implement Stein's algorithm for gcd
This commit is contained in:
parent
85b9ac58bf
commit
e892054813
|
@ -217,15 +217,38 @@ macro_rules! impl_integer_for_isize {
|
||||||
/// `other`. The result is always positive.
|
/// `other`. The result is always positive.
|
||||||
#[inline]
|
#[inline]
|
||||||
fn gcd(&self, other: &$T) -> $T {
|
fn gcd(&self, other: &$T) -> $T {
|
||||||
// Use Euclid's algorithm
|
// Use Stein's algorithm
|
||||||
let mut m = *self;
|
let mut m = *self;
|
||||||
let mut n = *other;
|
let mut n = *other;
|
||||||
|
if m == 0 || n == 0 { return (m | n).abs() }
|
||||||
|
|
||||||
|
// find common factors of 2
|
||||||
|
let shift = (m | n).trailing_zeros();
|
||||||
|
|
||||||
|
// If one number is the minimum value, it cannot be represented as a
|
||||||
|
// positive number. It's also a power of two, so the gcd can
|
||||||
|
// trivially be calculated in that case by bitshifting
|
||||||
|
|
||||||
|
// The result is always positive in two's complement, unless
|
||||||
|
// a and b are the minimum value, then it's negative
|
||||||
|
// no other way to represent that number
|
||||||
|
if m == <$T>::min_value() || n == <$T>::min_value() { return 1 << shift }
|
||||||
|
|
||||||
|
// guaranteed to be positive now, rest like unsigned algorithm
|
||||||
|
m = m.abs();
|
||||||
|
n = n.abs();
|
||||||
|
|
||||||
|
// divide a and b by 2 until odd
|
||||||
|
// m inside loop
|
||||||
|
n >>= n.trailing_zeros();
|
||||||
|
|
||||||
while m != 0 {
|
while m != 0 {
|
||||||
let temp = m;
|
m >>= m.trailing_zeros();
|
||||||
m = n % temp;
|
if n > m { ::std::mem::swap(&mut n, &mut m) }
|
||||||
n = temp;
|
m -= n;
|
||||||
}
|
}
|
||||||
n.abs()
|
|
||||||
|
n << shift
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Calculates the Lowest Common Multiple (LCM) of the number and
|
/// Calculates the Lowest Common Multiple (LCM) of the number and
|
||||||
|
@ -396,15 +419,25 @@ macro_rules! impl_integer_for_usize {
|
||||||
/// Calculates the Greatest Common Divisor (GCD) of the number and `other`
|
/// Calculates the Greatest Common Divisor (GCD) of the number and `other`
|
||||||
#[inline]
|
#[inline]
|
||||||
fn gcd(&self, other: &$T) -> $T {
|
fn gcd(&self, other: &$T) -> $T {
|
||||||
// Use Euclid's algorithm
|
// Use Stein's algorithm
|
||||||
let mut m = *self;
|
let mut m = *self;
|
||||||
let mut n = *other;
|
let mut n = *other;
|
||||||
|
if m == 0 || n == 0 { return m | n }
|
||||||
|
|
||||||
|
// find common factors of 2
|
||||||
|
let shift = (m | n).trailing_zeros();
|
||||||
|
|
||||||
|
// divide a and b by 2 until odd
|
||||||
|
// m inside loop
|
||||||
|
n >>= n.trailing_zeros();
|
||||||
|
|
||||||
while m != 0 {
|
while m != 0 {
|
||||||
let temp = m;
|
m >>= m.trailing_zeros();
|
||||||
m = n % temp;
|
if n > m { ::std::mem::swap(&mut n, &mut m) }
|
||||||
n = temp;
|
m -= n;
|
||||||
}
|
}
|
||||||
n
|
|
||||||
|
n << shift
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
|
/// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
|
||||||
|
|
Loading…
Reference in New Issue