Merge #320
320: complex: implement real ops directly r=cuviper It's more efficient to implement these without creating an intermediate complex value -- at the least, we don't have to rely on the compiler optimizing out zero-ops.
This commit is contained in:
commit
d159ed63be
|
@ -671,38 +671,91 @@ macro_rules! real_arithmetic {
|
|||
}
|
||||
)*
|
||||
);
|
||||
(@implement $imp:ident::$method:ident for $($real:ident),*) => (
|
||||
impl<T: Clone + Num> $imp<T> for Complex<T> {
|
||||
type Output = Complex<T>;
|
||||
|
||||
#[inline]
|
||||
fn $method(self, other: T) -> Complex<T> {
|
||||
self.$method(Complex::from(other))
|
||||
}
|
||||
}
|
||||
$(
|
||||
impl $imp<Complex<$real>> for $real {
|
||||
type Output = Complex<$real>;
|
||||
|
||||
#[inline]
|
||||
fn $method(self, other: Complex<$real>) -> Complex<$real> {
|
||||
Complex::from(self).$method(other)
|
||||
}
|
||||
}
|
||||
)*
|
||||
);
|
||||
($($real:ident),*) => (
|
||||
real_arithmetic!(@forward Add::add for $($real),*);
|
||||
real_arithmetic!(@forward Sub::sub for $($real),*);
|
||||
real_arithmetic!(@forward Mul::mul for $($real),*);
|
||||
real_arithmetic!(@forward Div::div for $($real),*);
|
||||
real_arithmetic!(@implement Add::add for $($real),*);
|
||||
real_arithmetic!(@implement Sub::sub for $($real),*);
|
||||
real_arithmetic!(@implement Mul::mul for $($real),*);
|
||||
real_arithmetic!(@implement Div::div for $($real),*);
|
||||
|
||||
$(
|
||||
impl Add<Complex<$real>> for $real {
|
||||
type Output = Complex<$real>;
|
||||
|
||||
#[inline]
|
||||
fn add(self, other: Complex<$real>) -> Complex<$real> {
|
||||
Complex::new(self + other.re, other.im)
|
||||
}
|
||||
}
|
||||
|
||||
impl Sub<Complex<$real>> for $real {
|
||||
type Output = Complex<$real>;
|
||||
|
||||
#[inline]
|
||||
fn sub(self, other: Complex<$real>) -> Complex<$real> {
|
||||
Complex::new(self - other.re, $real::zero() - other.im)
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul<Complex<$real>> for $real {
|
||||
type Output = Complex<$real>;
|
||||
|
||||
#[inline]
|
||||
fn mul(self, other: Complex<$real>) -> Complex<$real> {
|
||||
Complex::new(self * other.re, self * other.im)
|
||||
}
|
||||
}
|
||||
|
||||
impl Div<Complex<$real>> for $real {
|
||||
type Output = Complex<$real>;
|
||||
|
||||
#[inline]
|
||||
fn div(self, other: Complex<$real>) -> Complex<$real> {
|
||||
// a / (c + i d) == [a * (c - i d)] / (c*c + d*d)
|
||||
let norm_sqr = other.norm_sqr();
|
||||
Complex::new(self * other.re / norm_sqr.clone(),
|
||||
$real::zero() - self * other.im / norm_sqr)
|
||||
}
|
||||
}
|
||||
)*
|
||||
);
|
||||
}
|
||||
|
||||
impl<T: Clone + Num> Add<T> for Complex<T> {
|
||||
type Output = Complex<T>;
|
||||
|
||||
#[inline]
|
||||
fn add(self, other: T) -> Complex<T> {
|
||||
Complex::new(self.re + other, self.im)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Clone + Num> Sub<T> for Complex<T> {
|
||||
type Output = Complex<T>;
|
||||
|
||||
#[inline]
|
||||
fn sub(self, other: T) -> Complex<T> {
|
||||
Complex::new(self.re - other, self.im)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Clone + Num> Mul<T> for Complex<T> {
|
||||
type Output = Complex<T>;
|
||||
|
||||
#[inline]
|
||||
fn mul(self, other: T) -> Complex<T> {
|
||||
Complex::new(self.re * other.clone(), self.im * other)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Clone + Num> Div<T> for Complex<T> {
|
||||
type Output = Complex<T>;
|
||||
|
||||
#[inline]
|
||||
fn div(self, other: T) -> Complex<T> {
|
||||
Complex::new(self.re / other.clone(), self.im / other)
|
||||
}
|
||||
}
|
||||
|
||||
real_arithmetic!(usize, u8, u16, u32, u64, isize, i8, i16, i32, i64, f32, f64);
|
||||
|
||||
/* constants */
|
||||
|
|
Loading…
Reference in New Issue