl!(u64, u64::MIN, u64::MAX);
|
||||||
|
|
||||||
|
bounded_impl!(isize, isize::MIN, isize::MAX);
|
||||||
|
bounded_impl!(i8, i8::MIN, i8::MAX);
|
||||||
|
bounded_impl!(i16, i16::MIN, i16::MAX);
|
||||||
|
bounded_impl!(i32, i32::MIN, i32::MAX);
|
||||||
|
bounded_impl!(i64, i64::MIN, i64::MAX);
|
||||||
|
|
||||||
|
bounded_impl!(f32, f32::MIN, f32::MAX);
|
||||||
|
|
||||||
|
macro_rules! for_each_tuple_ {
|
||||||
|
( $m:ident !! ) => (
|
||||||
|
$m! { }
|
||||||
|
);
|
||||||
|
( $m:ident !! $h:ident, $($t:ident,)* ) => (
|
||||||
|
$m! { $h $($t)* }
|
||||||
|
for_each_tuple_! { $m !! $($t,)* }
|
||||||
|
);
|
||||||
|
}
|
||||||
|
macro_rules! for_each_tuple {
|
||||||
|
( $m:ident ) => (
|
||||||
|
for_each_tuple_! { $m !! A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, }
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
macro_rules! bounded_tuple {
|
||||||
|
( $($name:ident)* ) => (
|
||||||
|
impl<$($name: Bounded,)*> Bounded for ($($name,)*) {
|
||||||
|
fn min_value() -> Self {
|
||||||
|
($($name::min_value(),)*)
|
||||||
|
}
|
||||||
|
fn max_value() -> Self {
|
||||||
|
($($name::max_value(),)*)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
for_each_tuple!(bounded_tuple);
|
||||||
|
bounded_impl!(f64, f64::MIN, f64::MAX);
|
|
@ -0,0 +1,434 @@
|
||||||
|
use std::mem::size_of;
|
||||||
|
|
||||||
|
use identities::Zero;
|
||||||
|
use bounds::Bounded;
|
||||||
|
|
||||||
|
/// A generic trait for converting a value to a number.
|
||||||
|
pub trait ToPrimitive {
|
||||||
|
/// Converts the value of `self` to an `isize`.
|
||||||
|
#[inline]
|
||||||
|
fn to_isize(&self) -> Option<isize> {
|
||||||
|
self.to_i64().and_then(|x| x.to_isize())
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Converts the value of `self` to an `i8`.
|
||||||
|
#[inline]
|
||||||
|
fn to_i8(&self) -> Option<i8> {
|
||||||
|
self.to_i64().and_then(|x| x.to_i8())
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Converts the value of `self` to an `i16`.
|
||||||
|
#[inline]
|
||||||
|
fn to_i16(&self) -> Option<i16> {
|
||||||
|
self.to_i64().and_then(|x| x.to_i16())
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Converts the value of `self` to an `i32`.
|
||||||
|
#[inline]
|
||||||
|
fn to_i32(&self) -> Option<i32> {
|
||||||
|
self.to_i64().and_then(|x| x.to_i32())
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Converts the value of `self` to an `i64`.
|
||||||
|
fn to_i64(&self) -> Option<i64>;
|
||||||
|
|
||||||
|
/// Converts the value of `self` to a `usize`.
|
||||||
|
#[inline]
|
||||||
|
fn to_usize(&self) -> Option<usize> {
|
||||||
|
self.to_u64().and_then(|x| x.to_usize())
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Converts the value of `self` to an `u8`.
|
||||||
|
#[inline]
|
||||||
|
fn to_u8(&self) -> Option<u8> {
|
||||||
|
self.to_u64().and_then(|x| x.to_u8())
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Converts the value of `self` to an `u16`.
|
||||||
|
#[inline]
|
||||||
|
fn to_u16(&self) -> Option<u16> {
|
||||||
|
self.to_u64().and_then(|x| x.to_u16())
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Converts the value of `self` to an `u32`.
|
||||||
|
#[inline]
|
||||||
|
fn to_u32(&self) -> Option<u32> {
|
||||||
|
self.to_u64().and_then(|x| x.to_u32())
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Converts the value of `self` to an `u64`.
|
||||||
|
#[inline]
|
||||||
|
fn to_u64(&self) -> Option<u64>;
|
||||||
|
|
||||||
|
/// Converts the value of `self` to an `f32`.
|
||||||
|
#[inline]
|
||||||
|
fn to_f32(&self) -> Option<f32> {
|
||||||
|
self.to_f64().and_then(|x| x.to_f32())
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Converts the value of `self` to an `f64`.
|
||||||
|
#[inline]
|
||||||
|
fn to_f64(&self) -> Option<f64> {
|
||||||
|
self.to_i64().and_then(|x| x.to_f64())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
macro_rules! impl_to_primitive_int_to_int {
|
||||||
|
($SrcT:ty, $DstT:ty, $slf:expr) => (
|
||||||
|
{
|
||||||
|
if size_of::<$SrcT>() <= size_of::<$DstT>() {
|
||||||
|
Some($slf as $DstT)
|
||||||
|
} else {
|
||||||
|
let n = $slf as i64;
|
||||||
|
let min_value: $DstT = Bounded::min_value();
|
||||||
|
let max_value: $DstT = Bounded::max_value();
|
||||||
|
if min_value as i64 <= n && n <= max_value as i64 {
|
||||||
|
Some($slf as $DstT)
|
||||||
|
} else {
|
||||||
|
None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
macro_rules! impl_to_primitive_int_to_uint {
|
||||||
|
($SrcT:ty, $DstT:ty, $slf:expr) => (
|
||||||
|
{
|
||||||
|
let zero: $SrcT = Zero::zero();
|
||||||
|
let max_value: $DstT = Bounded::max_value();
|
||||||
|
if zero <= $slf && $slf as u64 <= max_value as u64 {
|
||||||
|
Some($slf as $DstT)
|
||||||
|
} else {
|
||||||
|
None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
macro_rules! impl_to_primitive_int {
|
||||||
|
($T:ty) => (
|
||||||
|
impl ToPrimitive for $T {
|
||||||
|
#[inline]
|
||||||
|
fn to_isize(&self) -> Option<isize> { impl_to_primitive_int_to_int!($T, isize, *self) }
|
||||||
|
#[inline]
|
||||||
|
fn to_i8(&self) -> Option<i8> { impl_to_primitive_int_to_int!($T, i8, *self) }
|
||||||
|
#[inline]
|
||||||
|
fn to_i16(&self) -> Option<i16> { impl_to_primitive_int_to_int!($T, i16, *self) }
|
||||||
|
#[inline]
|
||||||
|
fn to_i32(&self) -> Option<i32> { impl_to_primitive_int_to_int!($T, i32, *self) }
|
||||||
|
#[inline]
|
||||||
|
fn to_i64(&self) -> Option<i64> { impl_to_primitive_int_to_int!($T, i64, *self) }
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
fn to_usize(&self) -> Option<usize> { impl_to_primitive_int_to_uint!($T, usize, *self) }
|
||||||
|
#[inline]
|
||||||
|
fn to_u8(&self) -> Option<u8> { impl_to_primitive_int_to_uint!($T, u8, *self) }
|
||||||
|
#[inline]
|
||||||
|
fn to_u16(&self) -> Option<u16> { impl_to_primitive_int_to_uint!($T, u16, *self) }
|
||||||
|
#[inline]
|
||||||
|
fn to_u32(&self) -> Option<u32> { impl_to_primitive_int_to_uint!($T, u32, *self) }
|
||||||
|
#[inline]
|
||||||
|
fn to_u64(&self) -> Option<u64> { impl_to_primitive_int_to_uint!($T, u64, *self) }
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
fn to_f32(&self) -> Option<f32> { Some(*self as f32) }
|
||||||
|
#[inline]
|
||||||
|
fn to_f64(&self) -> Option<f64> { Some(*self as f64) }
|
||||||
|
}
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
impl_to_primitive_int!(isize);
|
||||||
|
impl_to_primitive_int!(i8);
|
||||||
|
impl_to_primitive_int!(i16);
|
||||||
|
impl_to_primitive_int!(i32);
|
||||||
|
impl_to_primitive_int!(i64);
|
||||||
|
|
||||||
|
macro_rules! impl_to_primitive_uint_to_int {
|
||||||
|
($DstT:ty, $slf:expr) => (
|
||||||
|
{
|
||||||
|
let max_value: $DstT = Bounded::max_value();
|
||||||
|
if $slf as u64 <= max_value as u64 {
|
||||||
|
Some($slf as $DstT)
|
||||||
|
} else {
|
||||||
|
None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
macro_rules! impl_to_primitive_uint_to_uint {
|
||||||
|
($SrcT:ty, $DstT:ty, $slf:expr) => (
|
||||||
|
{
|
||||||
|
if size_of::<$SrcT>() <= size_of::<$DstT>() {
|
||||||
|
Some($slf as $DstT)
|
||||||
|
} else {
|
||||||
|
let zero: $SrcT = Zero::zero();
|
||||||
|
let max_value: $DstT = Bounded::max_value();
|
||||||
|
if zero <= $slf && $slf as u64 <= max_value as u64 {
|
||||||
|
Some($slf as $DstT)
|
||||||
|
} else {
|
||||||
|
None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
macro_rules! impl_to_primitive_uint {
|
||||||
|
($T:ty) => (
|
||||||
|
impl ToPrimitive for $T {
|
||||||
|
#[inline]
|
||||||
|
fn to_isize(&self) -> Option<isize> { impl_to_primitive_uint_to_int!(isize, *self) }
|
||||||
|
#[inline]
|
||||||
|
fn to_i8(&self) -> Option<i8> { impl_to_primitive_uint_to_int!(i8, *self) }
|
||||||
|
#[inline]
|
||||||
|
fn to_i16(&self) -> Option<i16> { impl_to_primitive_uint_to_int!(i16, *self) }
|
||||||
|
#[inline]
|
||||||
|
fn to_i32(&self) -> Option<i32> { impl_to_primitive_uint_to_int!(i32, *self) }
|
||||||
|
#[inline]
|
||||||
|
fn to_i64(&self) -> Option<i64> { impl_to_primitive_uint_to_int!(i64, *self) }
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
fn to_usize(&self) -> Option<usize> {
|
||||||
|
impl_to_primitive_uint_to_uint!($T, usize, *self)
|
||||||
|
}
|
||||||
|
#[inline]
|
||||||
|
fn to_u8(&self) -> Option<u8> { impl_to_primitive_uint_to_uint!($T, u8, *self) }
|
||||||
|
#[inline]
|
||||||
|
fn to_u16(&self) -> Option<u16> { impl_to_primitive_uint_to_uint!($T, u16, *self) }
|
||||||
|
#[inline]
|
||||||
|
fn to_u32(&self) -> Option<u32> { impl_to_primitive_uint_to_uint!($T, u32, *self) }
|
||||||
|
#[inline]
|
||||||
|
fn to_u64(&self) -> Option<u64> { impl_to_primitive_uint_to_uint!($T, u64, *self) }
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
fn to_f32(&self) -> Option<f32> { Some(*self as f32) }
|
||||||
|
#[inline]
|
||||||
|
fn to_f64(&self) -> Option<f64> { Some(*self as f64) }
|
||||||
|
}
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
impl_to_primitive_uint!(usize);
|
||||||
|
impl_to_primitive_uint!(u8);
|
||||||
|
impl_to_primitive_uint!(u16);
|
||||||
|
impl_to_primitive_uint!(u32);
|
||||||
|
impl_to_primitive_uint!(u64);
|
||||||
|
|
||||||
|
macro_rules! impl_to_primitive_float_to_float {
|
||||||
|
($SrcT:ident, $DstT:ident, $slf:expr) => (
|
||||||
|
if size_of::<$SrcT>() <= size_of::<$DstT>() {
|
||||||
|
Some($slf as $DstT)
|
||||||
|
} else {
|
||||||
|
let n = $slf as f64;
|
||||||
|
let max_value: $SrcT = ::std::$SrcT::MAX;
|
||||||
|
if -max_value as f64 <= n && n <= max_value as f64 {
|
||||||
|
Some($slf as $DstT)
|
||||||
|
} else {
|
||||||
|
None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
macro_rules! impl_to_primitive_float {
|
||||||
|
($T:ident) => (
|
||||||
|
impl ToPrimitive for $T {
|
||||||
|
#[inline]
|
||||||
|
fn to_isize(&self) -> Option<isize> { Some(*self as isize) }
|
||||||
|
#[inline]
|
||||||
|
fn to_i8(&self) -> Option<i8> { Some(*self as i8) }
|
||||||
|
#[inline]
|
||||||
|
fn to_i16(&self) -> Option<i16> { Some(*self as i16) }
|
||||||
|
#[inline]
|
||||||
|
fn to_i32(&self) -> Option<i32> { Some(*self as i32) }
|
||||||
|
#[inline]
|
||||||
|
fn to_i64(&self) -> Option<i64> { Some(*self as i64) }
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
fn to_usize(&self) -> Option<usize> { Some(*self as usize) }
|
||||||
|
#[inline]
|
||||||
|
fn to_u8(&self) -> Option<u8> { Some(*self as u8) }
|
||||||
|
#[inline]
|
||||||
|
fn to_u16(&self) -> Option<u16> { Some(*self as u16) }
|
||||||
|
#[inline]
|
||||||
|
fn to_u32(&self) -> Option<u32> { Some(*self as u32) }
|
||||||
|
#[inline]
|
||||||
|
fn to_u64(&self) -> Option<u64> { Some(*self as u64) }
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
fn to_f32(&self) -> Option<f32> { impl_to_primitive_float_to_float!($T, f32, *self) }
|
||||||
|
#[inline]
|
||||||
|
fn to_f64(&self) -> Option<f64> { impl_to_primitive_float_to_float!($T, f64, *self) }
|
||||||
|
}
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
impl_to_primitive_float!(f32);
|
||||||
|
impl_to_primitive_float!(f64);
|
||||||
|
|
||||||
|
/// A generic trait for converting a number to a value.
|
||||||
|
pub trait FromPrimitive: Sized {
|
||||||
|
/// Convert an `isize` to return an optional value of this type. If the
|
||||||
|
/// value cannot be represented by this value, the `None` is returned.
|
||||||
|
#[inline]
|
||||||
|
fn from_isize(n: isize) -> Option<Self> {
|
||||||
|
FromPrimitive::from_i64(n as i64)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convert an `i8` to return an optional value of this type. If the
|
||||||
|
/// type cannot be represented by this value, the `None` is returned.
|
||||||
|
#[inline]
|
||||||
|
fn from_i8(n: i8) -> Option<Self> {
|
||||||
|
FromPrimitive::from_i64(n as i64)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convert an `i16` to return an optional value of this type. If the
|
||||||
|
/// type cannot be represented by this value, the `None` is returned.
|
||||||
|
#[inline]
|
||||||
|
fn from_i16(n: i16) -> Option<Self> {
|
||||||
|
FromPrimitive::from_i64(n as i64)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convert an `i32` to return an optional value of this type. If the
|
||||||
|
/// type cannot be represented by this value, the `None` is returned.
|
||||||
|
#[inline]
|
||||||
|
fn from_i32(n: i32) -> Option<Self> {
|
||||||
|
FromPrimitive::from_i64(n as i64)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convert an `i64` to return an optional value of this type. If the
|
||||||
|
/// type cannot be represented by this value, the `None` is returned.
|
||||||
|
fn from_i64(n: i64) -> Option<Self>;
|
||||||
|
|
||||||
|
/// Convert a `usize` to return an optional value of this type. If the
|
||||||
|
/// type cannot be represented by this value, the `None` is returned.
|
||||||
|
#[inline]
|
||||||
|
fn from_usize(n: usize) -> Option<Self> {
|
||||||
|
FromPrimitive::from_u64(n as u64)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convert an `u8` to return an optional value of this type. If the
|
||||||
|
/// type cannot be represented by this value, the `None` is returned.
|
||||||
|
#[inline]
|
||||||
|
fn from_u8(n: u8) -> Option<Self> {
|
||||||
|
FromPrimitive::from_u64(n as u64)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convert an `u16` to return an optional value of this type. If the
|
||||||
|
/// type cannot be represented by this value, the `None` is returned.
|
||||||
|
#[inline]
|
||||||
|
fn from_u16(n: u16) -> Option<Self> {
|
||||||
|
FromPrimitive::from_u64(n as u64)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convert an `u32` to return an optional value of this type. If the
|
||||||
|
/// type cannot be represented by this value, the `None` is returned.
|
||||||
|
#[inline]
|
||||||
|
fn from_u32(n: u32) -> Option<Self> {
|
||||||
|
FromPrimitive::from_u64(n as u64)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convert an `u64` to return an optional value of this type. If the
|
||||||
|
/// type cannot be represented by this value, the `None` is returned.
|
||||||
|
fn from_u64(n: u64) -> Option<Self>;
|
||||||
|
|
||||||
|
/// Convert a `f32` to return an optional value of this type. If the
|
||||||
|
/// type cannot be represented by this value, the `None` is returned.
|
||||||
|
#[inline]
|
||||||
|
fn from_f32(n: f32) -> Option<Self> {
|
||||||
|
FromPrimitive::from_f64(n as f64)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convert a `f64` to return an optional value of this type. If the
|
||||||
|
/// type cannot be represented by this value, the `None` is returned.
|
||||||
|
#[inline]
|
||||||
|
fn from_f64(n: f64) -> Option<Self> {
|
||||||
|
FromPrimitive::from_i64(n as i64)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
macro_rules! impl_from_primitive {
|
||||||
|
($T:ty, $to_ty:ident) => (
|
||||||
|
#[allow(deprecated)]
|
||||||
|
impl FromPrimitive for $T {
|
||||||
|
#[inline] fn from_i8(n: i8) -> Option<$T> { n.$to_ty() }
|
||||||
|
#[inline] fn from_i16(n: i16) -> Option<$T> { n.$to_ty() }
|
||||||
|
#[inline] fn from_i32(n: i32) -> Option<$T> { n.$to_ty() }
|
||||||
|
#[inline] fn from_i64(n: i64) -> Option<$T> { n.$to_ty() }
|
||||||
|
|
||||||
|
#[inline] fn from_u8(n: u8) -> Option<$T> { n.$to_ty() }
|
||||||
|
#[inline] fn from_u16(n: u16) -> Option<$T> { n.$to_ty() }
|
||||||
|
#[inline] fn from_u32(n: u32) -> Option<$T> { n.$to_ty() }
|
||||||
|
#[inline] fn from_u64(n: u64) -> Option<$T> { n.$to_ty() }
|
||||||
|
|
||||||
|
#[inline] fn from_f32(n: f32) -> Option<$T> { n.$to_ty() }
|
||||||
|
#[inline] fn from_f64(n: f64) -> Option<$T> { n.$to_ty() }
|
||||||
|
}
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
impl_from_primitive!(isize, to_isize);
|
||||||
|
impl_from_primitive!(i8, to_i8);
|
||||||
|
impl_from_primitive!(i16, to_i16);
|
||||||
|
impl_from_primitive!(i32, to_i32);
|
||||||
|
impl_from_primitive!(i64, to_i64);
|
||||||
|
impl_from_primitive!(usize, to_usize);
|
||||||
|
impl_from_primitive!(u8, to_u8);
|
||||||
|
impl_from_primitive!(u16, to_u16);
|
||||||
|
impl_from_primitive!(u32, to_u32);
|
||||||
|
impl_from_primitive!(u64, to_u64);
|
||||||
|
impl_from_primitive!(f32, to_f32);
|
||||||
|
impl_from_primitive!(f64, to_f64);
|
||||||
|
|
||||||
|
/// Cast from one machine scalar to another.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// use num;
|
||||||
|
///
|
||||||
|
/// let twenty: f32 = num::cast(0x14).unwrap();
|
||||||
|
/// assert_eq!(twenty, 20f32);
|
||||||
|
/// ```
|
||||||
|
///
|
||||||
|
#[inline]
|
||||||
|
pub fn cast<T: NumCast, U: NumCast>(n: T) -> Option<U> {
|
||||||
|
NumCast::from(n)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// An interface for casting between machine scalars.
|
||||||
|
pub trait NumCast: Sized + ToPrimitive {
|
||||||
|
/// Creates a number from another value that can be converted into
|
||||||
|
/// a primitive via the `ToPrimitive` trait.
|
||||||
|
fn from<T: ToPrimitive>(n: T) -> Option<Self>;
|
||||||
|
}
|
||||||
|
|
||||||
|
macro_rules! impl_num_cast {
|
||||||
|
($T:ty, $conv:ident) => (
|
||||||
|
impl NumCast for $T {
|
||||||
|
#[inline]
|
||||||
|
#[allow(deprecated)]
|
||||||
|
fn from<N: ToPrimitive>(n: N) -> Option<$T> {
|
||||||
|
// `$conv` could be generated using `concat_idents!`, but that
|
||||||
|
// macro seems to be broken at the moment
|
||||||
|
n.$conv()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
impl_num_cast!(u8, to_u8);
|
||||||
|
impl_num_cast!(u16, to_u16);
|
||||||
|
impl_num_cast!(u32, to_u32);
|
||||||
|
impl_num_cast!(u64, to_u64);
|
||||||
|
impl_num_cast!(usize, to_usize);
|
||||||
|
impl_num_cast!(i8, to_i8);
|
||||||
|
impl_num_cast!(i16, to_i16);
|
||||||
|
impl_num_cast!(i32, to_i32);
|
||||||
|
impl_num_cast!(i64, to_i64);
|
||||||
|
impl_num_cast!(isize, to_isize);
|
||||||
|
impl_num_cast!(f32, to_f32);
|
||||||
|
impl_num_cast!(f64, to_f64);
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,95 @@
|
||||||
|
use std::ops::{Add, Mul};
|
||||||
|
|
||||||
|
/// Defines an additive identity element for `Self`.
|
||||||
|
pub trait Zero: Sized + Add<Self, Output = Self> {
|
||||||
|
/// Returns the additive identity element of `Self`, `0`.
|
||||||
|
///
|
||||||
|
/// # Laws
|
||||||
|
///
|
||||||
|
/// ```{.text}
|
||||||
|
/// a + 0 = a ∀ a ∈ Self
|
||||||
|
/// 0 + a = a ∀ a ∈ Self
|
||||||
|
/// ```
|
||||||
|
///
|
||||||
|
/// # Purity
|
||||||
|
///
|
||||||
|
/// This function should return the same result at all times regardless of
|
||||||
|
/// external mutable state, for example values stored in TLS or in
|
||||||
|
/// `static mut`s.
|
||||||
|
// FIXME (#5527): This should be an associated constant
|
||||||
|
fn zero() -> Self;
|
||||||
|
|
||||||
|
/// Returns `true` if `self` is equal to the additive identity.
|
||||||
|
#[inline]
|
||||||
|
fn is_zero(&self) -> bool;
|
||||||
|
}
|
||||||
|
|
||||||
|
macro_rules! zero_impl {
|
||||||
|
($t:ty, $v:expr) => {
|
||||||
|
impl Zero for $t {
|
||||||
|
#[inline]
|
||||||
|
fn zero() -> $t { $v }
|
||||||
|
#[inline]
|
||||||
|
fn is_zero(&self) -> bool { *self == $v }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
zero_impl!(usize, 0usize);
|
||||||
|
zero_impl!(u8, 0u8);
|
||||||
|
zero_impl!(u16, 0u16);
|
||||||
|
zero_impl!(u32, 0u32);
|
||||||
|
zero_impl!(u64, 0u64);
|
||||||
|
|
||||||
|
zero_impl!(isize, 0isize);
|
||||||
|
zero_impl!(i8, 0i8);
|
||||||
|
zero_impl!(i16, 0i16);
|
||||||
|
zero_impl!(i32, 0i32);
|
||||||
|
zero_impl!(i64, 0i64);
|
||||||
|
|
||||||
|
zero_impl!(f32, 0.0f32);
|
||||||
|
zero_impl!(f64, 0.0f64);
|
||||||
|
|
||||||
|
/// Defines a multiplicative identity element for `Self`.
|
||||||
|
pub trait One: Sized + Mul<Self, Output = Self> {
|
||||||
|
/// Returns the multiplicative identity element of `Self`, `1`.
|
||||||
|
///
|
||||||
|
/// # Laws
|
||||||
|
///
|
||||||
|
/// ```{.text}
|
||||||
|
/// a * 1 = a ∀ a ∈ Self
|
||||||
|
/// 1 * a = a ∀ a ∈ Self
|
||||||
|
/// ```
|
||||||
|
///
|
||||||
|
/// # Purity
|
||||||
|
///
|
||||||
|
/// This function should return the same result at all times regardless of
|
||||||
|
/// external mutable state, for example values stored in TLS or in
|
||||||
|
/// `static mut`s.
|
||||||
|
// FIXME (#5527): This should be an associated constant
|
||||||
|
fn one() -> Self;
|
||||||
|
}
|
||||||
|
|
||||||
|
macro_rules! one_impl {
|
||||||
|
($t:ty, $v:expr) => {
|
||||||
|
impl One for $t {
|
||||||
|
#[inline]
|
||||||
|
fn one() -> $t { $v }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
one_impl!(usize, 1usize);
|
||||||
|
one_impl!(u8, 1u8);
|
||||||
|
one_impl!(u16, 1u16);
|
||||||
|
one_impl!(u32, 1u32);
|
||||||
|
one_impl!(u64, 1u64);
|
||||||
|
|
||||||
|
one_impl!(isize, 1isize);
|
||||||
|
one_impl!(i8, 1i8);
|
||||||
|
one_impl!(i16, 1i16);
|
||||||
|
one_impl!(i32, 1i32);
|
||||||
|
one_impl!(i64, 1i64);
|
||||||
|
|
||||||
|
one_impl!(f32, 1.0f32);
|
||||||
|
one_impl!(f64, 1.0f64);
|
|
@ -0,0 +1,360 @@
|
||||||
|
use std::ops::{Not, BitAnd, BitOr, BitXor, Shl, Shr};
|
||||||
|
|
||||||
|
use {Num, NumCast};
|
||||||
|
use bounds::Bounded;
|
||||||
|
use ops::checked::*;
|
||||||
|
use ops::saturating::Saturating;
|
||||||
|
|
||||||
|
pub trait PrimInt
|
||||||
|
: Sized
|
||||||
|
+ Copy
|
||||||
|
+ Num + NumCast
|
||||||
|
+ Bounded
|
||||||
|
+ PartialOrd + Ord + Eq
|
||||||
|
+ Not<Output=Self>
|
||||||
|
+ BitAnd<Output=Self>
|
||||||
|
+ BitOr<Output=Self>
|
||||||
|
+ BitXor<Output=Self>
|
||||||
|
+ Shl<usize, Output=Self>
|
||||||
|
+ Shr<usize, Output=Self>
|
||||||
|
+ CheckedAdd<Output=Self>
|
||||||
|
+ CheckedSub<Output=Self>
|
||||||
|
+ CheckedMul<Output=Self>
|
||||||
|
+ CheckedDiv<Output=Self>
|
||||||
|
+ Saturating
|
||||||
|
{
|
||||||
|
/// Returns the number of ones in the binary representation of `self`.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// use num::traits::PrimInt;
|
||||||
|
///
|
||||||
|
/// let n = 0b01001100u8;
|
||||||
|
///
|
||||||
|
/// assert_eq!(n.count_ones(), 3);
|
||||||
|
/// ```
|
||||||
|
fn count_ones(self) -> u32;
|
||||||
|
|
||||||
|
/// Returns the number of zeros in the binary representation of `self`.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// use num::traits::PrimInt;
|
||||||
|
///
|
||||||
|
/// let n = 0b01001100u8;
|
||||||
|
///
|
||||||
|
/// assert_eq!(n.count_zeros(), 5);
|
||||||
|
/// ```
|
||||||
|
fn count_zeros(self) -> u32;
|
||||||
|
|
||||||
|
/// Returns the number of leading zeros in the binary representation
|
||||||
|
/// of `self`.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// use num::traits::PrimInt;
|
||||||
|
///
|
||||||
|
/// let n = 0b0101000u16;
|
||||||
|
///
|
||||||
|
/// assert_eq!(n.leading_zeros(), 10);
|
||||||
|
/// ```
|
||||||
|
fn leading_zeros(self) -> u32;
|
||||||
|
|
||||||
|
/// Returns the number of trailing zeros in the binary representation
|
||||||
|
/// of `self`.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// use num::traits::PrimInt;
|
||||||
|
///
|
||||||
|
/// let n = 0b0101000u16;
|
||||||
|
///
|
||||||
|
/// assert_eq!(n.trailing_zeros(), 3);
|
||||||
|
/// ```
|
||||||
|
fn trailing_zeros(self) -> u32;
|
||||||
|
|
||||||
|
/// Shifts the bits to the left by a specified amount amount, `n`, wrapping
|
||||||
|
/// the truncated bits to the end of the resulting integer.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// use num::traits::PrimInt;
|
||||||
|
///
|
||||||
|
/// let n = 0x0123456789ABCDEFu64;
|
||||||
|
/// let m = 0x3456789ABCDEF012u64;
|
||||||
|
///
|
||||||
|
/// assert_eq!(n.rotate_left(12), m);
|
||||||
|
/// ```
|
||||||
|
fn rotate_left(self, n: u32) -> Self;
|
||||||
|
|
||||||
|
/// Shifts the bits to the right by a specified amount amount, `n`, wrapping
|
||||||
|
/// the truncated bits to the beginning of the resulting integer.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// use num::traits::PrimInt;
|
||||||
|
///
|
||||||
|
/// let n = 0x0123456789ABCDEFu64;
|
||||||
|
/// let m = 0xDEF0123456789ABCu64;
|
||||||
|
///
|
||||||
|
/// assert_eq!(n.rotate_right(12), m);
|
||||||
|
/// ```
|
||||||
|
fn rotate_right(self, n: u32) -> Self;
|
||||||
|
|
||||||
|
/// Shifts the bits to the left by a specified amount amount, `n`, filling
|
||||||
|
/// zeros in the least significant bits.
|
||||||
|
///
|
||||||
|
/// This is bitwise equivalent to signed `Shl`.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// use num::traits::PrimInt;
|
||||||
|
///
|
||||||
|
/// let n = 0x0123456789ABCDEFu64;
|
||||||
|
/// let m = 0x3456789ABCDEF000u64;
|
||||||
|
///
|
||||||
|
/// assert_eq!(n.signed_shl(12), m);
|
||||||
|
/// ```
|
||||||
|
fn signed_shl(self, n: u32) -> Self;
|
||||||
|
|
||||||
|
/// Shifts the bits to the right by a specified amount amount, `n`, copying
|
||||||
|
/// the "sign bit" in the most significant bits even for unsigned types.
|
||||||
|
///
|
||||||
|
/// This is bitwise equivalent to signed `Shr`.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// use num::traits::PrimInt;
|
||||||
|
///
|
||||||
|
/// let n = 0xFEDCBA9876543210u64;
|
||||||
|
/// let m = 0xFFFFEDCBA9876543u64;
|
||||||
|
///
|
||||||
|
/// assert_eq!(n.signed_shr(12), m);
|
||||||
|
/// ```
|
||||||
|
fn signed_shr(self, n: u32) -> Self;
|
||||||
|
|
||||||
|
/// Shifts the bits to the left by a specified amount amount, `n`, filling
|
||||||
|
/// zeros in the least significant bits.
|
||||||
|
///
|
||||||
|
/// This is bitwise equivalent to unsigned `Shl`.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// use num::traits::PrimInt;
|
||||||
|
///
|
||||||
|
/// let n = 0x0123456789ABCDEFi64;
|
||||||
|
/// let m = 0x3456789ABCDEF000i64;
|
||||||
|
///
|
||||||
|
/// assert_eq!(n.unsigned_shl(12), m);
|
||||||
|
/// ```
|
||||||
|
fn unsigned_shl(self, n: u32) -> Self;
|
||||||
|
|
||||||
|
/// Shifts the bits to the right by a specified amount amount, `n`, filling
|
||||||
|
/// zeros in the most significant bits.
|
||||||
|
///
|
||||||
|
/// This is bitwise equivalent to unsigned `Shr`.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// use num::traits::PrimInt;
|
||||||
|
///
|
||||||
|
/// let n = 0xFEDCBA9876543210i64;
|
||||||
|
/// let m = 0x000FEDCBA9876543i64;
|
||||||
|
///
|
||||||
|
/// assert_eq!(n.unsigned_shr(12), m);
|
||||||
|
/// ```
|
||||||
|
fn unsigned_shr(self, n: u32) -> Self;
|
||||||
|
|
||||||
|
/// Reverses the byte order of the integer.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// use num::traits::PrimInt;
|
||||||
|
///
|
||||||
|
/// let n = 0x0123456789ABCDEFu64;
|
||||||
|
/// let m = 0xEFCDAB8967452301u64;
|
||||||
|
///
|
||||||
|
/// assert_eq!(n.swap_bytes(), m);
|
||||||
|
/// ```
|
||||||
|
fn swap_bytes(self) -> Self;
|
||||||
|
|
||||||
|
/// Convert an integer from big endian to the target's endianness.
|
||||||
|
///
|
||||||
|
/// On big endian this is a no-op. On little endian the bytes are swapped.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// use num::traits::PrimInt;
|
||||||
|
///
|
||||||
|
/// let n = 0x0123456789ABCDEFu64;
|
||||||
|
///
|
||||||
|
/// if cfg!(target_endian = "big") {
|
||||||
|
/// assert_eq!(u64::from_be(n), n)
|
||||||
|
/// } else {
|
||||||
|
/// assert_eq!(u64::from_be(n), n.swap_bytes())
|
||||||
|
/// }
|
||||||
|
/// ```
|
||||||
|
fn from_be(x: Self) -> Self;
|
||||||
|
|
||||||
|
/// Convert an integer from little endian to the target's endianness.
|
||||||
|
///
|
||||||
|
/// On little endian this is a no-op. On big endian the bytes are swapped.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// use num::traits::PrimInt;
|
||||||
|
///
|
||||||
|
/// let n = 0x0123456789ABCDEFu64;
|
||||||
|
///
|
||||||
|
/// if cfg!(target_endian = "little") {
|
||||||
|
/// assert_eq!(u64::from_le(n), n)
|
||||||
|
/// } else {
|
||||||
|
/// assert_eq!(u64::from_le(n), n.swap_bytes())
|
||||||
|
/// }
|
||||||
|
/// ```
|
||||||
|
fn from_le(x: Self) -> Self;
|
||||||
|
|
||||||
|
/// Convert `self` to big endian from the target's endianness.
|
||||||
|
///
|
||||||
|
/// On big endian this is a no-op. On little endian the bytes are swapped.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// use num::traits::PrimInt;
|
||||||
|
///
|
||||||
|
/// let n = 0x0123456789ABCDEFu64;
|
||||||
|
///
|
||||||
|
/// if cfg!(target_endian = "big") {
|
||||||
|
/// assert_eq!(n.to_be(), n)
|
||||||
|
/// } else {
|
||||||
|
/// assert_eq!(n.to_be(), n.swap_bytes())
|
||||||
|
/// }
|
||||||
|
/// ```
|
||||||
|
fn to_be(self) -> Self;
|
||||||
|
|
||||||
|
/// Convert `self` to little endian from the target's endianness.
|
||||||
|
///
|
||||||
|
/// On little endian this is a no-op. On big endian the bytes are swapped.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// use num::traits::PrimInt;
|
||||||
|
///
|
||||||
|
/// let n = 0x0123456789ABCDEFu64;
|
||||||
|
///
|
||||||
|
/// if cfg!(target_endian = "little") {
|
||||||
|
/// assert_eq!(n.to_le(), n)
|
||||||
|
/// } else {
|
||||||
|
/// assert_eq!(n.to_le(), n.swap_bytes())
|
||||||
|
/// }
|
||||||
|
/// ```
|
||||||
|
fn to_le(self) -> Self;
|
||||||
|
|
||||||
|
/// Raises self to the power of `exp`, using exponentiation by squaring.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// use num::traits::PrimInt;
|
||||||
|
///
|
||||||
|
/// assert_eq!(2i32.pow(4), 16);
|
||||||
|
/// ```
|
||||||
|
fn pow(self, mut exp: u32) -> Self;
|
||||||
|
}
|
||||||
|
|
||||||
|
macro_rules! prim_int_impl {
|
||||||
|
($T:ty, $S:ty, $U:ty) => (
|
||||||
|
impl PrimInt for $T {
|
||||||
|
fn count_ones(self) -> u32 {
|
||||||
|
<$T>::count_ones(self)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn count_zeros(self) -> u32 {
|
||||||
|
<$T>::count_zeros(self)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn leading_zeros(self) -> u32 {
|
||||||
|
<$T>::leading_zeros(self)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn trailing_zeros(self) -> u32 {
|
||||||
|
<$T>::trailing_zeros(self)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn rotate_left(self, n: u32) -> Self {
|
||||||
|
<$T>::rotate_left(self, n)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn rotate_right(self, n: u32) -> Self {
|
||||||
|
<$T>::rotate_right(self, n)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn signed_shl(self, n: u32) -> Self {
|
||||||
|
((self as $S) << n) as $T
|
||||||
|
}
|
||||||
|
|
||||||
|
fn signed_shr(self, n: u32) -> Self {
|
||||||
|
((self as $S) >> n) as $T
|
||||||
|
}
|
||||||
|
|
||||||
|
fn unsigned_shl(self, n: u32) -> Self {
|
||||||
|
((self as $U) << n) as $T
|
||||||
|
}
|
||||||
|
|
||||||
|
fn unsigned_shr(self, n: u32) -> Self {
|
||||||
|
((self as $U) >> n) as $T
|
||||||
|
}
|
||||||
|
|
||||||
|
fn swap_bytes(self) -> Self {
|
||||||
|
<$T>::swap_bytes(self)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn from_be(x: Self) -> Self {
|
||||||
|
<$T>::from_be(x)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn from_le(x: Self) -> Self {
|
||||||
|
<$T>::from_le(x)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn to_be(self) -> Self {
|
||||||
|
<$T>::to_be(self)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn to_le(self) -> Self {
|
||||||
|
<$T>::to_le(self)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn pow(self, exp: u32) -> Self {
|
||||||
|
<$T>::pow(self, exp)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
// prim_int_impl!(type, signed, unsigned);
|
||||||
|
prim_int_impl!(u8, i8, u8);
|
||||||
|
prim_int_impl!(u16, i16, u16);
|
||||||
|
prim_int_impl!(u32, i32, u32);
|
||||||
|
prim_int_impl!(u64, i64, u64);
|
||||||
|
prim_int_impl!(usize, isize, usize);
|
||||||
|
prim_int_impl!(i8, i8, u8);
|
||||||
|
prim_int_impl!(i16, i16, u16);
|
||||||
|
prim_int_impl!(i32, i32, u32);
|
||||||
|
prim_int_impl!(i64, i64, u64);
|
||||||
|
prim_int_impl!(isize, isize, usize);
|
|
@ -0,0 +1,215 @@
|
||||||
|
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
|
||||||
|
// file at the top-level directory of this distribution and at
|
||||||
|
// http://rust-lang.org/COPYRIGHT.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
||||||
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
||||||
|
// option. This file may not be copied, modified, or distributed
|
||||||
|
// except according to those terms.
|
||||||
|
|
||||||
|
//! Numeric traits for generic mathematics
|
||||||
|
|
||||||
|
use std::ops::{Add, Sub, Mul, Div, Rem};
|
||||||
|
|
||||||
|
pub use bounds::Bounded;
|
||||||
|
pub use float::Float;
|
||||||
|
pub use identities::{Zero, One};
|
||||||
|
pub use ops::checked::*;
|
||||||
|
pub use ops::saturating::Saturating;
|
||||||
|
pub use sign::{Signed, Unsigned};
|
||||||
|
pub use int::PrimInt;
|
||||||
|
pub use cast::*;
|
||||||
|
|
||||||
|
mod identities;
|
||||||
|
mod sign;
|
||||||
|
mod ops;
|
||||||
|
mod bounds;
|
||||||
|
mod float;
|
||||||
|
mod int;
|
||||||
|
mod cast;
|
||||||
|
|
||||||
|
/// The base trait for numeric types
|
||||||
|
pub trait Num: PartialEq + Zero + One
|
||||||
|
+ Add<Output = Self> + Sub<Output = Self>
|
||||||
|
+ Mul<Output = Self> + Div<Output = Self> + Rem<Output = Self>
|
||||||
|
{
|
||||||
|
type Error;
|
||||||
|
|
||||||
|
/// Convert from a string and radix <= 36.
|
||||||
|
fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::Error>;
|
||||||
|
}
|
||||||
|
|
||||||
|
macro_rules! int_trait_impl {
|
||||||
|
($name:ident for $($t:ty)*) => ($(
|
||||||
|
impl $name for $t {
|
||||||
|
type Error = ::std::num::ParseIntError;
|
||||||
|
fn from_str_radix(s: &str, radix: u32)
|
||||||
|
-> Result<Self, ::std::num::ParseIntError>
|
||||||
|
{
|
||||||
|
<$t>::from_str_radix(s, radix)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)*)
|
||||||
|
}
|
||||||
|
int_trait_impl!(Num for usize u8 u16 u32 u64 isize i8 i16 i32 i64);
|
||||||
|
|
||||||
|
pub enum FloatErrorKind {
|
||||||
|
Empty,
|
||||||
|
Invalid,
|
||||||
|
}
|
||||||
|
pub struct ParseFloatError {
|
||||||
|
pub kind: FloatErrorKind,
|
||||||
|
}
|
||||||
|
|
||||||
|
macro_rules! float_trait_impl {
|
||||||
|
($name:ident for $($t:ty)*) => ($(
|
||||||
|
impl $name for $t {
|
||||||
|
type Error = ParseFloatError;
|
||||||
|
|
||||||
|
fn from_str_radix(src: &str, radix: u32)
|
||||||
|
-> Result<Self, Self::Error>
|
||||||
|
{
|
||||||
|
use self::FloatErrorKind::*;
|
||||||
|
use self::ParseFloatError as PFE;
|
||||||
|
|
||||||
|
// Special values
|
||||||
|
match src {
|
||||||
|
"inf" => return Ok(Float::infinity()),
|
||||||
|
"-inf" => return Ok(Float::neg_infinity()),
|
||||||
|
"NaN" => return Ok(Float::nan()),
|
||||||
|
_ => {},
|
||||||
|
}
|
||||||
|
|
||||||
|
fn slice_shift_char(src: &str) -> Option<(char, &str)> {
|
||||||
|
src.chars().nth(0).map(|ch| (ch, &src[1..]))
|
||||||
|
}
|
||||||
|
|
||||||
|
let (is_positive, src) = match slice_shift_char(src) {
|
||||||
|
None => return Err(PFE { kind: Empty }),
|
||||||
|
Some(('-', "")) => return Err(PFE { kind: Empty }),
|
||||||
|
Some(('-', src)) => (false, src),
|
||||||
|
Some((_, _)) => (true, src),
|
||||||
|
};
|
||||||
|
|
||||||
|
// The significand to accumulate
|
||||||
|
let mut sig = if is_positive { 0.0 } else { -0.0 };
|
||||||
|
// Necessary to detect overflow
|
||||||
|
let mut prev_sig = sig;
|
||||||
|
let mut cs = src.chars().enumerate();
|
||||||
|
// Exponent prefix and exponent index offset
|
||||||
|
let mut exp_info = None::<(char, usize)>;
|
||||||
|
|
||||||
|
// Parse the integer part of the significand
|
||||||
|
for (i, c) in cs.by_ref() {
|
||||||
|
match c.to_digit(radix) {
|
||||||
|
Some(digit) => {
|
||||||
|
// shift significand one digit left
|
||||||
|
sig = sig * (radix as $t);
|
||||||
|
|
||||||
|
// add/subtract current digit depending on sign
|
||||||
|
if is_positive {
|
||||||
|
sig = sig + ((digit as isize) as $t);
|
||||||
|
} else {
|
||||||
|
sig = sig - ((digit as isize) as $t);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Detect overflow by comparing to last value, except
|
||||||
|
// if we've not seen any non-zero digits.
|
||||||
|
if prev_sig != 0.0 {
|
||||||
|
if is_positive && sig <= prev_sig
|
||||||
|
{ return Ok(Float::infinity()); }
|
||||||
|
if !is_positive && sig >= prev_sig
|
||||||
|
{ return Ok(Float::neg_infinity()); }
|
||||||
|
|
||||||
|
// Detect overflow by reversing the shift-and-add process
|
||||||
|
if is_positive && (prev_sig != (sig - digit as $t) / radix as $t)
|
||||||
|
{ return Ok(Float::infinity()); }
|
||||||
|
if !is_positive && (prev_sig != (sig + digit as $t) / radix as $t)
|
||||||
|
{ return Ok(Float::neg_infinity()); }
|
||||||
|
}
|
||||||
|
prev_sig = sig;
|
||||||
|
},
|
||||||
|
None => match c {
|
||||||
|
'e' | 'E' | 'p' | 'P' => {
|
||||||
|
exp_info = Some((c, i + 1));
|
||||||
|
break; // start of exponent
|
||||||
|
},
|
||||||
|
'.' => {
|
||||||
|
break; // start of fractional part
|
||||||
|
},
|
||||||
|
_ => {
|
||||||
|
return Err(PFE { kind: Invalid });
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// If we are not yet at the exponent parse the fractional
|
||||||
|
// part of the significand
|
||||||
|
if exp_info.is_none() {
|
||||||
|
let mut power = 1.0;
|
||||||
|
for (i, c) in cs.by_ref() {
|
||||||
|
match c.to_digit(radix) {
|
||||||
|
Some(digit) => {
|
||||||
|
// Decrease power one order of magnitude
|
||||||
|
power = power / (radix as $t);
|
||||||
|
// add/subtract current digit depending on sign
|
||||||
|
sig = if is_positive {
|
||||||
|
sig + (digit as $t) * power
|
||||||
|
} else {
|
||||||
|
sig - (digit as $t) * power
|
||||||
|
};
|
||||||
|
// Detect overflow by comparing to last value
|
||||||
|
if is_positive && sig < prev_sig
|
||||||
|
{ return Ok(Float::infinity()); }
|
||||||
|
if !is_positive && sig > prev_sig
|
||||||
|
{ return Ok(Float::neg_infinity()); }
|
||||||
|
prev_sig = sig;
|
||||||
|
},
|
||||||
|
None => match c {
|
||||||
|
'e' | 'E' | 'p' | 'P' => {
|
||||||
|
exp_info = Some((c, i + 1));
|
||||||
|
break; // start of exponent
|
||||||
|
},
|
||||||
|
_ => {
|
||||||
|
return Err(PFE { kind: Invalid });
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Parse and calculate the exponent
|
||||||
|
let exp = match exp_info {
|
||||||
|
Some((c, offset)) => {
|
||||||
|
let base = match c {
|
||||||
|
'E' | 'e' if radix == 10 => 10.0,
|
||||||
|
'P' | 'p' if radix == 16 => 2.0,
|
||||||
|
_ => return Err(PFE { kind: Invalid }),
|
||||||
|
};
|
||||||
|
|
||||||
|
// Parse the exponent as decimal integer
|
||||||
|
let src = &src[offset..];
|
||||||
|
let (is_positive, exp) = match slice_shift_char(src) {
|
||||||
|
Some(('-', src)) => (false, src.parse::<usize>()),
|
||||||
|
Some(('+', src)) => (true, src.parse::<usize>()),
|
||||||
|
Some((_, _)) => (true, src.parse::<usize>()),
|
||||||
|
None => return Err(PFE { kind: Invalid }),
|
||||||
|
};
|
||||||
|
|
||||||
|
match (is_positive, exp) {
|
||||||
|
(true, Ok(exp)) => base.powi(exp as i32),
|
||||||
|
(false, Ok(exp)) => 1.0 / base.powi(exp as i32),
|
||||||
|
(_, Err(_)) => return Err(PFE { kind: Invalid }),
|
||||||
|
}
|
||||||
|
},
|
||||||
|
None => 1.0, // no exponent
|
||||||
|
};
|
||||||
|
|
||||||
|
Ok(sig * exp)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)*)
|
||||||
|
}
|
||||||
|
float_trait_impl!(Num for f32 f64);
|
|
@ -0,0 +1,91 @@
|
||||||
|
use std::ops::{Add, Sub, Mul, Div};
|
||||||
|
|
||||||
|
/// Performs addition that returns `None` instead of wrapping around on
|
||||||
|
/// overflow.
|
||||||
|
pub trait CheckedAdd: Sized + Add<Self, Output=Self> {
|
||||||
|
/// Adds two numbers, checking for overflow. If overflow happens, `None` is
|
||||||
|
/// returned.
|
||||||
|
fn checked_add(&self, v: &Self) -> Option<Self>;
|
||||||
|
}
|
||||||
|
|
||||||
|
macro_rules! checked_impl {
|
||||||
|
($trait_name:ident, $method:ident, $t:ty) => {
|
||||||
|
impl $trait_name for $t {
|
||||||
|
#[inline]
|
||||||
|
fn $method(&self, v: &$t) -> Option<$t> {
|
||||||
|
<$t>::$method(*self, *v)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
checked_impl!(CheckedAdd, checked_add, u8);
|
||||||
|
checked_impl!(CheckedAdd, checked_add, u16);
|
||||||
|
checked_impl!(CheckedAdd, checked_add, u32);
|
||||||
|
checked_impl!(CheckedAdd, checked_add, u64);
|
||||||
|
checked_impl!(CheckedAdd, checked_add, usize);
|
||||||
|
|
||||||
|
checked_impl!(CheckedAdd, checked_add, i8);
|
||||||
|
checked_impl!(CheckedAdd, checked_add, i16);
|
||||||
|
checked_impl!(CheckedAdd, checked_add, i32);
|
||||||
|
checked_impl!(CheckedAdd, checked_add, i64);
|
||||||
|
checked_impl!(CheckedAdd, checked_add, isize);
|
||||||
|
|
||||||
|
/// Performs subtraction that returns `None` instead of wrapping around on underflow.
|
||||||
|
pub trait CheckedSub: Sized + Sub<Self, Output=Self> {
|
||||||
|
/// Subtracts two numbers, checking for underflow. If underflow happens,
|
||||||
|
/// `None` is returned.
|
||||||
|
fn checked_sub(&self, v: &Self) -> Option<Self>;
|
||||||
|
}
|
||||||
|
|
||||||
|
checked_impl!(CheckedSub, checked_sub, u8);
|
||||||
|
checked_impl!(CheckedSub, checked_sub, u16);
|
||||||
|
checked_impl!(CheckedSub, checked_sub, u32);
|
||||||
|
checked_impl!(CheckedSub, checked_sub, u64);
|
||||||
|
checked_impl!(CheckedSub, checked_sub, usize);
|
||||||
|
|
||||||
|
checked_impl!(CheckedSub, checked_sub, i8);
|
||||||
|
checked_impl!(CheckedSub, checked_sub, i16);
|
||||||
|
checked_impl!(CheckedSub, checked_sub, i32);
|
||||||
|
checked_impl!(CheckedSub, checked_sub, i64);
|
||||||
|
checked_impl!(CheckedSub, checked_sub, isize);
|
||||||
|
|
||||||
|
/// Performs multiplication that returns `None` instead of wrapping around on underflow or
|
||||||
|
/// overflow.
|
||||||
|
pub trait CheckedMul: Sized + Mul<Self, Output=Self> {
|
||||||
|
/// Multiplies two numbers, checking for underflow or overflow. If underflow
|
||||||
|
/// or overflow happens, `None` is returned.
|
||||||
|
fn checked_mul(&self, v: &Self) -> Option<Self>;
|
||||||
|
}
|
||||||
|
|
||||||
|
checked_impl!(CheckedMul, checked_mul, u8);
|
||||||
|
checked_impl!(CheckedMul, checked_mul, u16);
|
||||||
|
checked_impl!(CheckedMul, checked_mul, u32);
|
||||||
|
checked_impl!(CheckedMul, checked_mul, u64);
|
||||||
|
checked_impl!(CheckedMul, checked_mul, usize);
|
||||||
|
|
||||||
|
checked_impl!(CheckedMul, checked_mul, i8);
|
||||||
|
checked_impl!(CheckedMul, checked_mul, i16);
|
||||||
|
checked_impl!(CheckedMul, checked_mul, i32);
|
||||||
|
checked_impl!(CheckedMul, checked_mul, i64);
|
||||||
|
checked_impl!(CheckedMul, checked_mul, isize);
|
||||||
|
|
||||||
|
/// Performs division that returns `None` instead of panicking on division by zero and instead of
|
||||||
|
/// wrapping around on underflow and overflow.
|
||||||
|
pub trait CheckedDiv: Sized + Div<Self, Output=Self> {
|
||||||
|
/// Divides two numbers, checking for underflow, overflow and division by
|
||||||
|
/// zero. If any of that happens, `None` is returned.
|
||||||
|
fn checked_div(&self, v: &Self) -> Option<Self>;
|
||||||
|
}
|
||||||
|
|
||||||
|
checked_impl!(CheckedDiv, checked_div, u8);
|
||||||
|
checked_impl!(CheckedDiv, checked_div, u16);
|
||||||
|
checked_impl!(CheckedDiv, checked_div, u32);
|
||||||
|
checked_impl!(CheckedDiv, checked_div, u64);
|
||||||
|
checked_impl!(CheckedDiv, checked_div, usize);
|
||||||
|
|
||||||
|
checked_impl!(CheckedDiv, checked_div, i8);
|
||||||
|
checked_impl!(CheckedDiv, checked_div, i16);
|
||||||
|
checked_impl!(CheckedDiv, checked_div, i32);
|
||||||
|
checked_impl!(CheckedDiv, checked_div, i64);
|
||||||
|
checked_impl!(CheckedDiv, checked_div, isize);
|
|
@ -0,0 +1,2 @@
|
||||||
|
pub mod saturating;
|
||||||
|
pub mod checked;
|
|
@ -0,0 +1,26 @@
|
||||||
|
/// Saturating math operations
|
||||||
|
pub trait Saturating {
|
||||||
|
/// Saturating addition operator.
|
||||||
|
/// Returns a+b, saturating at the numeric bounds instead of overflowing.
|
||||||
|
fn saturating_add(self, v: Self) -> Self;
|
||||||
|
|
||||||
|
/// Saturating subtraction operator.
|
||||||
|
/// Returns a-b, saturating at the numeric bounds instead of overflowing.
|
||||||
|
fn saturating_sub(self, v: Self) -> Self;
|
||||||
|
}
|
||||||
|
|
||||||
|
macro_rules! saturating_impl {
|
||||||
|
($trait_name:ident for $($t:ty)*) => {$(
|
||||||
|
impl $trait_name for $t {
|
||||||
|
fn saturating_add(self, v: Self) -> Self {
|
||||||
|
Self::saturating_add(self, v)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn saturating_sub(self, v: Self) -> Self {
|
||||||
|
Self::saturating_sub(self, v)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)*}
|
||||||
|
}
|
||||||
|
|
||||||
|
saturating_impl!(Saturating for isize usize i8 u8 i16 u16 i32 u32 i64 u64);
|
|
@ -0,0 +1,126 @@
|
||||||
|
use std::ops::Neg;
|
||||||
|
use std::{f32, f64};
|
||||||
|
|
||||||
|
use Num;
|
||||||
|
|
||||||
|
/// Useful functions for signed numbers (i.e. numbers that can be negative).
|
||||||
|
pub trait Signed: Sized + Num + Neg<Output = Self> {
|
||||||
|
/// Computes the absolute value.
|
||||||
|
///
|
||||||
|
/// For `f32` and `f64`, `NaN` will be returned if the number is `NaN`.
|
||||||
|
///
|
||||||
|
/// For signed integers, `::MIN` will be returned if the number is `::MIN`.
|
||||||
|
fn abs(&self) -> Self;
|
||||||
|
|
||||||
|
/// The positive difference of two numbers.
|
||||||
|
///
|
||||||
|
/// Returns `zero` if the number is less than or equal to `other`, otherwise the difference
|
||||||
|
/// between `self` and `other` is returned.
|
||||||
|
fn abs_sub(&self, other: &Self) -> Self;
|
||||||
|
|
||||||
|
/// Returns the sign of the number.
|
||||||
|
///
|
||||||
|
/// For `f32` and `f64`:
|
||||||
|
///
|
||||||
|
/// * `1.0` if the number is positive, `+0.0` or `INFINITY`
|
||||||
|
/// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
|
||||||
|
/// * `NaN` if the number is `NaN`
|
||||||
|
///
|
||||||
|
/// For signed integers:
|
||||||
|
///
|
||||||
|
/// * `0` if the number is zero
|
||||||
|
/// * `1` if the number is positive
|
||||||
|
/// * `-1` if the number is negative
|
||||||
|
fn signum(&self) -> Self;
|
||||||
|
|
||||||
|
/// Returns true if the number is positive and false if the number is zero or negative.
|
||||||
|
fn is_positive(&self) -> bool;
|
||||||
|
|
||||||
|
/// Returns true if the number is negative and false if the number is zero or positive.
|
||||||
|
fn is_negative(&self) -> bool;
|
||||||
|
}
|
||||||
|
|
||||||
|
macro_rules! signed_impl {
|
||||||
|
($($t:ty)*) => ($(
|
||||||
|
impl Signed for $t {
|
||||||
|
#[inline]
|
||||||
|
fn abs(&self) -> $t {
|
||||||
|
if self.is_negative() { -*self } else { *self }
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
fn abs_sub(&self, other: &$t) -> $t {
|
||||||
|
if *self <= *other { 0 } else { *self - *other }
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
fn signum(&self) -> $t {
|
||||||
|
match *self {
|
||||||
|
n if n > 0 => 1,
|
||||||
|
0 => 0,
|
||||||
|
_ => -1,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
fn is_positive(&self) -> bool { *self > 0 }
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
fn is_negative(&self) -> bool { *self < 0 }
|
||||||
|
}
|
||||||
|
)*)
|
||||||
|
}
|
||||||
|
|
||||||
|
signed_impl!(isize i8 i16 i32 i64);
|
||||||
|
|
||||||
|
macro_rules! signed_float_impl {
|
||||||
|
($t:ty, $nan:expr, $inf:expr, $neg_inf:expr) => {
|
||||||
|
impl Signed for $t {
|
||||||
|
/// Computes the absolute value. Returns `NAN` if the number is `NAN`.
|
||||||
|
#[inline]
|
||||||
|
fn abs(&self) -> $t {
|
||||||
|
<$t>::abs(*self)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// The positive difference of two numbers. Returns `0.0` if the number is
|
||||||
|
/// less than or equal to `other`, otherwise the difference between`self`
|
||||||
|
/// and `other` is returned.
|
||||||
|
#[inline]
|
||||||
|
fn abs_sub(&self, other: &$t) -> $t {
|
||||||
|
<$t>::abs_sub(*self, *other)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// # Returns
|
||||||
|
///
|
||||||
|
/// - `1.0` if the number is positive, `+0.0` or `INFINITY`
|
||||||
|
/// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
|
||||||
|
/// - `NAN` if the number is NaN
|
||||||
|
#[inline]
|
||||||
|
fn signum(&self) -> $t {
|
||||||
|
<$t>::signum(*self)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns `true` if the number is positive, including `+0.0` and `INFINITY`
|
||||||
|
#[inline]
|
||||||
|
fn is_positive(&self) -> bool { *self > 0.0 || (1.0 / *self) == $inf }
|
||||||
|
|
||||||
|
/// Returns `true` if the number is negative, including `-0.0` and `NEG_INFINITY`
|
||||||
|
#[inline]
|
||||||
|
fn is_negative(&self) -> bool { *self < 0.0 || (1.0 / *self) == $neg_inf }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
signed_float_impl!(f32, f32::NAN, f32::INFINITY, f32::NEG_INFINITY);
|
||||||
|
signed_float_impl!(f64, f64::NAN, f64::INFINITY, f64::NEG_INFINITY);
|
||||||
|
|
||||||
|
/// A trait for values which cannot be negative
|
||||||
|
pub trait Unsigned: Num {}
|
||||||
|
|
||||||
|
macro_rules! empty_trait_impl {
|
||||||
|
($name:ident for $($t:ty)*) => ($(
|
||||||
|
impl $name for $t {}
|
||||||
|
)*)
|
||||||
|
}
|
||||||
|
|
||||||
|
empty_trait_impl!(Unsigned for usize u8 u16 u32 u64);
|
Loading…
Reference in New Issue