diff --git a/.travis.yml b/.travis.yml index c8cda1b..3ac2b8d 100644 --- a/.travis.yml +++ b/.travis.yml @@ -14,6 +14,7 @@ notifications: branches: only: - master + - num-traits-0.1.x - next - staging - trying diff --git a/Cargo.toml b/Cargo.toml index 06cab57..699a74d 100644 --- a/Cargo.toml +++ b/Cargo.toml @@ -8,7 +8,11 @@ categories = [ "algorithms", "science" ] license = "MIT/Apache-2.0" repository = "https://github.com/rust-num/num-traits" name = "num-traits" -version = "0.1.42" +version = "0.1.43" readme = "README.md" -[dependencies] +[lib] +doctest = false # multiple rlib candidates for `num_traits` found + +[dependencies.num-traits] +version = "0.2.0" diff --git a/README.md b/README.md index b1491b1..83021f9 100644 --- a/README.md +++ b/README.md @@ -6,6 +6,9 @@ Numeric traits for generic mathematics in Rust. +This version of the crate only exists to re-export compatible +items from `num-traits` 0.2. Please consider updating! + ## Usage Add this to your `Cargo.toml`: diff --git a/RELEASES.md b/RELEASES.md index b82bce6..d2bc774 100644 --- a/RELEASES.md +++ b/RELEASES.md @@ -1,3 +1,20 @@ +# Release 0.2.0 + +- **breaking change**: There is now a `std` feature, enabled by default, along + with the implication that building *without* this feature makes this a + `#[no_std]` crate. + - The `Float` and `Real` traits are only available when `std` is enabled. + - Otherwise, the API is unchanged, and num-traits 0.1.43 now re-exports its + items from num-traits 0.2 for compatibility (the [semver-trick]). + +**Contributors**: @cuviper, @termoshtt, @vks + +[semver-trick]: https://github.com/dtolnay/semver-trick + +# Release 0.1.43 + +- All items are now re-exported from num-traits 0.2 for compatibility. + # Release 0.1.42 - [num-traits now has its own source repository][num-356] at [rust-num/num-traits][home]. diff --git a/src/bounds.rs b/src/bounds.rs deleted file mode 100644 index 83fdd0f..0000000 --- a/src/bounds.rs +++ /dev/null @@ -1,99 +0,0 @@ -use std::{usize, u8, u16, u32, u64}; -use std::{isize, i8, i16, i32, i64}; -use std::{f32, f64}; -use std::num::Wrapping; - -/// Numbers which have upper and lower bounds -pub trait Bounded { - // FIXME (#5527): These should be associated constants - /// returns the smallest finite number this type can represent - fn min_value() -> Self; - /// returns the largest finite number this type can represent - fn max_value() -> Self; -} - -macro_rules! bounded_impl { - ($t:ty, $min:expr, $max:expr) => { - impl Bounded for $t { - #[inline] - fn min_value() -> $t { $min } - - #[inline] - fn max_value() -> $t { $max } - } - } -} - -bounded_impl!(usize, usize::MIN, usize::MAX); -bounded_impl!(u8, u8::MIN, u8::MAX); -bounded_impl!(u16, u16::MIN, u16::MAX); -bounded_impl!(u32, u32::MIN, u32::MAX); -bounded_impl!(u64, u64::MIN, u64::MAX); - -bounded_impl!(isize, isize::MIN, isize::MAX); -bounded_impl!(i8, i8::MIN, i8::MAX); -bounded_impl!(i16, i16::MIN, i16::MAX); -bounded_impl!(i32, i32::MIN, i32::MAX); -bounded_impl!(i64, i64::MIN, i64::MAX); - -impl Bounded for Wrapping { - fn min_value() -> Self { Wrapping(T::min_value()) } - fn max_value() -> Self { Wrapping(T::max_value()) } -} - -bounded_impl!(f32, f32::MIN, f32::MAX); - -macro_rules! for_each_tuple_ { - ( $m:ident !! ) => ( - $m! { } - ); - ( $m:ident !! $h:ident, $($t:ident,)* ) => ( - $m! { $h $($t)* } - for_each_tuple_! { $m !! $($t,)* } - ); -} -macro_rules! for_each_tuple { - ( $m:ident ) => ( - for_each_tuple_! { $m !! A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, } - ); -} - -macro_rules! bounded_tuple { - ( $($name:ident)* ) => ( - impl<$($name: Bounded,)*> Bounded for ($($name,)*) { - #[inline] - fn min_value() -> Self { - ($($name::min_value(),)*) - } - #[inline] - fn max_value() -> Self { - ($($name::max_value(),)*) - } - } - ); -} - -for_each_tuple!(bounded_tuple); -bounded_impl!(f64, f64::MIN, f64::MAX); - - -#[test] -fn wrapping_bounded() { - macro_rules! test_wrapping_bounded { - ($($t:ty)+) => { - $( - assert_eq!(Wrapping::<$t>::min_value().0, <$t>::min_value()); - assert_eq!(Wrapping::<$t>::max_value().0, <$t>::max_value()); - )+ - }; - } - - test_wrapping_bounded!(usize u8 u16 u32 u64 isize i8 i16 i32 i64); -} - -#[test] -fn wrapping_is_bounded() { - fn require_bounded(_: &T) {} - require_bounded(&Wrapping(42_u32)); - require_bounded(&Wrapping(-42)); -} diff --git a/src/cast.rs b/src/cast.rs deleted file mode 100644 index 2d7fe19..0000000 --- a/src/cast.rs +++ /dev/null @@ -1,591 +0,0 @@ -use std::mem::size_of; -use std::num::Wrapping; - -use identities::Zero; -use bounds::Bounded; - -/// A generic trait for converting a value to a number. -pub trait ToPrimitive { - /// Converts the value of `self` to an `isize`. - #[inline] - fn to_isize(&self) -> Option { - self.to_i64().and_then(|x| x.to_isize()) - } - - /// Converts the value of `self` to an `i8`. - #[inline] - fn to_i8(&self) -> Option { - self.to_i64().and_then(|x| x.to_i8()) - } - - /// Converts the value of `self` to an `i16`. - #[inline] - fn to_i16(&self) -> Option { - self.to_i64().and_then(|x| x.to_i16()) - } - - /// Converts the value of `self` to an `i32`. - #[inline] - fn to_i32(&self) -> Option { - self.to_i64().and_then(|x| x.to_i32()) - } - - /// Converts the value of `self` to an `i64`. - fn to_i64(&self) -> Option; - - /// Converts the value of `self` to a `usize`. - #[inline] - fn to_usize(&self) -> Option { - self.to_u64().and_then(|x| x.to_usize()) - } - - /// Converts the value of `self` to an `u8`. - #[inline] - fn to_u8(&self) -> Option { - self.to_u64().and_then(|x| x.to_u8()) - } - - /// Converts the value of `self` to an `u16`. - #[inline] - fn to_u16(&self) -> Option { - self.to_u64().and_then(|x| x.to_u16()) - } - - /// Converts the value of `self` to an `u32`. - #[inline] - fn to_u32(&self) -> Option { - self.to_u64().and_then(|x| x.to_u32()) - } - - /// Converts the value of `self` to an `u64`. - #[inline] - fn to_u64(&self) -> Option; - - /// Converts the value of `self` to an `f32`. - #[inline] - fn to_f32(&self) -> Option { - self.to_f64().and_then(|x| x.to_f32()) - } - - /// Converts the value of `self` to an `f64`. - #[inline] - fn to_f64(&self) -> Option { - self.to_i64().and_then(|x| x.to_f64()) - } -} - -macro_rules! impl_to_primitive_int_to_int { - ($SrcT:ty, $DstT:ty, $slf:expr) => ( - { - if size_of::<$SrcT>() <= size_of::<$DstT>() { - Some($slf as $DstT) - } else { - let n = $slf as i64; - let min_value: $DstT = Bounded::min_value(); - let max_value: $DstT = Bounded::max_value(); - if min_value as i64 <= n && n <= max_value as i64 { - Some($slf as $DstT) - } else { - None - } - } - } - ) -} - -macro_rules! impl_to_primitive_int_to_uint { - ($SrcT:ty, $DstT:ty, $slf:expr) => ( - { - let zero: $SrcT = Zero::zero(); - let max_value: $DstT = Bounded::max_value(); - if zero <= $slf && $slf as u64 <= max_value as u64 { - Some($slf as $DstT) - } else { - None - } - } - ) -} - -macro_rules! impl_to_primitive_int { - ($T:ty) => ( - impl ToPrimitive for $T { - #[inline] - fn to_isize(&self) -> Option { impl_to_primitive_int_to_int!($T, isize, *self) } - #[inline] - fn to_i8(&self) -> Option { impl_to_primitive_int_to_int!($T, i8, *self) } - #[inline] - fn to_i16(&self) -> Option { impl_to_primitive_int_to_int!($T, i16, *self) } - #[inline] - fn to_i32(&self) -> Option { impl_to_primitive_int_to_int!($T, i32, *self) } - #[inline] - fn to_i64(&self) -> Option { impl_to_primitive_int_to_int!($T, i64, *self) } - - #[inline] - fn to_usize(&self) -> Option { impl_to_primitive_int_to_uint!($T, usize, *self) } - #[inline] - fn to_u8(&self) -> Option { impl_to_primitive_int_to_uint!($T, u8, *self) } - #[inline] - fn to_u16(&self) -> Option { impl_to_primitive_int_to_uint!($T, u16, *self) } - #[inline] - fn to_u32(&self) -> Option { impl_to_primitive_int_to_uint!($T, u32, *self) } - #[inline] - fn to_u64(&self) -> Option { impl_to_primitive_int_to_uint!($T, u64, *self) } - - #[inline] - fn to_f32(&self) -> Option { Some(*self as f32) } - #[inline] - fn to_f64(&self) -> Option { Some(*self as f64) } - } - ) -} - -impl_to_primitive_int!(isize); -impl_to_primitive_int!(i8); -impl_to_primitive_int!(i16); -impl_to_primitive_int!(i32); -impl_to_primitive_int!(i64); - -macro_rules! impl_to_primitive_uint_to_int { - ($DstT:ty, $slf:expr) => ( - { - let max_value: $DstT = Bounded::max_value(); - if $slf as u64 <= max_value as u64 { - Some($slf as $DstT) - } else { - None - } - } - ) -} - -macro_rules! impl_to_primitive_uint_to_uint { - ($SrcT:ty, $DstT:ty, $slf:expr) => ( - { - if size_of::<$SrcT>() <= size_of::<$DstT>() { - Some($slf as $DstT) - } else { - let zero: $SrcT = Zero::zero(); - let max_value: $DstT = Bounded::max_value(); - if zero <= $slf && $slf as u64 <= max_value as u64 { - Some($slf as $DstT) - } else { - None - } - } - } - ) -} - -macro_rules! impl_to_primitive_uint { - ($T:ty) => ( - impl ToPrimitive for $T { - #[inline] - fn to_isize(&self) -> Option { impl_to_primitive_uint_to_int!(isize, *self) } - #[inline] - fn to_i8(&self) -> Option { impl_to_primitive_uint_to_int!(i8, *self) } - #[inline] - fn to_i16(&self) -> Option { impl_to_primitive_uint_to_int!(i16, *self) } - #[inline] - fn to_i32(&self) -> Option { impl_to_primitive_uint_to_int!(i32, *self) } - #[inline] - fn to_i64(&self) -> Option { impl_to_primitive_uint_to_int!(i64, *self) } - - #[inline] - fn to_usize(&self) -> Option { - impl_to_primitive_uint_to_uint!($T, usize, *self) - } - #[inline] - fn to_u8(&self) -> Option { impl_to_primitive_uint_to_uint!($T, u8, *self) } - #[inline] - fn to_u16(&self) -> Option { impl_to_primitive_uint_to_uint!($T, u16, *self) } - #[inline] - fn to_u32(&self) -> Option { impl_to_primitive_uint_to_uint!($T, u32, *self) } - #[inline] - fn to_u64(&self) -> Option { impl_to_primitive_uint_to_uint!($T, u64, *self) } - - #[inline] - fn to_f32(&self) -> Option { Some(*self as f32) } - #[inline] - fn to_f64(&self) -> Option { Some(*self as f64) } - } - ) -} - -impl_to_primitive_uint!(usize); -impl_to_primitive_uint!(u8); -impl_to_primitive_uint!(u16); -impl_to_primitive_uint!(u32); -impl_to_primitive_uint!(u64); - -macro_rules! impl_to_primitive_float_to_float { - ($SrcT:ident, $DstT:ident, $slf:expr) => ( - if size_of::<$SrcT>() <= size_of::<$DstT>() { - Some($slf as $DstT) - } else { - // Make sure the value is in range for the cast. - // NaN and +-inf are cast as they are. - let n = $slf as f64; - let max_value: $DstT = ::std::$DstT::MAX; - if !n.is_finite() || (-max_value as f64 <= n && n <= max_value as f64) { - Some($slf as $DstT) - } else { - None - } - } - ) -} - -macro_rules! impl_to_primitive_float { - ($T:ident) => ( - impl ToPrimitive for $T { - #[inline] - fn to_isize(&self) -> Option { Some(*self as isize) } - #[inline] - fn to_i8(&self) -> Option { Some(*self as i8) } - #[inline] - fn to_i16(&self) -> Option { Some(*self as i16) } - #[inline] - fn to_i32(&self) -> Option { Some(*self as i32) } - #[inline] - fn to_i64(&self) -> Option { Some(*self as i64) } - - #[inline] - fn to_usize(&self) -> Option { Some(*self as usize) } - #[inline] - fn to_u8(&self) -> Option { Some(*self as u8) } - #[inline] - fn to_u16(&self) -> Option { Some(*self as u16) } - #[inline] - fn to_u32(&self) -> Option { Some(*self as u32) } - #[inline] - fn to_u64(&self) -> Option { Some(*self as u64) } - - #[inline] - fn to_f32(&self) -> Option { impl_to_primitive_float_to_float!($T, f32, *self) } - #[inline] - fn to_f64(&self) -> Option { impl_to_primitive_float_to_float!($T, f64, *self) } - } - ) -} - -impl_to_primitive_float!(f32); -impl_to_primitive_float!(f64); - -/// A generic trait for converting a number to a value. -pub trait FromPrimitive: Sized { - /// Convert an `isize` to return an optional value of this type. If the - /// value cannot be represented by this value, the `None` is returned. - #[inline] - fn from_isize(n: isize) -> Option { - FromPrimitive::from_i64(n as i64) - } - - /// Convert an `i8` to return an optional value of this type. If the - /// type cannot be represented by this value, the `None` is returned. - #[inline] - fn from_i8(n: i8) -> Option { - FromPrimitive::from_i64(n as i64) - } - - /// Convert an `i16` to return an optional value of this type. If the - /// type cannot be represented by this value, the `None` is returned. - #[inline] - fn from_i16(n: i16) -> Option { - FromPrimitive::from_i64(n as i64) - } - - /// Convert an `i32` to return an optional value of this type. If the - /// type cannot be represented by this value, the `None` is returned. - #[inline] - fn from_i32(n: i32) -> Option { - FromPrimitive::from_i64(n as i64) - } - - /// Convert an `i64` to return an optional value of this type. If the - /// type cannot be represented by this value, the `None` is returned. - fn from_i64(n: i64) -> Option; - - /// Convert a `usize` to return an optional value of this type. If the - /// type cannot be represented by this value, the `None` is returned. - #[inline] - fn from_usize(n: usize) -> Option { - FromPrimitive::from_u64(n as u64) - } - - /// Convert an `u8` to return an optional value of this type. If the - /// type cannot be represented by this value, the `None` is returned. - #[inline] - fn from_u8(n: u8) -> Option { - FromPrimitive::from_u64(n as u64) - } - - /// Convert an `u16` to return an optional value of this type. If the - /// type cannot be represented by this value, the `None` is returned. - #[inline] - fn from_u16(n: u16) -> Option { - FromPrimitive::from_u64(n as u64) - } - - /// Convert an `u32` to return an optional value of this type. If the - /// type cannot be represented by this value, the `None` is returned. - #[inline] - fn from_u32(n: u32) -> Option { - FromPrimitive::from_u64(n as u64) - } - - /// Convert an `u64` to return an optional value of this type. If the - /// type cannot be represented by this value, the `None` is returned. - fn from_u64(n: u64) -> Option; - - /// Convert a `f32` to return an optional value of this type. If the - /// type cannot be represented by this value, the `None` is returned. - #[inline] - fn from_f32(n: f32) -> Option { - FromPrimitive::from_f64(n as f64) - } - - /// Convert a `f64` to return an optional value of this type. If the - /// type cannot be represented by this value, the `None` is returned. - #[inline] - fn from_f64(n: f64) -> Option { - FromPrimitive::from_i64(n as i64) - } -} - -macro_rules! impl_from_primitive { - ($T:ty, $to_ty:ident) => ( - #[allow(deprecated)] - impl FromPrimitive for $T { - #[inline] fn from_i8(n: i8) -> Option<$T> { n.$to_ty() } - #[inline] fn from_i16(n: i16) -> Option<$T> { n.$to_ty() } - #[inline] fn from_i32(n: i32) -> Option<$T> { n.$to_ty() } - #[inline] fn from_i64(n: i64) -> Option<$T> { n.$to_ty() } - - #[inline] fn from_u8(n: u8) -> Option<$T> { n.$to_ty() } - #[inline] fn from_u16(n: u16) -> Option<$T> { n.$to_ty() } - #[inline] fn from_u32(n: u32) -> Option<$T> { n.$to_ty() } - #[inline] fn from_u64(n: u64) -> Option<$T> { n.$to_ty() } - - #[inline] fn from_f32(n: f32) -> Option<$T> { n.$to_ty() } - #[inline] fn from_f64(n: f64) -> Option<$T> { n.$to_ty() } - } - ) -} - -impl_from_primitive!(isize, to_isize); -impl_from_primitive!(i8, to_i8); -impl_from_primitive!(i16, to_i16); -impl_from_primitive!(i32, to_i32); -impl_from_primitive!(i64, to_i64); -impl_from_primitive!(usize, to_usize); -impl_from_primitive!(u8, to_u8); -impl_from_primitive!(u16, to_u16); -impl_from_primitive!(u32, to_u32); -impl_from_primitive!(u64, to_u64); -impl_from_primitive!(f32, to_f32); -impl_from_primitive!(f64, to_f64); - - -impl ToPrimitive for Wrapping { - fn to_i64(&self) -> Option { self.0.to_i64() } - fn to_u64(&self) -> Option { self.0.to_u64() } -} -impl FromPrimitive for Wrapping { - fn from_u64(n: u64) -> Option { T::from_u64(n).map(Wrapping) } - fn from_i64(n: i64) -> Option { T::from_i64(n).map(Wrapping) } -} - - -/// Cast from one machine scalar to another. -/// -/// # Examples -/// -/// ``` -/// # use num_traits as num; -/// let twenty: f32 = num::cast(0x14).unwrap(); -/// assert_eq!(twenty, 20f32); -/// ``` -/// -#[inline] -pub fn cast(n: T) -> Option { - NumCast::from(n) -} - -/// An interface for casting between machine scalars. -pub trait NumCast: Sized + ToPrimitive { - /// Creates a number from another value that can be converted into - /// a primitive via the `ToPrimitive` trait. - fn from(n: T) -> Option; -} - -macro_rules! impl_num_cast { - ($T:ty, $conv:ident) => ( - impl NumCast for $T { - #[inline] - #[allow(deprecated)] - fn from(n: N) -> Option<$T> { - // `$conv` could be generated using `concat_idents!`, but that - // macro seems to be broken at the moment - n.$conv() - } - } - ) -} - -impl_num_cast!(u8, to_u8); -impl_num_cast!(u16, to_u16); -impl_num_cast!(u32, to_u32); -impl_num_cast!(u64, to_u64); -impl_num_cast!(usize, to_usize); -impl_num_cast!(i8, to_i8); -impl_num_cast!(i16, to_i16); -impl_num_cast!(i32, to_i32); -impl_num_cast!(i64, to_i64); -impl_num_cast!(isize, to_isize); -impl_num_cast!(f32, to_f32); -impl_num_cast!(f64, to_f64); - -impl NumCast for Wrapping { - fn from(n: U) -> Option { - T::from(n).map(Wrapping) - } -} - -/// A generic interface for casting between machine scalars with the -/// `as` operator, which admits narrowing and precision loss. -/// Implementers of this trait AsPrimitive should behave like a primitive -/// numeric type (e.g. a newtype around another primitive), and the -/// intended conversion must never fail. -/// -/// # Examples -/// -/// ``` -/// # use num_traits::AsPrimitive; -/// let three: i32 = (3.14159265f32).as_(); -/// assert_eq!(three, 3); -/// ``` -/// -/// # Safety -/// -/// Currently, some uses of the `as` operator are not entirely safe. -/// In particular, it is undefined behavior if: -/// -/// - A truncated floating point value cannot fit in the target integer -/// type ([#10184](https://github.com/rust-lang/rust/issues/10184)); -/// -/// ```ignore -/// # use num_traits::AsPrimitive; -/// let x: u8 = (1.04E+17).as_(); // UB -/// ``` -/// -/// - Or a floating point value does not fit in another floating -/// point type ([#15536](https://github.com/rust-lang/rust/issues/15536)). -/// -/// ```ignore -/// # use num_traits::AsPrimitive; -/// let x: f32 = (1e300f64).as_(); // UB -/// ``` -/// -pub trait AsPrimitive: 'static + Copy -where - T: 'static + Copy -{ - /// Convert a value to another, using the `as` operator. - fn as_(self) -> T; -} - -macro_rules! impl_as_primitive { - ($T: ty => $( $U: ty ),* ) => { - $( - impl AsPrimitive<$U> for $T { - #[inline] fn as_(self) -> $U { self as $U } - } - )* - }; -} - -impl_as_primitive!(u8 => char, u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); -impl_as_primitive!(i8 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); -impl_as_primitive!(u16 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); -impl_as_primitive!(i16 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); -impl_as_primitive!(u32 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); -impl_as_primitive!(i32 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); -impl_as_primitive!(u64 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); -impl_as_primitive!(i64 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); -impl_as_primitive!(usize => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); -impl_as_primitive!(isize => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); -impl_as_primitive!(f32 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); -impl_as_primitive!(f64 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); -impl_as_primitive!(char => char, u8, i8, u16, i16, u32, i32, u64, isize, usize, i64); -impl_as_primitive!(bool => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64); - -#[test] -fn to_primitive_float() { - use std::f32; - use std::f64; - - let f32_toolarge = 1e39f64; - assert_eq!(f32_toolarge.to_f32(), None); - assert_eq!((f32::MAX as f64).to_f32(), Some(f32::MAX)); - assert_eq!((-f32::MAX as f64).to_f32(), Some(-f32::MAX)); - assert_eq!(f64::INFINITY.to_f32(), Some(f32::INFINITY)); - assert_eq!((f64::NEG_INFINITY).to_f32(), Some(f32::NEG_INFINITY)); - assert!((f64::NAN).to_f32().map_or(false, |f| f.is_nan())); -} - -#[test] -fn wrapping_to_primitive() { - macro_rules! test_wrapping_to_primitive { - ($($t:ty)+) => { - $({ - let i: $t = 0; - let w = Wrapping(i); - assert_eq!(i.to_u8(), w.to_u8()); - assert_eq!(i.to_u16(), w.to_u16()); - assert_eq!(i.to_u32(), w.to_u32()); - assert_eq!(i.to_u64(), w.to_u64()); - assert_eq!(i.to_usize(), w.to_usize()); - assert_eq!(i.to_i8(), w.to_i8()); - assert_eq!(i.to_i16(), w.to_i16()); - assert_eq!(i.to_i32(), w.to_i32()); - assert_eq!(i.to_i64(), w.to_i64()); - assert_eq!(i.to_isize(), w.to_isize()); - assert_eq!(i.to_f32(), w.to_f32()); - assert_eq!(i.to_f64(), w.to_f64()); - })+ - }; - } - - test_wrapping_to_primitive!(usize u8 u16 u32 u64 isize i8 i16 i32 i64); -} - -#[test] -fn wrapping_is_toprimitive() { - fn require_toprimitive(_: &T) {} - require_toprimitive(&Wrapping(42)); -} - -#[test] -fn wrapping_is_fromprimitive() { - fn require_fromprimitive(_: &T) {} - require_fromprimitive(&Wrapping(42)); -} - -#[test] -fn wrapping_is_numcast() { - fn require_numcast(_: &T) {} - require_numcast(&Wrapping(42)); -} - -#[test] -fn as_primitive() { - let x: f32 = (1.625f64).as_(); - assert_eq!(x, 1.625f32); - - let x: f32 = (3.14159265358979323846f64).as_(); - assert_eq!(x, 3.1415927f32); - - let x: u8 = (768i16).as_(); - assert_eq!(x, 0); -} diff --git a/src/float.rs b/src/float.rs deleted file mode 100644 index 3c8779a..0000000 --- a/src/float.rs +++ /dev/null @@ -1,1344 +0,0 @@ -use std::mem; -use std::ops::Neg; -use std::num::FpCategory; - -// Used for default implementation of `epsilon` -use std::f32; - -use {Num, NumCast}; - -// FIXME: these doctests aren't actually helpful, because they're using and -// testing the inherent methods directly, not going through `Float`. - -pub trait Float - : Num - + Copy - + NumCast - + PartialOrd - + Neg -{ - /// Returns the `NaN` value. - /// - /// ``` - /// use num_traits::Float; - /// - /// let nan: f32 = Float::nan(); - /// - /// assert!(nan.is_nan()); - /// ``` - fn nan() -> Self; - /// Returns the infinite value. - /// - /// ``` - /// use num_traits::Float; - /// use std::f32; - /// - /// let infinity: f32 = Float::infinity(); - /// - /// assert!(infinity.is_infinite()); - /// assert!(!infinity.is_finite()); - /// assert!(infinity > f32::MAX); - /// ``` - fn infinity() -> Self; - /// Returns the negative infinite value. - /// - /// ``` - /// use num_traits::Float; - /// use std::f32; - /// - /// let neg_infinity: f32 = Float::neg_infinity(); - /// - /// assert!(neg_infinity.is_infinite()); - /// assert!(!neg_infinity.is_finite()); - /// assert!(neg_infinity < f32::MIN); - /// ``` - fn neg_infinity() -> Self; - /// Returns `-0.0`. - /// - /// ``` - /// use num_traits::{Zero, Float}; - /// - /// let inf: f32 = Float::infinity(); - /// let zero: f32 = Zero::zero(); - /// let neg_zero: f32 = Float::neg_zero(); - /// - /// assert_eq!(zero, neg_zero); - /// assert_eq!(7.0f32/inf, zero); - /// assert_eq!(zero * 10.0, zero); - /// ``` - fn neg_zero() -> Self; - - /// Returns the smallest finite value that this type can represent. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let x: f64 = Float::min_value(); - /// - /// assert_eq!(x, f64::MIN); - /// ``` - fn min_value() -> Self; - - /// Returns the smallest positive, normalized value that this type can represent. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let x: f64 = Float::min_positive_value(); - /// - /// assert_eq!(x, f64::MIN_POSITIVE); - /// ``` - fn min_positive_value() -> Self; - - /// Returns epsilon, a small positive value. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let x: f64 = Float::epsilon(); - /// - /// assert_eq!(x, f64::EPSILON); - /// ``` - /// - /// # Panics - /// - /// The default implementation will panic if `f32::EPSILON` cannot - /// be cast to `Self`. - fn epsilon() -> Self { - Self::from(f32::EPSILON).expect("Unable to cast from f32::EPSILON") - } - - /// Returns the largest finite value that this type can represent. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let x: f64 = Float::max_value(); - /// assert_eq!(x, f64::MAX); - /// ``` - fn max_value() -> Self; - - /// Returns `true` if this value is `NaN` and false otherwise. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let nan = f64::NAN; - /// let f = 7.0; - /// - /// assert!(nan.is_nan()); - /// assert!(!f.is_nan()); - /// ``` - fn is_nan(self) -> bool; - - /// Returns `true` if this value is positive infinity or negative infinity and - /// false otherwise. - /// - /// ``` - /// use num_traits::Float; - /// use std::f32; - /// - /// let f = 7.0f32; - /// let inf: f32 = Float::infinity(); - /// let neg_inf: f32 = Float::neg_infinity(); - /// let nan: f32 = f32::NAN; - /// - /// assert!(!f.is_infinite()); - /// assert!(!nan.is_infinite()); - /// - /// assert!(inf.is_infinite()); - /// assert!(neg_inf.is_infinite()); - /// ``` - fn is_infinite(self) -> bool; - - /// Returns `true` if this number is neither infinite nor `NaN`. - /// - /// ``` - /// use num_traits::Float; - /// use std::f32; - /// - /// let f = 7.0f32; - /// let inf: f32 = Float::infinity(); - /// let neg_inf: f32 = Float::neg_infinity(); - /// let nan: f32 = f32::NAN; - /// - /// assert!(f.is_finite()); - /// - /// assert!(!nan.is_finite()); - /// assert!(!inf.is_finite()); - /// assert!(!neg_inf.is_finite()); - /// ``` - fn is_finite(self) -> bool; - - /// Returns `true` if the number is neither zero, infinite, - /// [subnormal][subnormal], or `NaN`. - /// - /// ``` - /// use num_traits::Float; - /// use std::f32; - /// - /// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32 - /// let max = f32::MAX; - /// let lower_than_min = 1.0e-40_f32; - /// let zero = 0.0f32; - /// - /// assert!(min.is_normal()); - /// assert!(max.is_normal()); - /// - /// assert!(!zero.is_normal()); - /// assert!(!f32::NAN.is_normal()); - /// assert!(!f32::INFINITY.is_normal()); - /// // Values between `0` and `min` are Subnormal. - /// assert!(!lower_than_min.is_normal()); - /// ``` - /// [subnormal]: http://en.wikipedia.org/wiki/Denormal_number - fn is_normal(self) -> bool; - - /// Returns the floating point category of the number. If only one property - /// is going to be tested, it is generally faster to use the specific - /// predicate instead. - /// - /// ``` - /// use num_traits::Float; - /// use std::num::FpCategory; - /// use std::f32; - /// - /// let num = 12.4f32; - /// let inf = f32::INFINITY; - /// - /// assert_eq!(num.classify(), FpCategory::Normal); - /// assert_eq!(inf.classify(), FpCategory::Infinite); - /// ``` - fn classify(self) -> FpCategory; - - /// Returns the largest integer less than or equal to a number. - /// - /// ``` - /// use num_traits::Float; - /// - /// let f = 3.99; - /// let g = 3.0; - /// - /// assert_eq!(f.floor(), 3.0); - /// assert_eq!(g.floor(), 3.0); - /// ``` - fn floor(self) -> Self; - - /// Returns the smallest integer greater than or equal to a number. - /// - /// ``` - /// use num_traits::Float; - /// - /// let f = 3.01; - /// let g = 4.0; - /// - /// assert_eq!(f.ceil(), 4.0); - /// assert_eq!(g.ceil(), 4.0); - /// ``` - fn ceil(self) -> Self; - - /// Returns the nearest integer to a number. Round half-way cases away from - /// `0.0`. - /// - /// ``` - /// use num_traits::Float; - /// - /// let f = 3.3; - /// let g = -3.3; - /// - /// assert_eq!(f.round(), 3.0); - /// assert_eq!(g.round(), -3.0); - /// ``` - fn round(self) -> Self; - - /// Return the integer part of a number. - /// - /// ``` - /// use num_traits::Float; - /// - /// let f = 3.3; - /// let g = -3.7; - /// - /// assert_eq!(f.trunc(), 3.0); - /// assert_eq!(g.trunc(), -3.0); - /// ``` - fn trunc(self) -> Self; - - /// Returns the fractional part of a number. - /// - /// ``` - /// use num_traits::Float; - /// - /// let x = 3.5; - /// let y = -3.5; - /// let abs_difference_x = (x.fract() - 0.5).abs(); - /// let abs_difference_y = (y.fract() - (-0.5)).abs(); - /// - /// assert!(abs_difference_x < 1e-10); - /// assert!(abs_difference_y < 1e-10); - /// ``` - fn fract(self) -> Self; - - /// Computes the absolute value of `self`. Returns `Float::nan()` if the - /// number is `Float::nan()`. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let x = 3.5; - /// let y = -3.5; - /// - /// let abs_difference_x = (x.abs() - x).abs(); - /// let abs_difference_y = (y.abs() - (-y)).abs(); - /// - /// assert!(abs_difference_x < 1e-10); - /// assert!(abs_difference_y < 1e-10); - /// - /// assert!(f64::NAN.abs().is_nan()); - /// ``` - fn abs(self) -> Self; - - /// Returns a number that represents the sign of `self`. - /// - /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()` - /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()` - /// - `Float::nan()` if the number is `Float::nan()` - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let f = 3.5; - /// - /// assert_eq!(f.signum(), 1.0); - /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0); - /// - /// assert!(f64::NAN.signum().is_nan()); - /// ``` - fn signum(self) -> Self; - - /// Returns `true` if `self` is positive, including `+0.0`, - /// `Float::infinity()`, and with newer versions of Rust `f64::NAN`. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let neg_nan: f64 = -f64::NAN; - /// - /// let f = 7.0; - /// let g = -7.0; - /// - /// assert!(f.is_sign_positive()); - /// assert!(!g.is_sign_positive()); - /// assert!(!neg_nan.is_sign_positive()); - /// ``` - fn is_sign_positive(self) -> bool; - - /// Returns `true` if `self` is negative, including `-0.0`, - /// `Float::neg_infinity()`, and with newer versions of Rust `-f64::NAN`. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let nan: f64 = f64::NAN; - /// - /// let f = 7.0; - /// let g = -7.0; - /// - /// assert!(!f.is_sign_negative()); - /// assert!(g.is_sign_negative()); - /// assert!(!nan.is_sign_negative()); - /// ``` - fn is_sign_negative(self) -> bool; - - /// Fused multiply-add. Computes `(self * a) + b` with only one rounding - /// error. This produces a more accurate result with better performance than - /// a separate multiplication operation followed by an add. - /// - /// ``` - /// use num_traits::Float; - /// - /// let m = 10.0; - /// let x = 4.0; - /// let b = 60.0; - /// - /// // 100.0 - /// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn mul_add(self, a: Self, b: Self) -> Self; - /// Take the reciprocal (inverse) of a number, `1/x`. - /// - /// ``` - /// use num_traits::Float; - /// - /// let x = 2.0; - /// let abs_difference = (x.recip() - (1.0/x)).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn recip(self) -> Self; - - /// Raise a number to an integer power. - /// - /// Using this function is generally faster than using `powf` - /// - /// ``` - /// use num_traits::Float; - /// - /// let x = 2.0; - /// let abs_difference = (x.powi(2) - x*x).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn powi(self, n: i32) -> Self; - - /// Raise a number to a floating point power. - /// - /// ``` - /// use num_traits::Float; - /// - /// let x = 2.0; - /// let abs_difference = (x.powf(2.0) - x*x).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn powf(self, n: Self) -> Self; - - /// Take the square root of a number. - /// - /// Returns NaN if `self` is a negative number. - /// - /// ``` - /// use num_traits::Float; - /// - /// let positive = 4.0; - /// let negative = -4.0; - /// - /// let abs_difference = (positive.sqrt() - 2.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// assert!(negative.sqrt().is_nan()); - /// ``` - fn sqrt(self) -> Self; - - /// Returns `e^(self)`, (the exponential function). - /// - /// ``` - /// use num_traits::Float; - /// - /// let one = 1.0; - /// // e^1 - /// let e = one.exp(); - /// - /// // ln(e) - 1 == 0 - /// let abs_difference = (e.ln() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn exp(self) -> Self; - - /// Returns `2^(self)`. - /// - /// ``` - /// use num_traits::Float; - /// - /// let f = 2.0; - /// - /// // 2^2 - 4 == 0 - /// let abs_difference = (f.exp2() - 4.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn exp2(self) -> Self; - - /// Returns the natural logarithm of the number. - /// - /// ``` - /// use num_traits::Float; - /// - /// let one = 1.0; - /// // e^1 - /// let e = one.exp(); - /// - /// // ln(e) - 1 == 0 - /// let abs_difference = (e.ln() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn ln(self) -> Self; - - /// Returns the logarithm of the number with respect to an arbitrary base. - /// - /// ``` - /// use num_traits::Float; - /// - /// let ten = 10.0; - /// let two = 2.0; - /// - /// // log10(10) - 1 == 0 - /// let abs_difference_10 = (ten.log(10.0) - 1.0).abs(); - /// - /// // log2(2) - 1 == 0 - /// let abs_difference_2 = (two.log(2.0) - 1.0).abs(); - /// - /// assert!(abs_difference_10 < 1e-10); - /// assert!(abs_difference_2 < 1e-10); - /// ``` - fn log(self, base: Self) -> Self; - - /// Returns the base 2 logarithm of the number. - /// - /// ``` - /// use num_traits::Float; - /// - /// let two = 2.0; - /// - /// // log2(2) - 1 == 0 - /// let abs_difference = (two.log2() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn log2(self) -> Self; - - /// Returns the base 10 logarithm of the number. - /// - /// ``` - /// use num_traits::Float; - /// - /// let ten = 10.0; - /// - /// // log10(10) - 1 == 0 - /// let abs_difference = (ten.log10() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn log10(self) -> Self; - - /// Converts radians to degrees. - /// - /// ``` - /// use std::f64::consts; - /// - /// let angle = consts::PI; - /// - /// let abs_difference = (angle.to_degrees() - 180.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - #[inline] - fn to_degrees(self) -> Self { - let halfpi = Self::zero().acos(); - let ninety = Self::from(90u8).unwrap(); - self * ninety / halfpi - } - - /// Converts degrees to radians. - /// - /// ``` - /// use std::f64::consts; - /// - /// let angle = 180.0_f64; - /// - /// let abs_difference = (angle.to_radians() - consts::PI).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - #[inline] - fn to_radians(self) -> Self { - let halfpi = Self::zero().acos(); - let ninety = Self::from(90u8).unwrap(); - self * halfpi / ninety - } - - /// Returns the maximum of the two numbers. - /// - /// ``` - /// use num_traits::Float; - /// - /// let x = 1.0; - /// let y = 2.0; - /// - /// assert_eq!(x.max(y), y); - /// ``` - fn max(self, other: Self) -> Self; - - /// Returns the minimum of the two numbers. - /// - /// ``` - /// use num_traits::Float; - /// - /// let x = 1.0; - /// let y = 2.0; - /// - /// assert_eq!(x.min(y), x); - /// ``` - fn min(self, other: Self) -> Self; - - /// The positive difference of two numbers. - /// - /// * If `self <= other`: `0:0` - /// * Else: `self - other` - /// - /// ``` - /// use num_traits::Float; - /// - /// let x = 3.0; - /// let y = -3.0; - /// - /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs(); - /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs(); - /// - /// assert!(abs_difference_x < 1e-10); - /// assert!(abs_difference_y < 1e-10); - /// ``` - fn abs_sub(self, other: Self) -> Self; - - /// Take the cubic root of a number. - /// - /// ``` - /// use num_traits::Float; - /// - /// let x = 8.0; - /// - /// // x^(1/3) - 2 == 0 - /// let abs_difference = (x.cbrt() - 2.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn cbrt(self) -> Self; - - /// Calculate the length of the hypotenuse of a right-angle triangle given - /// legs of length `x` and `y`. - /// - /// ``` - /// use num_traits::Float; - /// - /// let x = 2.0; - /// let y = 3.0; - /// - /// // sqrt(x^2 + y^2) - /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn hypot(self, other: Self) -> Self; - - /// Computes the sine of a number (in radians). - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let x = f64::consts::PI/2.0; - /// - /// let abs_difference = (x.sin() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn sin(self) -> Self; - - /// Computes the cosine of a number (in radians). - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let x = 2.0*f64::consts::PI; - /// - /// let abs_difference = (x.cos() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn cos(self) -> Self; - - /// Computes the tangent of a number (in radians). - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let x = f64::consts::PI/4.0; - /// let abs_difference = (x.tan() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-14); - /// ``` - fn tan(self) -> Self; - - /// Computes the arcsine of a number. Return value is in radians in - /// the range [-pi/2, pi/2] or NaN if the number is outside the range - /// [-1, 1]. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let f = f64::consts::PI / 2.0; - /// - /// // asin(sin(pi/2)) - /// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn asin(self) -> Self; - - /// Computes the arccosine of a number. Return value is in radians in - /// the range [0, pi] or NaN if the number is outside the range - /// [-1, 1]. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let f = f64::consts::PI / 4.0; - /// - /// // acos(cos(pi/4)) - /// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn acos(self) -> Self; - - /// Computes the arctangent of a number. Return value is in radians in the - /// range [-pi/2, pi/2]; - /// - /// ``` - /// use num_traits::Float; - /// - /// let f = 1.0; - /// - /// // atan(tan(1)) - /// let abs_difference = (f.tan().atan() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn atan(self) -> Self; - - /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`). - /// - /// * `x = 0`, `y = 0`: `0` - /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]` - /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]` - /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)` - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let pi = f64::consts::PI; - /// // All angles from horizontal right (+x) - /// // 45 deg counter-clockwise - /// let x1 = 3.0; - /// let y1 = -3.0; - /// - /// // 135 deg clockwise - /// let x2 = -3.0; - /// let y2 = 3.0; - /// - /// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs(); - /// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs(); - /// - /// assert!(abs_difference_1 < 1e-10); - /// assert!(abs_difference_2 < 1e-10); - /// ``` - fn atan2(self, other: Self) -> Self; - - /// Simultaneously computes the sine and cosine of the number, `x`. Returns - /// `(sin(x), cos(x))`. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let x = f64::consts::PI/4.0; - /// let f = x.sin_cos(); - /// - /// let abs_difference_0 = (f.0 - x.sin()).abs(); - /// let abs_difference_1 = (f.1 - x.cos()).abs(); - /// - /// assert!(abs_difference_0 < 1e-10); - /// assert!(abs_difference_0 < 1e-10); - /// ``` - fn sin_cos(self) -> (Self, Self); - - /// Returns `e^(self) - 1` in a way that is accurate even if the - /// number is close to zero. - /// - /// ``` - /// use num_traits::Float; - /// - /// let x = 7.0; - /// - /// // e^(ln(7)) - 1 - /// let abs_difference = (x.ln().exp_m1() - 6.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn exp_m1(self) -> Self; - - /// Returns `ln(1+n)` (natural logarithm) more accurately than if - /// the operations were performed separately. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let x = f64::consts::E - 1.0; - /// - /// // ln(1 + (e - 1)) == ln(e) == 1 - /// let abs_difference = (x.ln_1p() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn ln_1p(self) -> Self; - - /// Hyperbolic sine function. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let e = f64::consts::E; - /// let x = 1.0; - /// - /// let f = x.sinh(); - /// // Solving sinh() at 1 gives `(e^2-1)/(2e)` - /// let g = (e*e - 1.0)/(2.0*e); - /// let abs_difference = (f - g).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn sinh(self) -> Self; - - /// Hyperbolic cosine function. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let e = f64::consts::E; - /// let x = 1.0; - /// let f = x.cosh(); - /// // Solving cosh() at 1 gives this result - /// let g = (e*e + 1.0)/(2.0*e); - /// let abs_difference = (f - g).abs(); - /// - /// // Same result - /// assert!(abs_difference < 1.0e-10); - /// ``` - fn cosh(self) -> Self; - - /// Hyperbolic tangent function. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let e = f64::consts::E; - /// let x = 1.0; - /// - /// let f = x.tanh(); - /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` - /// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2)); - /// let abs_difference = (f - g).abs(); - /// - /// assert!(abs_difference < 1.0e-10); - /// ``` - fn tanh(self) -> Self; - - /// Inverse hyperbolic sine function. - /// - /// ``` - /// use num_traits::Float; - /// - /// let x = 1.0; - /// let f = x.sinh().asinh(); - /// - /// let abs_difference = (f - x).abs(); - /// - /// assert!(abs_difference < 1.0e-10); - /// ``` - fn asinh(self) -> Self; - - /// Inverse hyperbolic cosine function. - /// - /// ``` - /// use num_traits::Float; - /// - /// let x = 1.0; - /// let f = x.cosh().acosh(); - /// - /// let abs_difference = (f - x).abs(); - /// - /// assert!(abs_difference < 1.0e-10); - /// ``` - fn acosh(self) -> Self; - - /// Inverse hyperbolic tangent function. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let e = f64::consts::E; - /// let f = e.tanh().atanh(); - /// - /// let abs_difference = (f - e).abs(); - /// - /// assert!(abs_difference < 1.0e-10); - /// ``` - fn atanh(self) -> Self; - - - /// Returns the mantissa, base 2 exponent, and sign as integers, respectively. - /// The original number can be recovered by `sign * mantissa * 2 ^ exponent`. - /// The floating point encoding is documented in the [Reference][floating-point]. - /// - /// ``` - /// use num_traits::Float; - /// - /// let num = 2.0f32; - /// - /// // (8388608, -22, 1) - /// let (mantissa, exponent, sign) = Float::integer_decode(num); - /// let sign_f = sign as f32; - /// let mantissa_f = mantissa as f32; - /// let exponent_f = num.powf(exponent as f32); - /// - /// // 1 * 8388608 * 2^(-22) == 2 - /// let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - /// [floating-point]: ../../../../../reference.html#machine-types - fn integer_decode(self) -> (u64, i16, i8); -} - -macro_rules! float_impl { - ($T:ident $decode:ident) => ( - impl Float for $T { - #[inline] - fn nan() -> Self { - ::std::$T::NAN - } - - #[inline] - fn infinity() -> Self { - ::std::$T::INFINITY - } - - #[inline] - fn neg_infinity() -> Self { - ::std::$T::NEG_INFINITY - } - - #[inline] - fn neg_zero() -> Self { - -0.0 - } - - #[inline] - fn min_value() -> Self { - ::std::$T::MIN - } - - #[inline] - fn min_positive_value() -> Self { - ::std::$T::MIN_POSITIVE - } - - #[inline] - fn epsilon() -> Self { - ::std::$T::EPSILON - } - - #[inline] - fn max_value() -> Self { - ::std::$T::MAX - } - - #[inline] - fn is_nan(self) -> bool { - <$T>::is_nan(self) - } - - #[inline] - fn is_infinite(self) -> bool { - <$T>::is_infinite(self) - } - - #[inline] - fn is_finite(self) -> bool { - <$T>::is_finite(self) - } - - #[inline] - fn is_normal(self) -> bool { - <$T>::is_normal(self) - } - - #[inline] - fn classify(self) -> FpCategory { - <$T>::classify(self) - } - - #[inline] - fn floor(self) -> Self { - <$T>::floor(self) - } - - #[inline] - fn ceil(self) -> Self { - <$T>::ceil(self) - } - - #[inline] - fn round(self) -> Self { - <$T>::round(self) - } - - #[inline] - fn trunc(self) -> Self { - <$T>::trunc(self) - } - - #[inline] - fn fract(self) -> Self { - <$T>::fract(self) - } - - #[inline] - fn abs(self) -> Self { - <$T>::abs(self) - } - - #[inline] - fn signum(self) -> Self { - <$T>::signum(self) - } - - #[inline] - fn is_sign_positive(self) -> bool { - <$T>::is_sign_positive(self) - } - - #[inline] - fn is_sign_negative(self) -> bool { - <$T>::is_sign_negative(self) - } - - #[inline] - fn mul_add(self, a: Self, b: Self) -> Self { - <$T>::mul_add(self, a, b) - } - - #[inline] - fn recip(self) -> Self { - <$T>::recip(self) - } - - #[inline] - fn powi(self, n: i32) -> Self { - <$T>::powi(self, n) - } - - #[inline] - fn powf(self, n: Self) -> Self { - <$T>::powf(self, n) - } - - #[inline] - fn sqrt(self) -> Self { - <$T>::sqrt(self) - } - - #[inline] - fn exp(self) -> Self { - <$T>::exp(self) - } - - #[inline] - fn exp2(self) -> Self { - <$T>::exp2(self) - } - - #[inline] - fn ln(self) -> Self { - <$T>::ln(self) - } - - #[inline] - fn log(self, base: Self) -> Self { - <$T>::log(self, base) - } - - #[inline] - fn log2(self) -> Self { - <$T>::log2(self) - } - - #[inline] - fn log10(self) -> Self { - <$T>::log10(self) - } - - #[inline] - fn to_degrees(self) -> Self { - // NB: `f32` didn't stabilize this until 1.7 - // <$T>::to_degrees(self) - self * (180. / ::std::$T::consts::PI) - } - - #[inline] - fn to_radians(self) -> Self { - // NB: `f32` didn't stabilize this until 1.7 - // <$T>::to_radians(self) - self * (::std::$T::consts::PI / 180.) - } - - #[inline] - fn max(self, other: Self) -> Self { - <$T>::max(self, other) - } - - #[inline] - fn min(self, other: Self) -> Self { - <$T>::min(self, other) - } - - #[inline] - #[allow(deprecated)] - fn abs_sub(self, other: Self) -> Self { - <$T>::abs_sub(self, other) - } - - #[inline] - fn cbrt(self) -> Self { - <$T>::cbrt(self) - } - - #[inline] - fn hypot(self, other: Self) -> Self { - <$T>::hypot(self, other) - } - - #[inline] - fn sin(self) -> Self { - <$T>::sin(self) - } - - #[inline] - fn cos(self) -> Self { - <$T>::cos(self) - } - - #[inline] - fn tan(self) -> Self { - <$T>::tan(self) - } - - #[inline] - fn asin(self) -> Self { - <$T>::asin(self) - } - - #[inline] - fn acos(self) -> Self { - <$T>::acos(self) - } - - #[inline] - fn atan(self) -> Self { - <$T>::atan(self) - } - - #[inline] - fn atan2(self, other: Self) -> Self { - <$T>::atan2(self, other) - } - - #[inline] - fn sin_cos(self) -> (Self, Self) { - <$T>::sin_cos(self) - } - - #[inline] - fn exp_m1(self) -> Self { - <$T>::exp_m1(self) - } - - #[inline] - fn ln_1p(self) -> Self { - <$T>::ln_1p(self) - } - - #[inline] - fn sinh(self) -> Self { - <$T>::sinh(self) - } - - #[inline] - fn cosh(self) -> Self { - <$T>::cosh(self) - } - - #[inline] - fn tanh(self) -> Self { - <$T>::tanh(self) - } - - #[inline] - fn asinh(self) -> Self { - <$T>::asinh(self) - } - - #[inline] - fn acosh(self) -> Self { - <$T>::acosh(self) - } - - #[inline] - fn atanh(self) -> Self { - <$T>::atanh(self) - } - - #[inline] - fn integer_decode(self) -> (u64, i16, i8) { - $decode(self) - } - } - ) -} - -fn integer_decode_f32(f: f32) -> (u64, i16, i8) { - let bits: u32 = unsafe { mem::transmute(f) }; - let sign: i8 = if bits >> 31 == 0 { - 1 - } else { - -1 - }; - let mut exponent: i16 = ((bits >> 23) & 0xff) as i16; - let mantissa = if exponent == 0 { - (bits & 0x7fffff) << 1 - } else { - (bits & 0x7fffff) | 0x800000 - }; - // Exponent bias + mantissa shift - exponent -= 127 + 23; - (mantissa as u64, exponent, sign) -} - -fn integer_decode_f64(f: f64) -> (u64, i16, i8) { - let bits: u64 = unsafe { mem::transmute(f) }; - let sign: i8 = if bits >> 63 == 0 { - 1 - } else { - -1 - }; - let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16; - let mantissa = if exponent == 0 { - (bits & 0xfffffffffffff) << 1 - } else { - (bits & 0xfffffffffffff) | 0x10000000000000 - }; - // Exponent bias + mantissa shift - exponent -= 1023 + 52; - (mantissa, exponent, sign) -} - -float_impl!(f32 integer_decode_f32); -float_impl!(f64 integer_decode_f64); - -macro_rules! float_const_impl { - ($(#[$doc:meta] $constant:ident,)+) => ( - #[allow(non_snake_case)] - pub trait FloatConst { - $(#[$doc] fn $constant() -> Self;)+ - } - float_const_impl! { @float f32, $($constant,)+ } - float_const_impl! { @float f64, $($constant,)+ } - ); - (@float $T:ident, $($constant:ident,)+) => ( - impl FloatConst for $T { - $( - #[inline] - fn $constant() -> Self { - ::std::$T::consts::$constant - } - )+ - } - ); -} - -float_const_impl! { - #[doc = "Return Euler’s number."] - E, - #[doc = "Return `1.0 / π`."] - FRAC_1_PI, - #[doc = "Return `1.0 / sqrt(2.0)`."] - FRAC_1_SQRT_2, - #[doc = "Return `2.0 / π`."] - FRAC_2_PI, - #[doc = "Return `2.0 / sqrt(π)`."] - FRAC_2_SQRT_PI, - #[doc = "Return `π / 2.0`."] - FRAC_PI_2, - #[doc = "Return `π / 3.0`."] - FRAC_PI_3, - #[doc = "Return `π / 4.0`."] - FRAC_PI_4, - #[doc = "Return `π / 6.0`."] - FRAC_PI_6, - #[doc = "Return `π / 8.0`."] - FRAC_PI_8, - #[doc = "Return `ln(10.0)`."] - LN_10, - #[doc = "Return `ln(2.0)`."] - LN_2, - #[doc = "Return `log10(e)`."] - LOG10_E, - #[doc = "Return `log2(e)`."] - LOG2_E, - #[doc = "Return Archimedes’ constant."] - PI, - #[doc = "Return `sqrt(2.0)`."] - SQRT_2, -} - -#[cfg(test)] -mod tests { - use Float; - - #[test] - fn convert_deg_rad() { - use std::f64::consts; - - const DEG_RAD_PAIRS: [(f64, f64); 7] = [ - (0.0, 0.), - (22.5, consts::FRAC_PI_8), - (30.0, consts::FRAC_PI_6), - (45.0, consts::FRAC_PI_4), - (60.0, consts::FRAC_PI_3), - (90.0, consts::FRAC_PI_2), - (180.0, consts::PI), - ]; - - for &(deg, rad) in &DEG_RAD_PAIRS { - assert!((Float::to_degrees(rad) - deg).abs() < 1e-6); - assert!((Float::to_radians(deg) - rad).abs() < 1e-6); - - let (deg, rad) = (deg as f32, rad as f32); - assert!((Float::to_degrees(rad) - deg).abs() < 1e-6); - assert!((Float::to_radians(deg) - rad).abs() < 1e-6); - } - } -} diff --git a/src/identities.rs b/src/identities.rs deleted file mode 100644 index 79882ed..0000000 --- a/src/identities.rs +++ /dev/null @@ -1,148 +0,0 @@ -use std::ops::{Add, Mul}; -use std::num::Wrapping; - -/// Defines an additive identity element for `Self`. -pub trait Zero: Sized + Add { - /// Returns the additive identity element of `Self`, `0`. - /// - /// # Laws - /// - /// ```{.text} - /// a + 0 = a ∀ a ∈ Self - /// 0 + a = a ∀ a ∈ Self - /// ``` - /// - /// # Purity - /// - /// This function should return the same result at all times regardless of - /// external mutable state, for example values stored in TLS or in - /// `static mut`s. - // FIXME (#5527): This should be an associated constant - fn zero() -> Self; - - /// Returns `true` if `self` is equal to the additive identity. - #[inline] - fn is_zero(&self) -> bool; -} - -macro_rules! zero_impl { - ($t:ty, $v:expr) => { - impl Zero for $t { - #[inline] - fn zero() -> $t { $v } - #[inline] - fn is_zero(&self) -> bool { *self == $v } - } - } -} - -zero_impl!(usize, 0usize); -zero_impl!(u8, 0u8); -zero_impl!(u16, 0u16); -zero_impl!(u32, 0u32); -zero_impl!(u64, 0u64); - -zero_impl!(isize, 0isize); -zero_impl!(i8, 0i8); -zero_impl!(i16, 0i16); -zero_impl!(i32, 0i32); -zero_impl!(i64, 0i64); - -zero_impl!(f32, 0.0f32); -zero_impl!(f64, 0.0f64); - -impl Zero for Wrapping where Wrapping: Add> { - fn is_zero(&self) -> bool { - self.0.is_zero() - } - fn zero() -> Self { - Wrapping(T::zero()) - } -} - - -/// Defines a multiplicative identity element for `Self`. -pub trait One: Sized + Mul { - /// Returns the multiplicative identity element of `Self`, `1`. - /// - /// # Laws - /// - /// ```{.text} - /// a * 1 = a ∀ a ∈ Self - /// 1 * a = a ∀ a ∈ Self - /// ``` - /// - /// # Purity - /// - /// This function should return the same result at all times regardless of - /// external mutable state, for example values stored in TLS or in - /// `static mut`s. - // FIXME (#5527): This should be an associated constant - fn one() -> Self; -} - -macro_rules! one_impl { - ($t:ty, $v:expr) => { - impl One for $t { - #[inline] - fn one() -> $t { $v } - } - } -} - -one_impl!(usize, 1usize); -one_impl!(u8, 1u8); -one_impl!(u16, 1u16); -one_impl!(u32, 1u32); -one_impl!(u64, 1u64); - -one_impl!(isize, 1isize); -one_impl!(i8, 1i8); -one_impl!(i16, 1i16); -one_impl!(i32, 1i32); -one_impl!(i64, 1i64); - -one_impl!(f32, 1.0f32); -one_impl!(f64, 1.0f64); - -impl One for Wrapping where Wrapping: Mul> { - fn one() -> Self { - Wrapping(T::one()) - } -} - -// Some helper functions provided for backwards compatibility. - -/// Returns the additive identity, `0`. -#[inline(always)] pub fn zero() -> T { Zero::zero() } - -/// Returns the multiplicative identity, `1`. -#[inline(always)] pub fn one() -> T { One::one() } - - -#[test] -fn wrapping_identities() { - macro_rules! test_wrapping_identities { - ($($t:ty)+) => { - $( - assert_eq!(zero::<$t>(), zero::>().0); - assert_eq!(one::<$t>(), one::>().0); - assert_eq!((0 as $t).is_zero(), Wrapping(0 as $t).is_zero()); - assert_eq!((1 as $t).is_zero(), Wrapping(1 as $t).is_zero()); - )+ - }; - } - - test_wrapping_identities!(isize i8 i16 i32 i64 usize u8 u16 u32 u64); -} - -#[test] -fn wrapping_is_zero() { - fn require_zero(_: &T) {} - require_zero(&Wrapping(42)); -} -#[test] -fn wrapping_is_one() { - fn require_one(_: &T) {} - require_one(&Wrapping(42)); -} diff --git a/src/int.rs b/src/int.rs deleted file mode 100644 index 4f9221f..0000000 --- a/src/int.rs +++ /dev/null @@ -1,376 +0,0 @@ -use std::ops::{Not, BitAnd, BitOr, BitXor, Shl, Shr}; - -use {Num, NumCast}; -use bounds::Bounded; -use ops::checked::*; -use ops::saturating::Saturating; - -pub trait PrimInt - : Sized - + Copy - + Num + NumCast - + Bounded - + PartialOrd + Ord + Eq - + Not - + BitAnd - + BitOr - + BitXor - + Shl - + Shr - + CheckedAdd - + CheckedSub - + CheckedMul - + CheckedDiv - + Saturating -{ - /// Returns the number of ones in the binary representation of `self`. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0b01001100u8; - /// - /// assert_eq!(n.count_ones(), 3); - /// ``` - fn count_ones(self) -> u32; - - /// Returns the number of zeros in the binary representation of `self`. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0b01001100u8; - /// - /// assert_eq!(n.count_zeros(), 5); - /// ``` - fn count_zeros(self) -> u32; - - /// Returns the number of leading zeros in the binary representation - /// of `self`. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0b0101000u16; - /// - /// assert_eq!(n.leading_zeros(), 10); - /// ``` - fn leading_zeros(self) -> u32; - - /// Returns the number of trailing zeros in the binary representation - /// of `self`. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0b0101000u16; - /// - /// assert_eq!(n.trailing_zeros(), 3); - /// ``` - fn trailing_zeros(self) -> u32; - - /// Shifts the bits to the left by a specified amount amount, `n`, wrapping - /// the truncated bits to the end of the resulting integer. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0x0123456789ABCDEFu64; - /// let m = 0x3456789ABCDEF012u64; - /// - /// assert_eq!(n.rotate_left(12), m); - /// ``` - fn rotate_left(self, n: u32) -> Self; - - /// Shifts the bits to the right by a specified amount amount, `n`, wrapping - /// the truncated bits to the beginning of the resulting integer. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0x0123456789ABCDEFu64; - /// let m = 0xDEF0123456789ABCu64; - /// - /// assert_eq!(n.rotate_right(12), m); - /// ``` - fn rotate_right(self, n: u32) -> Self; - - /// Shifts the bits to the left by a specified amount amount, `n`, filling - /// zeros in the least significant bits. - /// - /// This is bitwise equivalent to signed `Shl`. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0x0123456789ABCDEFu64; - /// let m = 0x3456789ABCDEF000u64; - /// - /// assert_eq!(n.signed_shl(12), m); - /// ``` - fn signed_shl(self, n: u32) -> Self; - - /// Shifts the bits to the right by a specified amount amount, `n`, copying - /// the "sign bit" in the most significant bits even for unsigned types. - /// - /// This is bitwise equivalent to signed `Shr`. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0xFEDCBA9876543210u64; - /// let m = 0xFFFFEDCBA9876543u64; - /// - /// assert_eq!(n.signed_shr(12), m); - /// ``` - fn signed_shr(self, n: u32) -> Self; - - /// Shifts the bits to the left by a specified amount amount, `n`, filling - /// zeros in the least significant bits. - /// - /// This is bitwise equivalent to unsigned `Shl`. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0x0123456789ABCDEFi64; - /// let m = 0x3456789ABCDEF000i64; - /// - /// assert_eq!(n.unsigned_shl(12), m); - /// ``` - fn unsigned_shl(self, n: u32) -> Self; - - /// Shifts the bits to the right by a specified amount amount, `n`, filling - /// zeros in the most significant bits. - /// - /// This is bitwise equivalent to unsigned `Shr`. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0xFEDCBA9876543210i64; - /// let m = 0x000FEDCBA9876543i64; - /// - /// assert_eq!(n.unsigned_shr(12), m); - /// ``` - fn unsigned_shr(self, n: u32) -> Self; - - /// Reverses the byte order of the integer. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0x0123456789ABCDEFu64; - /// let m = 0xEFCDAB8967452301u64; - /// - /// assert_eq!(n.swap_bytes(), m); - /// ``` - fn swap_bytes(self) -> Self; - - /// Convert an integer from big endian to the target's endianness. - /// - /// On big endian this is a no-op. On little endian the bytes are swapped. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0x0123456789ABCDEFu64; - /// - /// if cfg!(target_endian = "big") { - /// assert_eq!(u64::from_be(n), n) - /// } else { - /// assert_eq!(u64::from_be(n), n.swap_bytes()) - /// } - /// ``` - fn from_be(x: Self) -> Self; - - /// Convert an integer from little endian to the target's endianness. - /// - /// On little endian this is a no-op. On big endian the bytes are swapped. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0x0123456789ABCDEFu64; - /// - /// if cfg!(target_endian = "little") { - /// assert_eq!(u64::from_le(n), n) - /// } else { - /// assert_eq!(u64::from_le(n), n.swap_bytes()) - /// } - /// ``` - fn from_le(x: Self) -> Self; - - /// Convert `self` to big endian from the target's endianness. - /// - /// On big endian this is a no-op. On little endian the bytes are swapped. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0x0123456789ABCDEFu64; - /// - /// if cfg!(target_endian = "big") { - /// assert_eq!(n.to_be(), n) - /// } else { - /// assert_eq!(n.to_be(), n.swap_bytes()) - /// } - /// ``` - fn to_be(self) -> Self; - - /// Convert `self` to little endian from the target's endianness. - /// - /// On little endian this is a no-op. On big endian the bytes are swapped. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0x0123456789ABCDEFu64; - /// - /// if cfg!(target_endian = "little") { - /// assert_eq!(n.to_le(), n) - /// } else { - /// assert_eq!(n.to_le(), n.swap_bytes()) - /// } - /// ``` - fn to_le(self) -> Self; - - /// Raises self to the power of `exp`, using exponentiation by squaring. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// assert_eq!(2i32.pow(4), 16); - /// ``` - fn pow(self, exp: u32) -> Self; -} - -macro_rules! prim_int_impl { - ($T:ty, $S:ty, $U:ty) => ( - impl PrimInt for $T { - #[inline] - fn count_ones(self) -> u32 { - <$T>::count_ones(self) - } - - #[inline] - fn count_zeros(self) -> u32 { - <$T>::count_zeros(self) - } - - #[inline] - fn leading_zeros(self) -> u32 { - <$T>::leading_zeros(self) - } - - #[inline] - fn trailing_zeros(self) -> u32 { - <$T>::trailing_zeros(self) - } - - #[inline] - fn rotate_left(self, n: u32) -> Self { - <$T>::rotate_left(self, n) - } - - #[inline] - fn rotate_right(self, n: u32) -> Self { - <$T>::rotate_right(self, n) - } - - #[inline] - fn signed_shl(self, n: u32) -> Self { - ((self as $S) << n) as $T - } - - #[inline] - fn signed_shr(self, n: u32) -> Self { - ((self as $S) >> n) as $T - } - - #[inline] - fn unsigned_shl(self, n: u32) -> Self { - ((self as $U) << n) as $T - } - - #[inline] - fn unsigned_shr(self, n: u32) -> Self { - ((self as $U) >> n) as $T - } - - #[inline] - fn swap_bytes(self) -> Self { - <$T>::swap_bytes(self) - } - - #[inline] - fn from_be(x: Self) -> Self { - <$T>::from_be(x) - } - - #[inline] - fn from_le(x: Self) -> Self { - <$T>::from_le(x) - } - - #[inline] - fn to_be(self) -> Self { - <$T>::to_be(self) - } - - #[inline] - fn to_le(self) -> Self { - <$T>::to_le(self) - } - - #[inline] - fn pow(self, exp: u32) -> Self { - <$T>::pow(self, exp) - } - } - ) -} - -// prim_int_impl!(type, signed, unsigned); -prim_int_impl!(u8, i8, u8); -prim_int_impl!(u16, i16, u16); -prim_int_impl!(u32, i32, u32); -prim_int_impl!(u64, i64, u64); -prim_int_impl!(usize, isize, usize); -prim_int_impl!(i8, i8, u8); -prim_int_impl!(i16, i16, u16); -prim_int_impl!(i32, i32, u32); -prim_int_impl!(i64, i64, u64); -prim_int_impl!(isize, isize, usize); diff --git a/src/lib.rs b/src/lib.rs index 47c0bed..80075d7 100644 --- a/src/lib.rs +++ b/src/lib.rs @@ -9,441 +9,80 @@ // except according to those terms. //! Numeric traits for generic mathematics +//! +//! This version of the crate only exists to re-export compatible +//! items from num-traits 0.2. Please consider updating! #![doc(html_root_url = "https://docs.rs/num-traits/0.1")] -use std::ops::{Add, Sub, Mul, Div, Rem}; -use std::ops::{AddAssign, SubAssign, MulAssign, DivAssign, RemAssign}; -use std::num::Wrapping; -use std::fmt; +extern crate num_traits; pub use bounds::Bounded; pub use float::{Float, FloatConst}; // pub use real::Real; // NOTE: Don't do this, it breaks `use num_traits::*;`. pub use identities::{Zero, One, zero, one}; -pub use ops::checked::*; -pub use ops::wrapping::*; +pub use ops::checked::{CheckedAdd, CheckedSub, CheckedMul, CheckedDiv, CheckedShl, CheckedShr}; +pub use ops::wrapping::{WrappingAdd, WrappingMul, WrappingSub}; pub use ops::saturating::Saturating; pub use sign::{Signed, Unsigned, abs, abs_sub, signum}; -pub use cast::*; +pub use cast::{AsPrimitive, FromPrimitive, ToPrimitive, NumCast, cast}; pub use int::PrimInt; pub use pow::{pow, checked_pow}; -pub mod identities; -pub mod sign; -pub mod ops; -pub mod bounds; -pub mod float; -pub mod real; -pub mod cast; -pub mod int; -pub mod pow; -/// The base trait for numeric types, covering `0` and `1` values, -/// comparisons, basic numeric operations, and string conversion. -pub trait Num: PartialEq + Zero + One + NumOps -{ - type FromStrRadixErr; +// Re-exports from num-traits 0.2! - /// Convert from a string and radix <= 36. - /// - /// # Examples - /// - /// ```rust - /// use num_traits::Num; - /// - /// let result = ::from_str_radix("27", 10); - /// assert_eq!(result, Ok(27)); - /// - /// let result = ::from_str_radix("foo", 10); - /// assert!(result.is_err()); - /// ``` - fn from_str_radix(str: &str, radix: u32) -> Result; +pub use num_traits::{Num, NumOps, NumRef, RefNum}; +pub use num_traits::{NumAssignOps, NumAssign, NumAssignRef}; +pub use num_traits::{FloatErrorKind, ParseFloatError}; +pub use num_traits::clamp; + +// Note: the module structure is explicitly re-created, rather than re-exporting en masse, +// so we won't expose any items that may be added later in the new version. + +pub mod identities { + pub use num_traits::identities::{Zero, One, zero, one}; } -/// The trait for types implementing basic numeric operations -/// -/// This is automatically implemented for types which implement the operators. -pub trait NumOps - : Add - + Sub - + Mul - + Div - + Rem -{} - -impl NumOps for T -where T: Add - + Sub - + Mul - + Div - + Rem -{} - -/// The trait for `Num` types which also implement numeric operations taking -/// the second operand by reference. -/// -/// This is automatically implemented for types which implement the operators. -pub trait NumRef: Num + for<'r> NumOps<&'r Self> {} -impl NumRef for T where T: Num + for<'r> NumOps<&'r T> {} - -/// The trait for references which implement numeric operations, taking the -/// second operand either by value or by reference. -/// -/// This is automatically implemented for types which implement the operators. -pub trait RefNum: NumOps + for<'r> NumOps<&'r Base, Base> {} -impl RefNum for T where T: NumOps + for<'r> NumOps<&'r Base, Base> {} - -/// The trait for types implementing numeric assignment operators (like `+=`). -/// -/// This is automatically implemented for types which implement the operators. -pub trait NumAssignOps - : AddAssign - + SubAssign - + MulAssign - + DivAssign - + RemAssign -{} - -impl NumAssignOps for T -where T: AddAssign - + SubAssign - + MulAssign - + DivAssign - + RemAssign -{} - -/// The trait for `Num` types which also implement assignment operators. -/// -/// This is automatically implemented for types which implement the operators. -pub trait NumAssign: Num + NumAssignOps {} -impl NumAssign for T where T: Num + NumAssignOps {} - -/// The trait for `NumAssign` types which also implement assignment operations -/// taking the second operand by reference. -/// -/// This is automatically implemented for types which implement the operators. -pub trait NumAssignRef: NumAssign + for<'r> NumAssignOps<&'r Self> {} -impl NumAssignRef for T where T: NumAssign + for<'r> NumAssignOps<&'r T> {} - - -macro_rules! int_trait_impl { - ($name:ident for $($t:ty)*) => ($( - impl $name for $t { - type FromStrRadixErr = ::std::num::ParseIntError; - #[inline] - fn from_str_radix(s: &str, radix: u32) - -> Result - { - <$t>::from_str_radix(s, radix) - } - } - )*) +pub mod sign { + pub use num_traits::sign::{Signed, Unsigned, abs, abs_sub, signum}; } -int_trait_impl!(Num for usize u8 u16 u32 u64 isize i8 i16 i32 i64); -impl Num for Wrapping - where Wrapping: - Add> + Sub> - + Mul> + Div> + Rem> -{ - type FromStrRadixErr = T::FromStrRadixErr; - fn from_str_radix(str: &str, radix: u32) -> Result { - T::from_str_radix(str, radix).map(Wrapping) +pub mod ops { + pub mod saturating { + pub use num_traits::ops::saturating::Saturating; + } + + pub mod checked { + pub use num_traits::ops::checked::{CheckedAdd, CheckedSub, CheckedMul, CheckedDiv, + CheckedShl, CheckedShr}; + } + + pub mod wrapping { + pub use num_traits::ops::wrapping::{WrappingAdd, WrappingMul, WrappingSub}; } } - -#[derive(Debug)] -pub enum FloatErrorKind { - Empty, - Invalid, -} -// FIXME: std::num::ParseFloatError is stable in 1.0, but opaque to us, -// so there's not really any way for us to reuse it. -#[derive(Debug)] -pub struct ParseFloatError { - pub kind: FloatErrorKind, +pub mod bounds { + pub use num_traits::bounds::Bounded; } -impl fmt::Display for ParseFloatError { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - let description = match self.kind { - FloatErrorKind::Empty => "cannot parse float from empty string", - FloatErrorKind::Invalid => "invalid float literal", - }; - - description.fmt(f) - } +pub mod float { + pub use num_traits::float::{Float, FloatConst}; } -// FIXME: The standard library from_str_radix on floats was deprecated, so we're stuck -// with this implementation ourselves until we want to make a breaking change. -// (would have to drop it from `Num` though) -macro_rules! float_trait_impl { - ($name:ident for $($t:ty)*) => ($( - impl $name for $t { - type FromStrRadixErr = ParseFloatError; - - fn from_str_radix(src: &str, radix: u32) - -> Result - { - use self::FloatErrorKind::*; - use self::ParseFloatError as PFE; - - // Special values - match src { - "inf" => return Ok(Float::infinity()), - "-inf" => return Ok(Float::neg_infinity()), - "NaN" => return Ok(Float::nan()), - _ => {}, - } - - fn slice_shift_char(src: &str) -> Option<(char, &str)> { - src.chars().nth(0).map(|ch| (ch, &src[1..])) - } - - let (is_positive, src) = match slice_shift_char(src) { - None => return Err(PFE { kind: Empty }), - Some(('-', "")) => return Err(PFE { kind: Empty }), - Some(('-', src)) => (false, src), - Some((_, _)) => (true, src), - }; - - // The significand to accumulate - let mut sig = if is_positive { 0.0 } else { -0.0 }; - // Necessary to detect overflow - let mut prev_sig = sig; - let mut cs = src.chars().enumerate(); - // Exponent prefix and exponent index offset - let mut exp_info = None::<(char, usize)>; - - // Parse the integer part of the significand - for (i, c) in cs.by_ref() { - match c.to_digit(radix) { - Some(digit) => { - // shift significand one digit left - sig = sig * (radix as $t); - - // add/subtract current digit depending on sign - if is_positive { - sig = sig + ((digit as isize) as $t); - } else { - sig = sig - ((digit as isize) as $t); - } - - // Detect overflow by comparing to last value, except - // if we've not seen any non-zero digits. - if prev_sig != 0.0 { - if is_positive && sig <= prev_sig - { return Ok(Float::infinity()); } - if !is_positive && sig >= prev_sig - { return Ok(Float::neg_infinity()); } - - // Detect overflow by reversing the shift-and-add process - if is_positive && (prev_sig != (sig - digit as $t) / radix as $t) - { return Ok(Float::infinity()); } - if !is_positive && (prev_sig != (sig + digit as $t) / radix as $t) - { return Ok(Float::neg_infinity()); } - } - prev_sig = sig; - }, - None => match c { - 'e' | 'E' | 'p' | 'P' => { - exp_info = Some((c, i + 1)); - break; // start of exponent - }, - '.' => { - break; // start of fractional part - }, - _ => { - return Err(PFE { kind: Invalid }); - }, - }, - } - } - - // If we are not yet at the exponent parse the fractional - // part of the significand - if exp_info.is_none() { - let mut power = 1.0; - for (i, c) in cs.by_ref() { - match c.to_digit(radix) { - Some(digit) => { - // Decrease power one order of magnitude - power = power / (radix as $t); - // add/subtract current digit depending on sign - sig = if is_positive { - sig + (digit as $t) * power - } else { - sig - (digit as $t) * power - }; - // Detect overflow by comparing to last value - if is_positive && sig < prev_sig - { return Ok(Float::infinity()); } - if !is_positive && sig > prev_sig - { return Ok(Float::neg_infinity()); } - prev_sig = sig; - }, - None => match c { - 'e' | 'E' | 'p' | 'P' => { - exp_info = Some((c, i + 1)); - break; // start of exponent - }, - _ => { - return Err(PFE { kind: Invalid }); - }, - }, - } - } - } - - // Parse and calculate the exponent - let exp = match exp_info { - Some((c, offset)) => { - let base = match c { - 'E' | 'e' if radix == 10 => 10.0, - 'P' | 'p' if radix == 16 => 2.0, - _ => return Err(PFE { kind: Invalid }), - }; - - // Parse the exponent as decimal integer - let src = &src[offset..]; - let (is_positive, exp) = match slice_shift_char(src) { - Some(('-', src)) => (false, src.parse::()), - Some(('+', src)) => (true, src.parse::()), - Some((_, _)) => (true, src.parse::()), - None => return Err(PFE { kind: Invalid }), - }; - - match (is_positive, exp) { - (true, Ok(exp)) => base.powi(exp as i32), - (false, Ok(exp)) => 1.0 / base.powi(exp as i32), - (_, Err(_)) => return Err(PFE { kind: Invalid }), - } - }, - None => 1.0, // no exponent - }; - - Ok(sig * exp) - } - } - )*) -} -float_trait_impl!(Num for f32 f64); - -/// A value bounded by a minimum and a maximum -/// -/// If input is less than min then this returns min. -/// If input is greater than max then this returns max. -/// Otherwise this returns input. -#[inline] -pub fn clamp(input: T, min: T, max: T) -> T { - debug_assert!(min <= max, "min must be less than or equal to max"); - if input < min { - min - } else if input > max { - max - } else { - input - } +pub mod real { + pub use num_traits::real::Real; } -#[test] -fn clamp_test() { - // Int test - assert_eq!(1, clamp(1, -1, 2)); - assert_eq!(-1, clamp(-2, -1, 2)); - assert_eq!(2, clamp(3, -1, 2)); - - // Float test - assert_eq!(1.0, clamp(1.0, -1.0, 2.0)); - assert_eq!(-1.0, clamp(-2.0, -1.0, 2.0)); - assert_eq!(2.0, clamp(3.0, -1.0, 2.0)); +pub mod cast { + pub use num_traits::cast::{AsPrimitive, FromPrimitive, ToPrimitive, NumCast, cast}; } -#[test] -fn from_str_radix_unwrap() { - // The Result error must impl Debug to allow unwrap() - - let i: i32 = Num::from_str_radix("0", 10).unwrap(); - assert_eq!(i, 0); - - let f: f32 = Num::from_str_radix("0.0", 10).unwrap(); - assert_eq!(f, 0.0); +pub mod int { + pub use num_traits::int::PrimInt; } -#[test] -fn wrapping_is_num() { - fn require_num(_: &T) {} - require_num(&Wrapping(42_u32)); - require_num(&Wrapping(-42)); +pub mod pow { + pub use num_traits::pow::{pow, checked_pow}; } - -#[test] -fn wrapping_from_str_radix() { - macro_rules! test_wrapping_from_str_radix { - ($($t:ty)+) => { - $( - for &(s, r) in &[("42", 10), ("42", 2), ("-13.0", 10), ("foo", 10)] { - let w = Wrapping::<$t>::from_str_radix(s, r).map(|w| w.0); - assert_eq!(w, <$t as Num>::from_str_radix(s, r)); - } - )+ - }; - } - - test_wrapping_from_str_radix!(usize u8 u16 u32 u64 isize i8 i16 i32 i64); -} - -#[test] -fn check_num_ops() { - fn compute(x: T, y: T) -> T { - x * y / y % y + y - y - } - assert_eq!(compute(1, 2), 1) -} - -#[test] -fn check_numref_ops() { - fn compute(x: T, y: &T) -> T { - x * y / y % y + y - y - } - assert_eq!(compute(1, &2), 1) -} - -#[test] -fn check_refnum_ops() { - fn compute(x: &T, y: T) -> T - where for<'a> &'a T: RefNum - { - &(&(&(&(x * y) / y) % y) + y) - y - } - assert_eq!(compute(&1, 2), 1) -} - -#[test] -fn check_refref_ops() { - fn compute(x: &T, y: &T) -> T - where for<'a> &'a T: RefNum - { - &(&(&(&(x * y) / y) % y) + y) - y - } - assert_eq!(compute(&1, &2), 1) -} - -#[test] -fn check_numassign_ops() { - fn compute(mut x: T, y: T) -> T { - x *= y; - x /= y; - x %= y; - x += y; - x -= y; - x - } - assert_eq!(compute(1, 2), 1) -} - -// TODO test `NumAssignRef`, but even the standard numeric types don't -// implement this yet. (see rust pr41336) diff --git a/src/ops/checked.rs b/src/ops/checked.rs deleted file mode 100644 index 95214a2..0000000 --- a/src/ops/checked.rs +++ /dev/null @@ -1,162 +0,0 @@ -use std::ops::{Add, Sub, Mul, Div, Shl, Shr}; - -/// Performs addition that returns `None` instead of wrapping around on -/// overflow. -pub trait CheckedAdd: Sized + Add { - /// Adds two numbers, checking for overflow. If overflow happens, `None` is - /// returned. - fn checked_add(&self, v: &Self) -> Option; -} - -macro_rules! checked_impl { - ($trait_name:ident, $method:ident, $t:ty) => { - impl $trait_name for $t { - #[inline] - fn $method(&self, v: &$t) -> Option<$t> { - <$t>::$method(*self, *v) - } - } - } -} - -checked_impl!(CheckedAdd, checked_add, u8); -checked_impl!(CheckedAdd, checked_add, u16); -checked_impl!(CheckedAdd, checked_add, u32); -checked_impl!(CheckedAdd, checked_add, u64); -checked_impl!(CheckedAdd, checked_add, usize); - -checked_impl!(CheckedAdd, checked_add, i8); -checked_impl!(CheckedAdd, checked_add, i16); -checked_impl!(CheckedAdd, checked_add, i32); -checked_impl!(CheckedAdd, checked_add, i64); -checked_impl!(CheckedAdd, checked_add, isize); - -/// Performs subtraction that returns `None` instead of wrapping around on underflow. -pub trait CheckedSub: Sized + Sub { - /// Subtracts two numbers, checking for underflow. If underflow happens, - /// `None` is returned. - fn checked_sub(&self, v: &Self) -> Option; -} - -checked_impl!(CheckedSub, checked_sub, u8); -checked_impl!(CheckedSub, checked_sub, u16); -checked_impl!(CheckedSub, checked_sub, u32); -checked_impl!(CheckedSub, checked_sub, u64); -checked_impl!(CheckedSub, checked_sub, usize); - -checked_impl!(CheckedSub, checked_sub, i8); -checked_impl!(CheckedSub, checked_sub, i16); -checked_impl!(CheckedSub, checked_sub, i32); -checked_impl!(CheckedSub, checked_sub, i64); -checked_impl!(CheckedSub, checked_sub, isize); - -/// Performs multiplication that returns `None` instead of wrapping around on underflow or -/// overflow. -pub trait CheckedMul: Sized + Mul { - /// Multiplies two numbers, checking for underflow or overflow. If underflow - /// or overflow happens, `None` is returned. - fn checked_mul(&self, v: &Self) -> Option; -} - -checked_impl!(CheckedMul, checked_mul, u8); -checked_impl!(CheckedMul, checked_mul, u16); -checked_impl!(CheckedMul, checked_mul, u32); -checked_impl!(CheckedMul, checked_mul, u64); -checked_impl!(CheckedMul, checked_mul, usize); - -checked_impl!(CheckedMul, checked_mul, i8); -checked_impl!(CheckedMul, checked_mul, i16); -checked_impl!(CheckedMul, checked_mul, i32); -checked_impl!(CheckedMul, checked_mul, i64); -checked_impl!(CheckedMul, checked_mul, isize); - -/// Performs division that returns `None` instead of panicking on division by zero and instead of -/// wrapping around on underflow and overflow. -pub trait CheckedDiv: Sized + Div { - /// Divides two numbers, checking for underflow, overflow and division by - /// zero. If any of that happens, `None` is returned. - fn checked_div(&self, v: &Self) -> Option; -} - -checked_impl!(CheckedDiv, checked_div, u8); -checked_impl!(CheckedDiv, checked_div, u16); -checked_impl!(CheckedDiv, checked_div, u32); -checked_impl!(CheckedDiv, checked_div, u64); -checked_impl!(CheckedDiv, checked_div, usize); - -checked_impl!(CheckedDiv, checked_div, i8); -checked_impl!(CheckedDiv, checked_div, i16); -checked_impl!(CheckedDiv, checked_div, i32); -checked_impl!(CheckedDiv, checked_div, i64); -checked_impl!(CheckedDiv, checked_div, isize); - -/// Performs a left shift that returns `None` on overflow. -pub trait CheckedShl: Sized + Shl { - /// Shifts a number to the left, checking for overflow. If overflow happens, - /// `None` is returned. - /// - /// ``` - /// use num_traits::CheckedShl; - /// - /// let x: u16 = 0x0001; - /// - /// assert_eq!(CheckedShl::checked_shl(&x, 0), Some(0x0001)); - /// assert_eq!(CheckedShl::checked_shl(&x, 1), Some(0x0002)); - /// assert_eq!(CheckedShl::checked_shl(&x, 15), Some(0x8000)); - /// assert_eq!(CheckedShl::checked_shl(&x, 16), None); - /// ``` - fn checked_shl(&self, rhs: u32) -> Option; -} - -macro_rules! checked_shift_impl { - ($trait_name:ident, $method:ident, $t:ty) => { - impl $trait_name for $t { - #[inline] - fn $method(&self, rhs: u32) -> Option<$t> { - <$t>::$method(*self, rhs) - } - } - } -} - -checked_shift_impl!(CheckedShl, checked_shl, u8); -checked_shift_impl!(CheckedShl, checked_shl, u16); -checked_shift_impl!(CheckedShl, checked_shl, u32); -checked_shift_impl!(CheckedShl, checked_shl, u64); -checked_shift_impl!(CheckedShl, checked_shl, usize); - -checked_shift_impl!(CheckedShl, checked_shl, i8); -checked_shift_impl!(CheckedShl, checked_shl, i16); -checked_shift_impl!(CheckedShl, checked_shl, i32); -checked_shift_impl!(CheckedShl, checked_shl, i64); -checked_shift_impl!(CheckedShl, checked_shl, isize); - -/// Performs a right shift that returns `None` on overflow. -pub trait CheckedShr: Sized + Shr { - /// Shifts a number to the left, checking for overflow. If overflow happens, - /// `None` is returned. - /// - /// ``` - /// use num_traits::CheckedShr; - /// - /// let x: u16 = 0x8000; - /// - /// assert_eq!(CheckedShr::checked_shr(&x, 0), Some(0x8000)); - /// assert_eq!(CheckedShr::checked_shr(&x, 1), Some(0x4000)); - /// assert_eq!(CheckedShr::checked_shr(&x, 15), Some(0x0001)); - /// assert_eq!(CheckedShr::checked_shr(&x, 16), None); - /// ``` - fn checked_shr(&self, rhs: u32) -> Option; -} - -checked_shift_impl!(CheckedShr, checked_shr, u8); -checked_shift_impl!(CheckedShr, checked_shr, u16); -checked_shift_impl!(CheckedShr, checked_shr, u32); -checked_shift_impl!(CheckedShr, checked_shr, u64); -checked_shift_impl!(CheckedShr, checked_shr, usize); - -checked_shift_impl!(CheckedShr, checked_shr, i8); -checked_shift_impl!(CheckedShr, checked_shr, i16); -checked_shift_impl!(CheckedShr, checked_shr, i32); -checked_shift_impl!(CheckedShr, checked_shr, i64); -checked_shift_impl!(CheckedShr, checked_shr, isize); diff --git a/src/ops/mod.rs b/src/ops/mod.rs deleted file mode 100644 index ec9edeb..0000000 --- a/src/ops/mod.rs +++ /dev/null @@ -1,3 +0,0 @@ -pub mod saturating; -pub mod checked; -pub mod wrapping; diff --git a/src/ops/saturating.rs b/src/ops/saturating.rs deleted file mode 100644 index e9db749..0000000 --- a/src/ops/saturating.rs +++ /dev/null @@ -1,28 +0,0 @@ -/// Saturating math operations -pub trait Saturating { - /// Saturating addition operator. - /// Returns a+b, saturating at the numeric bounds instead of overflowing. - fn saturating_add(self, v: Self) -> Self; - - /// Saturating subtraction operator. - /// Returns a-b, saturating at the numeric bounds instead of overflowing. - fn saturating_sub(self, v: Self) -> Self; -} - -macro_rules! saturating_impl { - ($trait_name:ident for $($t:ty)*) => {$( - impl $trait_name for $t { - #[inline] - fn saturating_add(self, v: Self) -> Self { - Self::saturating_add(self, v) - } - - #[inline] - fn saturating_sub(self, v: Self) -> Self { - Self::saturating_sub(self, v) - } - } - )*} -} - -saturating_impl!(Saturating for isize usize i8 u8 i16 u16 i32 u32 i64 u64); diff --git a/src/ops/wrapping.rs b/src/ops/wrapping.rs deleted file mode 100644 index f989058..0000000 --- a/src/ops/wrapping.rs +++ /dev/null @@ -1,127 +0,0 @@ -use std::ops::{Add, Sub, Mul}; -use std::num::Wrapping; - -macro_rules! wrapping_impl { - ($trait_name:ident, $method:ident, $t:ty) => { - impl $trait_name for $t { - #[inline] - fn $method(&self, v: &Self) -> Self { - <$t>::$method(*self, *v) - } - } - }; - ($trait_name:ident, $method:ident, $t:ty, $rhs:ty) => { - impl $trait_name<$rhs> for $t { - #[inline] - fn $method(&self, v: &$rhs) -> Self { - <$t>::$method(*self, *v) - } - } - } -} - -/// Performs addition that wraps around on overflow. -pub trait WrappingAdd: Sized + Add { - /// Wrapping (modular) addition. Computes `self + other`, wrapping around at the boundary of - /// the type. - fn wrapping_add(&self, v: &Self) -> Self; -} - -wrapping_impl!(WrappingAdd, wrapping_add, u8); -wrapping_impl!(WrappingAdd, wrapping_add, u16); -wrapping_impl!(WrappingAdd, wrapping_add, u32); -wrapping_impl!(WrappingAdd, wrapping_add, u64); -wrapping_impl!(WrappingAdd, wrapping_add, usize); - -wrapping_impl!(WrappingAdd, wrapping_add, i8); -wrapping_impl!(WrappingAdd, wrapping_add, i16); -wrapping_impl!(WrappingAdd, wrapping_add, i32); -wrapping_impl!(WrappingAdd, wrapping_add, i64); -wrapping_impl!(WrappingAdd, wrapping_add, isize); - -/// Performs subtraction that wraps around on overflow. -pub trait WrappingSub: Sized + Sub { - /// Wrapping (modular) subtraction. Computes `self - other`, wrapping around at the boundary - /// of the type. - fn wrapping_sub(&self, v: &Self) -> Self; -} - -wrapping_impl!(WrappingSub, wrapping_sub, u8); -wrapping_impl!(WrappingSub, wrapping_sub, u16); -wrapping_impl!(WrappingSub, wrapping_sub, u32); -wrapping_impl!(WrappingSub, wrapping_sub, u64); -wrapping_impl!(WrappingSub, wrapping_sub, usize); - -wrapping_impl!(WrappingSub, wrapping_sub, i8); -wrapping_impl!(WrappingSub, wrapping_sub, i16); -wrapping_impl!(WrappingSub, wrapping_sub, i32); -wrapping_impl!(WrappingSub, wrapping_sub, i64); -wrapping_impl!(WrappingSub, wrapping_sub, isize); - -/// Performs multiplication that wraps around on overflow. -pub trait WrappingMul: Sized + Mul { - /// Wrapping (modular) multiplication. Computes `self * other`, wrapping around at the boundary - /// of the type. - fn wrapping_mul(&self, v: &Self) -> Self; -} - -wrapping_impl!(WrappingMul, wrapping_mul, u8); -wrapping_impl!(WrappingMul, wrapping_mul, u16); -wrapping_impl!(WrappingMul, wrapping_mul, u32); -wrapping_impl!(WrappingMul, wrapping_mul, u64); -wrapping_impl!(WrappingMul, wrapping_mul, usize); - -wrapping_impl!(WrappingMul, wrapping_mul, i8); -wrapping_impl!(WrappingMul, wrapping_mul, i16); -wrapping_impl!(WrappingMul, wrapping_mul, i32); -wrapping_impl!(WrappingMul, wrapping_mul, i64); -wrapping_impl!(WrappingMul, wrapping_mul, isize); - -// Well this is a bit funny, but all the more appropriate. -impl WrappingAdd for Wrapping where Wrapping: Add> { - fn wrapping_add(&self, v: &Self) -> Self { - Wrapping(self.0.wrapping_add(&v.0)) - } -} -impl WrappingSub for Wrapping where Wrapping: Sub> { - fn wrapping_sub(&self, v: &Self) -> Self { - Wrapping(self.0.wrapping_sub(&v.0)) - } -} -impl WrappingMul for Wrapping where Wrapping: Mul> { - fn wrapping_mul(&self, v: &Self) -> Self { - Wrapping(self.0.wrapping_mul(&v.0)) - } -} - - -#[test] -fn test_wrapping_traits() { - fn wrapping_add(a: T, b: T) -> T { a.wrapping_add(&b) } - fn wrapping_sub(a: T, b: T) -> T { a.wrapping_sub(&b) } - fn wrapping_mul(a: T, b: T) -> T { a.wrapping_mul(&b) } - assert_eq!(wrapping_add(255, 1), 0u8); - assert_eq!(wrapping_sub(0, 1), 255u8); - assert_eq!(wrapping_mul(255, 2), 254u8); - assert_eq!(wrapping_add(255, 1), (Wrapping(255u8) + Wrapping(1u8)).0); - assert_eq!(wrapping_sub(0, 1), (Wrapping(0u8) - Wrapping(1u8)).0); - assert_eq!(wrapping_mul(255, 2), (Wrapping(255u8) * Wrapping(2u8)).0); -} - -#[test] -fn wrapping_is_wrappingadd() { - fn require_wrappingadd(_: &T) {} - require_wrappingadd(&Wrapping(42)); -} - -#[test] -fn wrapping_is_wrappingsub() { - fn require_wrappingsub(_: &T) {} - require_wrappingsub(&Wrapping(42)); -} - -#[test] -fn wrapping_is_wrappingmul() { - fn require_wrappingmul(_: &T) {} - require_wrappingmul(&Wrapping(42)); -} diff --git a/src/pow.rs b/src/pow.rs deleted file mode 100644 index b250ad4..0000000 --- a/src/pow.rs +++ /dev/null @@ -1,73 +0,0 @@ -use std::ops::Mul; -use {One, CheckedMul}; - -/// Raises a value to the power of exp, using exponentiation by squaring. -/// -/// # Example -/// -/// ```rust -/// use num_traits::pow; -/// -/// assert_eq!(pow(2i8, 4), 16); -/// assert_eq!(pow(6u8, 3), 216); -/// ``` -#[inline] -pub fn pow>(mut base: T, mut exp: usize) -> T { - if exp == 0 { return T::one() } - - while exp & 1 == 0 { - base = base.clone() * base; - exp >>= 1; - } - if exp == 1 { return base } - - let mut acc = base.clone(); - while exp > 1 { - exp >>= 1; - base = base.clone() * base; - if exp & 1 == 1 { - acc = acc * base.clone(); - } - } - acc -} - -/// Raises a value to the power of exp, returning `None` if an overflow occurred. -/// -/// Otherwise same as the `pow` function. -/// -/// # Example -/// -/// ```rust -/// use num_traits::checked_pow; -/// -/// assert_eq!(checked_pow(2i8, 4), Some(16)); -/// assert_eq!(checked_pow(7i8, 8), None); -/// assert_eq!(checked_pow(7u32, 8), Some(5_764_801)); -/// ``` -#[inline] -pub fn checked_pow(mut base: T, mut exp: usize) -> Option { - if exp == 0 { return Some(T::one()) } - - macro_rules! optry { - ( $ expr : expr ) => { - if let Some(val) = $expr { val } else { return None } - } - } - - while exp & 1 == 0 { - base = optry!(base.checked_mul(&base)); - exp >>= 1; - } - if exp == 1 { return Some(base) } - - let mut acc = base.clone(); - while exp > 1 { - exp >>= 1; - base = optry!(base.checked_mul(&base)); - if exp & 1 == 1 { - acc = optry!(acc.checked_mul(&base)); - } - } - Some(acc) -} diff --git a/src/real.rs b/src/real.rs deleted file mode 100644 index c813a01..0000000 --- a/src/real.rs +++ /dev/null @@ -1,924 +0,0 @@ -use std::ops::Neg; - -use {Num, NumCast, Float}; - -// NOTE: These doctests have the same issue as those in src/float.rs. -// They're testing the inherent methods directly, and not those of `Real`. - -/// A trait for real number types that do not necessarily have -/// floating-point-specific characteristics such as NaN and infinity. -/// -/// See [this Wikipedia article](https://en.wikipedia.org/wiki/Real_data_type) -/// for a list of data types that could meaningfully implement this trait. -pub trait Real - : Num - + Copy - + NumCast - + PartialOrd - + Neg -{ - /// Returns the smallest finite value that this type can represent. - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let x: f64 = Real::min_value(); - /// - /// assert_eq!(x, f64::MIN); - /// ``` - fn min_value() -> Self; - - /// Returns the smallest positive, normalized value that this type can represent. - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let x: f64 = Real::min_positive_value(); - /// - /// assert_eq!(x, f64::MIN_POSITIVE); - /// ``` - fn min_positive_value() -> Self; - - /// Returns epsilon, a small positive value. - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let x: f64 = Real::epsilon(); - /// - /// assert_eq!(x, f64::EPSILON); - /// ``` - /// - /// # Panics - /// - /// The default implementation will panic if `f32::EPSILON` cannot - /// be cast to `Self`. - fn epsilon() -> Self; - - /// Returns the largest finite value that this type can represent. - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let x: f64 = Real::max_value(); - /// assert_eq!(x, f64::MAX); - /// ``` - fn max_value() -> Self; - - /// Returns the largest integer less than or equal to a number. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let f = 3.99; - /// let g = 3.0; - /// - /// assert_eq!(f.floor(), 3.0); - /// assert_eq!(g.floor(), 3.0); - /// ``` - fn floor(self) -> Self; - - /// Returns the smallest integer greater than or equal to a number. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let f = 3.01; - /// let g = 4.0; - /// - /// assert_eq!(f.ceil(), 4.0); - /// assert_eq!(g.ceil(), 4.0); - /// ``` - fn ceil(self) -> Self; - - /// Returns the nearest integer to a number. Round half-way cases away from - /// `0.0`. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let f = 3.3; - /// let g = -3.3; - /// - /// assert_eq!(f.round(), 3.0); - /// assert_eq!(g.round(), -3.0); - /// ``` - fn round(self) -> Self; - - /// Return the integer part of a number. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let f = 3.3; - /// let g = -3.7; - /// - /// assert_eq!(f.trunc(), 3.0); - /// assert_eq!(g.trunc(), -3.0); - /// ``` - fn trunc(self) -> Self; - - /// Returns the fractional part of a number. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let x = 3.5; - /// let y = -3.5; - /// let abs_difference_x = (x.fract() - 0.5).abs(); - /// let abs_difference_y = (y.fract() - (-0.5)).abs(); - /// - /// assert!(abs_difference_x < 1e-10); - /// assert!(abs_difference_y < 1e-10); - /// ``` - fn fract(self) -> Self; - - /// Computes the absolute value of `self`. Returns `Float::nan()` if the - /// number is `Float::nan()`. - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let x = 3.5; - /// let y = -3.5; - /// - /// let abs_difference_x = (x.abs() - x).abs(); - /// let abs_difference_y = (y.abs() - (-y)).abs(); - /// - /// assert!(abs_difference_x < 1e-10); - /// assert!(abs_difference_y < 1e-10); - /// - /// assert!(::num_traits::Float::is_nan(f64::NAN.abs())); - /// ``` - fn abs(self) -> Self; - - /// Returns a number that represents the sign of `self`. - /// - /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()` - /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()` - /// - `Float::nan()` if the number is `Float::nan()` - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let f = 3.5; - /// - /// assert_eq!(f.signum(), 1.0); - /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0); - /// - /// assert!(f64::NAN.signum().is_nan()); - /// ``` - fn signum(self) -> Self; - - /// Returns `true` if `self` is positive, including `+0.0`, - /// `Float::infinity()`, and with newer versions of Rust `f64::NAN`. - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let neg_nan: f64 = -f64::NAN; - /// - /// let f = 7.0; - /// let g = -7.0; - /// - /// assert!(f.is_sign_positive()); - /// assert!(!g.is_sign_positive()); - /// assert!(!neg_nan.is_sign_positive()); - /// ``` - fn is_sign_positive(self) -> bool; - - /// Returns `true` if `self` is negative, including `-0.0`, - /// `Float::neg_infinity()`, and with newer versions of Rust `-f64::NAN`. - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let nan: f64 = f64::NAN; - /// - /// let f = 7.0; - /// let g = -7.0; - /// - /// assert!(!f.is_sign_negative()); - /// assert!(g.is_sign_negative()); - /// assert!(!nan.is_sign_negative()); - /// ``` - fn is_sign_negative(self) -> bool; - - /// Fused multiply-add. Computes `(self * a) + b` with only one rounding - /// error. This produces a more accurate result with better performance than - /// a separate multiplication operation followed by an add. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let m = 10.0; - /// let x = 4.0; - /// let b = 60.0; - /// - /// // 100.0 - /// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn mul_add(self, a: Self, b: Self) -> Self; - - /// Take the reciprocal (inverse) of a number, `1/x`. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let x = 2.0; - /// let abs_difference = (x.recip() - (1.0/x)).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn recip(self) -> Self; - - /// Raise a number to an integer power. - /// - /// Using this function is generally faster than using `powf` - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let x = 2.0; - /// let abs_difference = (x.powi(2) - x*x).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn powi(self, n: i32) -> Self; - - /// Raise a number to a real number power. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let x = 2.0; - /// let abs_difference = (x.powf(2.0) - x*x).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn powf(self, n: Self) -> Self; - - /// Take the square root of a number. - /// - /// Returns NaN if `self` is a negative floating-point number. - /// - /// # Panics - /// - /// If the implementing type doesn't support NaN, this method should panic if `self < 0`. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let positive = 4.0; - /// let negative = -4.0; - /// - /// let abs_difference = (positive.sqrt() - 2.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// assert!(::num_traits::Float::is_nan(negative.sqrt())); - /// ``` - fn sqrt(self) -> Self; - - /// Returns `e^(self)`, (the exponential function). - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let one = 1.0; - /// // e^1 - /// let e = one.exp(); - /// - /// // ln(e) - 1 == 0 - /// let abs_difference = (e.ln() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn exp(self) -> Self; - - /// Returns `2^(self)`. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let f = 2.0; - /// - /// // 2^2 - 4 == 0 - /// let abs_difference = (f.exp2() - 4.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn exp2(self) -> Self; - - /// Returns the natural logarithm of the number. - /// - /// # Panics - /// - /// If `self <= 0` and this type does not support a NaN representation, this function should panic. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let one = 1.0; - /// // e^1 - /// let e = one.exp(); - /// - /// // ln(e) - 1 == 0 - /// let abs_difference = (e.ln() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn ln(self) -> Self; - - /// Returns the logarithm of the number with respect to an arbitrary base. - /// - /// # Panics - /// - /// If `self <= 0` and this type does not support a NaN representation, this function should panic. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let ten = 10.0; - /// let two = 2.0; - /// - /// // log10(10) - 1 == 0 - /// let abs_difference_10 = (ten.log(10.0) - 1.0).abs(); - /// - /// // log2(2) - 1 == 0 - /// let abs_difference_2 = (two.log(2.0) - 1.0).abs(); - /// - /// assert!(abs_difference_10 < 1e-10); - /// assert!(abs_difference_2 < 1e-10); - /// ``` - fn log(self, base: Self) -> Self; - - /// Returns the base 2 logarithm of the number. - /// - /// # Panics - /// - /// If `self <= 0` and this type does not support a NaN representation, this function should panic. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let two = 2.0; - /// - /// // log2(2) - 1 == 0 - /// let abs_difference = (two.log2() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn log2(self) -> Self; - - /// Returns the base 10 logarithm of the number. - /// - /// # Panics - /// - /// If `self <= 0` and this type does not support a NaN representation, this function should panic. - /// - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let ten = 10.0; - /// - /// // log10(10) - 1 == 0 - /// let abs_difference = (ten.log10() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn log10(self) -> Self; - - /// Converts radians to degrees. - /// - /// ``` - /// use std::f64::consts; - /// - /// let angle = consts::PI; - /// - /// let abs_difference = (angle.to_degrees() - 180.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn to_degrees(self) -> Self; - - /// Converts degrees to radians. - /// - /// ``` - /// use std::f64::consts; - /// - /// let angle = 180.0_f64; - /// - /// let abs_difference = (angle.to_radians() - consts::PI).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn to_radians(self) -> Self; - - /// Returns the maximum of the two numbers. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let x = 1.0; - /// let y = 2.0; - /// - /// assert_eq!(x.max(y), y); - /// ``` - fn max(self, other: Self) -> Self; - - /// Returns the minimum of the two numbers. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let x = 1.0; - /// let y = 2.0; - /// - /// assert_eq!(x.min(y), x); - /// ``` - fn min(self, other: Self) -> Self; - - /// The positive difference of two numbers. - /// - /// * If `self <= other`: `0:0` - /// * Else: `self - other` - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let x = 3.0; - /// let y = -3.0; - /// - /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs(); - /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs(); - /// - /// assert!(abs_difference_x < 1e-10); - /// assert!(abs_difference_y < 1e-10); - /// ``` - fn abs_sub(self, other: Self) -> Self; - - /// Take the cubic root of a number. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let x = 8.0; - /// - /// // x^(1/3) - 2 == 0 - /// let abs_difference = (x.cbrt() - 2.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn cbrt(self) -> Self; - - /// Calculate the length of the hypotenuse of a right-angle triangle given - /// legs of length `x` and `y`. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let x = 2.0; - /// let y = 3.0; - /// - /// // sqrt(x^2 + y^2) - /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn hypot(self, other: Self) -> Self; - - /// Computes the sine of a number (in radians). - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let x = f64::consts::PI/2.0; - /// - /// let abs_difference = (x.sin() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn sin(self) -> Self; - - /// Computes the cosine of a number (in radians). - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let x = 2.0*f64::consts::PI; - /// - /// let abs_difference = (x.cos() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn cos(self) -> Self; - - /// Computes the tangent of a number (in radians). - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let x = f64::consts::PI/4.0; - /// let abs_difference = (x.tan() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-14); - /// ``` - fn tan(self) -> Self; - - /// Computes the arcsine of a number. Return value is in radians in - /// the range [-pi/2, pi/2] or NaN if the number is outside the range - /// [-1, 1]. - /// - /// # Panics - /// - /// If this type does not support a NaN representation, this function should panic - /// if the number is outside the range [-1, 1]. - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let f = f64::consts::PI / 2.0; - /// - /// // asin(sin(pi/2)) - /// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn asin(self) -> Self; - - /// Computes the arccosine of a number. Return value is in radians in - /// the range [0, pi] or NaN if the number is outside the range - /// [-1, 1]. - /// - /// # Panics - /// - /// If this type does not support a NaN representation, this function should panic - /// if the number is outside the range [-1, 1]. - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let f = f64::consts::PI / 4.0; - /// - /// // acos(cos(pi/4)) - /// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn acos(self) -> Self; - - /// Computes the arctangent of a number. Return value is in radians in the - /// range [-pi/2, pi/2]; - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let f = 1.0; - /// - /// // atan(tan(1)) - /// let abs_difference = (f.tan().atan() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn atan(self) -> Self; - - /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`). - /// - /// * `x = 0`, `y = 0`: `0` - /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]` - /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]` - /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)` - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let pi = f64::consts::PI; - /// // All angles from horizontal right (+x) - /// // 45 deg counter-clockwise - /// let x1 = 3.0; - /// let y1 = -3.0; - /// - /// // 135 deg clockwise - /// let x2 = -3.0; - /// let y2 = 3.0; - /// - /// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs(); - /// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs(); - /// - /// assert!(abs_difference_1 < 1e-10); - /// assert!(abs_difference_2 < 1e-10); - /// ``` - fn atan2(self, other: Self) -> Self; - - /// Simultaneously computes the sine and cosine of the number, `x`. Returns - /// `(sin(x), cos(x))`. - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let x = f64::consts::PI/4.0; - /// let f = x.sin_cos(); - /// - /// let abs_difference_0 = (f.0 - x.sin()).abs(); - /// let abs_difference_1 = (f.1 - x.cos()).abs(); - /// - /// assert!(abs_difference_0 < 1e-10); - /// assert!(abs_difference_0 < 1e-10); - /// ``` - fn sin_cos(self) -> (Self, Self); - - /// Returns `e^(self) - 1` in a way that is accurate even if the - /// number is close to zero. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let x = 7.0; - /// - /// // e^(ln(7)) - 1 - /// let abs_difference = (x.ln().exp_m1() - 6.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn exp_m1(self) -> Self; - - /// Returns `ln(1+n)` (natural logarithm) more accurately than if - /// the operations were performed separately. - /// - /// # Panics - /// - /// If this type does not support a NaN representation, this function should panic - /// if `self-1 <= 0`. - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let x = f64::consts::E - 1.0; - /// - /// // ln(1 + (e - 1)) == ln(e) == 1 - /// let abs_difference = (x.ln_1p() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn ln_1p(self) -> Self; - - /// Hyperbolic sine function. - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let e = f64::consts::E; - /// let x = 1.0; - /// - /// let f = x.sinh(); - /// // Solving sinh() at 1 gives `(e^2-1)/(2e)` - /// let g = (e*e - 1.0)/(2.0*e); - /// let abs_difference = (f - g).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn sinh(self) -> Self; - - /// Hyperbolic cosine function. - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let e = f64::consts::E; - /// let x = 1.0; - /// let f = x.cosh(); - /// // Solving cosh() at 1 gives this result - /// let g = (e*e + 1.0)/(2.0*e); - /// let abs_difference = (f - g).abs(); - /// - /// // Same result - /// assert!(abs_difference < 1.0e-10); - /// ``` - fn cosh(self) -> Self; - - /// Hyperbolic tangent function. - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let e = f64::consts::E; - /// let x = 1.0; - /// - /// let f = x.tanh(); - /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` - /// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2)); - /// let abs_difference = (f - g).abs(); - /// - /// assert!(abs_difference < 1.0e-10); - /// ``` - fn tanh(self) -> Self; - - /// Inverse hyperbolic sine function. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let x = 1.0; - /// let f = x.sinh().asinh(); - /// - /// let abs_difference = (f - x).abs(); - /// - /// assert!(abs_difference < 1.0e-10); - /// ``` - fn asinh(self) -> Self; - - /// Inverse hyperbolic cosine function. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let x = 1.0; - /// let f = x.cosh().acosh(); - /// - /// let abs_difference = (f - x).abs(); - /// - /// assert!(abs_difference < 1.0e-10); - /// ``` - fn acosh(self) -> Self; - - /// Inverse hyperbolic tangent function. - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let e = f64::consts::E; - /// let f = e.tanh().atanh(); - /// - /// let abs_difference = (f - e).abs(); - /// - /// assert!(abs_difference < 1.0e-10); - /// ``` - fn atanh(self) -> Self; -} - -impl Real for T { - fn min_value() -> Self { - Self::min_value() - } - fn min_positive_value() -> Self { - Self::min_positive_value() - } - fn epsilon() -> Self { - Self::epsilon() - } - fn max_value() -> Self { - Self::max_value() - } - fn floor(self) -> Self { - self.floor() - } - fn ceil(self) -> Self { - self.ceil() - } - fn round(self) -> Self { - self.round() - } - fn trunc(self) -> Self { - self.trunc() - } - fn fract(self) -> Self { - self.fract() - } - fn abs(self) -> Self { - self.abs() - } - fn signum(self) -> Self { - self.signum() - } - fn is_sign_positive(self) -> bool { - self.is_sign_positive() - } - fn is_sign_negative(self) -> bool { - self.is_sign_negative() - } - fn mul_add(self, a: Self, b: Self) -> Self { - self.mul_add(a, b) - } - fn recip(self) -> Self { - self.recip() - } - fn powi(self, n: i32) -> Self { - self.powi(n) - } - fn powf(self, n: Self) -> Self { - self.powf(n) - } - fn sqrt(self) -> Self { - self.sqrt() - } - fn exp(self) -> Self { - self.exp() - } - fn exp2(self) -> Self { - self.exp2() - } - fn ln(self) -> Self { - self.ln() - } - fn log(self, base: Self) -> Self { - self.log(base) - } - fn log2(self) -> Self { - self.log2() - } - fn log10(self) -> Self { - self.log10() - } - fn to_degrees(self) -> Self { - self.to_degrees() - } - fn to_radians(self) -> Self { - self.to_radians() - } - fn max(self, other: Self) -> Self { - self.max(other) - } - fn min(self, other: Self) -> Self { - self.min(other) - } - fn abs_sub(self, other: Self) -> Self { - self.abs_sub(other) - } - fn cbrt(self) -> Self { - self.cbrt() - } - fn hypot(self, other: Self) -> Self { - self.hypot(other) - } - fn sin(self) -> Self { - self.sin() - } - fn cos(self) -> Self { - self.cos() - } - fn tan(self) -> Self { - self.tan() - } - fn asin(self) -> Self { - self.asin() - } - fn acos(self) -> Self { - self.acos() - } - fn atan(self) -> Self { - self.atan() - } - fn atan2(self, other: Self) -> Self { - self.atan2(other) - } - fn sin_cos(self) -> (Self, Self) { - self.sin_cos() - } - fn exp_m1(self) -> Self { - self.exp_m1() - } - fn ln_1p(self) -> Self { - self.ln_1p() - } - fn sinh(self) -> Self { - self.sinh() - } - fn cosh(self) -> Self { - self.cosh() - } - fn tanh(self) -> Self { - self.tanh() - } - fn asinh(self) -> Self { - self.asinh() - } - fn acosh(self) -> Self { - self.acosh() - } - fn atanh(self) -> Self { - self.atanh() - } -} diff --git a/src/sign.rs b/src/sign.rs deleted file mode 100644 index 4b43c89..0000000 --- a/src/sign.rs +++ /dev/null @@ -1,204 +0,0 @@ -use std::ops::Neg; -use std::{f32, f64}; -use std::num::Wrapping; - -use Num; - -/// Useful functions for signed numbers (i.e. numbers that can be negative). -pub trait Signed: Sized + Num + Neg { - /// Computes the absolute value. - /// - /// For `f32` and `f64`, `NaN` will be returned if the number is `NaN`. - /// - /// For signed integers, `::MIN` will be returned if the number is `::MIN`. - fn abs(&self) -> Self; - - /// The positive difference of two numbers. - /// - /// Returns `zero` if the number is less than or equal to `other`, otherwise the difference - /// between `self` and `other` is returned. - fn abs_sub(&self, other: &Self) -> Self; - - /// Returns the sign of the number. - /// - /// For `f32` and `f64`: - /// - /// * `1.0` if the number is positive, `+0.0` or `INFINITY` - /// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` - /// * `NaN` if the number is `NaN` - /// - /// For signed integers: - /// - /// * `0` if the number is zero - /// * `1` if the number is positive - /// * `-1` if the number is negative - fn signum(&self) -> Self; - - /// Returns true if the number is positive and false if the number is zero or negative. - fn is_positive(&self) -> bool; - - /// Returns true if the number is negative and false if the number is zero or positive. - fn is_negative(&self) -> bool; -} - -macro_rules! signed_impl { - ($($t:ty)*) => ($( - impl Signed for $t { - #[inline] - fn abs(&self) -> $t { - if self.is_negative() { -*self } else { *self } - } - - #[inline] - fn abs_sub(&self, other: &$t) -> $t { - if *self <= *other { 0 } else { *self - *other } - } - - #[inline] - fn signum(&self) -> $t { - match *self { - n if n > 0 => 1, - 0 => 0, - _ => -1, - } - } - - #[inline] - fn is_positive(&self) -> bool { *self > 0 } - - #[inline] - fn is_negative(&self) -> bool { *self < 0 } - } - )*) -} - -signed_impl!(isize i8 i16 i32 i64); - -impl Signed for Wrapping where Wrapping: Num + Neg> -{ - #[inline] - fn abs(&self) -> Self { - Wrapping(self.0.abs()) - } - - #[inline] - fn abs_sub(&self, other: &Self) -> Self { - Wrapping(self.0.abs_sub(&other.0)) - } - - #[inline] - fn signum(&self) -> Self { - Wrapping(self.0.signum()) - } - - #[inline] - fn is_positive(&self) -> bool { self.0.is_positive() } - - #[inline] - fn is_negative(&self) -> bool { self.0.is_negative() } -} - -macro_rules! signed_float_impl { - ($t:ty, $nan:expr, $inf:expr, $neg_inf:expr) => { - impl Signed for $t { - /// Computes the absolute value. Returns `NAN` if the number is `NAN`. - #[inline] - fn abs(&self) -> $t { - <$t>::abs(*self) - } - - /// The positive difference of two numbers. Returns `0.0` if the number is - /// less than or equal to `other`, otherwise the difference between`self` - /// and `other` is returned. - #[inline] - #[allow(deprecated)] - fn abs_sub(&self, other: &$t) -> $t { - <$t>::abs_sub(*self, *other) - } - - /// # Returns - /// - /// - `1.0` if the number is positive, `+0.0` or `INFINITY` - /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` - /// - `NAN` if the number is NaN - #[inline] - fn signum(&self) -> $t { - <$t>::signum(*self) - } - - /// Returns `true` if the number is positive, including `+0.0` and `INFINITY` - #[inline] - fn is_positive(&self) -> bool { *self > 0.0 || (1.0 / *self) == $inf } - - /// Returns `true` if the number is negative, including `-0.0` and `NEG_INFINITY` - #[inline] - fn is_negative(&self) -> bool { *self < 0.0 || (1.0 / *self) == $neg_inf } - } - } -} - -signed_float_impl!(f32, f32::NAN, f32::INFINITY, f32::NEG_INFINITY); -signed_float_impl!(f64, f64::NAN, f64::INFINITY, f64::NEG_INFINITY); - -/// Computes the absolute value. -/// -/// For `f32` and `f64`, `NaN` will be returned if the number is `NaN` -/// -/// For signed integers, `::MIN` will be returned if the number is `::MIN`. -#[inline(always)] -pub fn abs(value: T) -> T { - value.abs() -} - -/// The positive difference of two numbers. -/// -/// Returns zero if `x` is less than or equal to `y`, otherwise the difference -/// between `x` and `y` is returned. -#[inline(always)] -pub fn abs_sub(x: T, y: T) -> T { - x.abs_sub(&y) -} - -/// Returns the sign of the number. -/// -/// For `f32` and `f64`: -/// -/// * `1.0` if the number is positive, `+0.0` or `INFINITY` -/// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` -/// * `NaN` if the number is `NaN` -/// -/// For signed integers: -/// -/// * `0` if the number is zero -/// * `1` if the number is positive -/// * `-1` if the number is negative -#[inline(always)] pub fn signum(value: T) -> T { value.signum() } - -/// A trait for values which cannot be negative -pub trait Unsigned: Num {} - -macro_rules! empty_trait_impl { - ($name:ident for $($t:ty)*) => ($( - impl $name for $t {} - )*) -} - -empty_trait_impl!(Unsigned for usize u8 u16 u32 u64); - -impl Unsigned for Wrapping where Wrapping: Num {} - -#[test] -fn unsigned_wrapping_is_unsigned() { - fn require_unsigned(_: &T) {} - require_unsigned(&Wrapping(42_u32)); -} -/* -// Commenting this out since it doesn't compile on Rust 1.8, -// because on this version Wrapping doesn't implement Neg and therefore can't -// implement Signed. -#[test] -fn signed_wrapping_is_signed() { - fn require_signed(_: &T) {} - require_signed(&Wrapping(-42)); -} -*/