From f1a80857ee03db3662cb15fc03039b7c09830929 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=C5=81ukasz=20Jan=20Niemier?= Date: Wed, 17 Feb 2016 18:51:28 +0100 Subject: [PATCH] Extract integer module --- Cargo.toml | 3 + integer/Cargo.toml | 5 +- integer/src/lib.rs | 58 ++-- src/integer.rs | 656 --------------------------------------------- src/lib.rs | 3 +- 5 files changed, 46 insertions(+), 679 deletions(-) delete mode 100644 src/integer.rs diff --git a/Cargo.toml b/Cargo.toml index 7eb975f..37edb98 100644 --- a/Cargo.toml +++ b/Cargo.toml @@ -21,6 +21,9 @@ serde = { version = "^0.7.0", optional = true } [dependencies.num-traits] path = "./traits" +[dependencies.num-integer] +path = "./integer" + [dev-dependencies] # Some tests of non-rand functionality still use rand because the tests # themselves are randomized. diff --git a/integer/Cargo.toml b/integer/Cargo.toml index 651a69d..29991b3 100644 --- a/integer/Cargo.toml +++ b/integer/Cargo.toml @@ -1,6 +1,7 @@ [package] -name = "integer" +name = "num-integer" version = "0.1.0" authors = ["Ɓukasz Jan Niemier "] -[dependencies] +[dependencies.num-traits] +path = "../traits" diff --git a/integer/src/lib.rs b/integer/src/lib.rs index eca274f..94d5f82 100644 --- a/integer/src/lib.rs +++ b/integer/src/lib.rs @@ -10,7 +10,9 @@ //! Integer trait and functions. -use {Num, Signed}; +extern crate num_traits as traits; + +use traits::{Num, Signed}; pub trait Integer : Sized @@ -179,7 +181,7 @@ macro_rules! impl_integer_for_isize { impl Integer for $T { /// Floored integer division #[inline] - fn div_floor(&self, other: &$T) -> $T { + fn div_floor(&self, other: &Self) -> Self { // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) match self.div_rem(other) { @@ -191,7 +193,7 @@ macro_rules! impl_integer_for_isize { /// Floored integer modulo #[inline] - fn mod_floor(&self, other: &$T) -> $T { + fn mod_floor(&self, other: &Self) -> Self { // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) match *self % *other { @@ -203,7 +205,7 @@ macro_rules! impl_integer_for_isize { /// Calculates `div_floor` and `mod_floor` simultaneously #[inline] - fn div_mod_floor(&self, other: &$T) -> ($T,$T) { + fn div_mod_floor(&self, other: &Self) -> (Self, Self) { // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) match self.div_rem(other) { @@ -216,7 +218,7 @@ macro_rules! impl_integer_for_isize { /// Calculates the Greatest Common Divisor (GCD) of the number and /// `other`. The result is always positive. #[inline] - fn gcd(&self, other: &$T) -> $T { + fn gcd(&self, other: &Self) -> Self { // Use Stein's algorithm let mut m = *self; let mut n = *other; @@ -233,7 +235,7 @@ macro_rules! impl_integer_for_isize { // Assuming two's complement, the number created by the shift // is positive for all numbers except gcd = abs(min value) // The call to .abs() causes a panic in debug mode - if m == <$T>::min_value() || n == <$T>::min_value() { + if m == Self::min_value() || n == Self::min_value() { return (1 << shift).abs() } @@ -257,18 +259,22 @@ macro_rules! impl_integer_for_isize { /// Calculates the Lowest Common Multiple (LCM) of the number and /// `other`. #[inline] - fn lcm(&self, other: &$T) -> $T { + fn lcm(&self, other: &Self) -> Self { // should not have to recalculate abs ((*self * *other) / self.gcd(other)).abs() } /// Deprecated, use `is_multiple_of` instead. #[inline] - fn divides(&self, other: &$T) -> bool { return self.is_multiple_of(other); } + fn divides(&self, other: &Self) -> bool { + self.is_multiple_of(other) + } /// Returns `true` if the number is a multiple of `other`. #[inline] - fn is_multiple_of(&self, other: &$T) -> bool { *self % *other == 0 } + fn is_multiple_of(&self, other: &Self) -> bool { + *self % *other == 0 + } /// Returns `true` if the number is divisible by `2` #[inline] @@ -280,7 +286,7 @@ macro_rules! impl_integer_for_isize { /// Simultaneous truncated integer division and modulus. #[inline] - fn div_rem(&self, other: &$T) -> ($T, $T) { + fn div_rem(&self, other: &Self) -> (Self, Self) { (*self / *other, *self % *other) } } @@ -295,7 +301,7 @@ macro_rules! impl_integer_for_isize { /// - `d`: denominator (divisor) /// - `qr`: quotient and remainder #[cfg(test)] - fn test_division_rule((n,d): ($T,$T), (q,r): ($T,$T)) { + fn test_division_rule((n,d): ($T, $T), (q,r): ($T, $T)) { assert_eq!(d * q + r, n); } @@ -475,15 +481,19 @@ macro_rules! impl_integer_for_usize { impl Integer for $T { /// Unsigned integer division. Returns the same result as `div` (`/`). #[inline] - fn div_floor(&self, other: &$T) -> $T { *self / *other } + fn div_floor(&self, other: &Self) -> Self { + *self / *other + } /// Unsigned integer modulo operation. Returns the same result as `rem` (`%`). #[inline] - fn mod_floor(&self, other: &$T) -> $T { *self % *other } + fn mod_floor(&self, other: &Self) -> Self { + *self % *other + } /// Calculates the Greatest Common Divisor (GCD) of the number and `other` #[inline] - fn gcd(&self, other: &$T) -> $T { + fn gcd(&self, other: &Self) -> Self { // Use Stein's algorithm let mut m = *self; let mut n = *other; @@ -507,29 +517,37 @@ macro_rules! impl_integer_for_usize { /// Calculates the Lowest Common Multiple (LCM) of the number and `other`. #[inline] - fn lcm(&self, other: &$T) -> $T { + fn lcm(&self, other: &Self) -> Self { (*self * *other) / self.gcd(other) } /// Deprecated, use `is_multiple_of` instead. #[inline] - fn divides(&self, other: &$T) -> bool { return self.is_multiple_of(other); } + fn divides(&self, other: &Self) -> bool { + self.is_multiple_of(other) + } /// Returns `true` if the number is a multiple of `other`. #[inline] - fn is_multiple_of(&self, other: &$T) -> bool { *self % *other == 0 } + fn is_multiple_of(&self, other: &Self) -> bool { + *self % *other == 0 + } /// Returns `true` if the number is divisible by `2`. #[inline] - fn is_even(&self) -> bool { (*self) & 1 == 0 } + fn is_even(&self) -> bool { + *self % 2 == 0 + } /// Returns `true` if the number is not divisible by `2`. #[inline] - fn is_odd(&self) -> bool { !(*self).is_even() } + fn is_odd(&self) -> bool { + !self.is_even() + } /// Simultaneous truncated integer division and modulus. #[inline] - fn div_rem(&self, other: &$T) -> ($T, $T) { + fn div_rem(&self, other: &Self) -> (Self, Self) { (*self / *other, *self % *other) } } diff --git a/src/integer.rs b/src/integer.rs deleted file mode 100644 index 883c01c..0000000 --- a/src/integer.rs +++ /dev/null @@ -1,656 +0,0 @@ -// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// http://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 or the MIT license -// , at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! Integer trait and functions. - -use {Num, Signed}; - -pub trait Integer - : Sized + Num + Ord -{ - /// Floored integer division. - /// - /// # Examples - /// - /// ~~~ - /// # use num::Integer; - /// assert!(( 8).div_floor(& 3) == 2); - /// assert!(( 8).div_floor(&-3) == -3); - /// assert!((-8).div_floor(& 3) == -3); - /// assert!((-8).div_floor(&-3) == 2); - /// - /// assert!(( 1).div_floor(& 2) == 0); - /// assert!(( 1).div_floor(&-2) == -1); - /// assert!((-1).div_floor(& 2) == -1); - /// assert!((-1).div_floor(&-2) == 0); - /// ~~~ - fn div_floor(&self, other: &Self) -> Self; - - /// Floored integer modulo, satisfying: - /// - /// ~~~ - /// # use num::Integer; - /// # let n = 1; let d = 1; - /// assert!(n.div_floor(&d) * d + n.mod_floor(&d) == n) - /// ~~~ - /// - /// # Examples - /// - /// ~~~ - /// # use num::Integer; - /// assert!(( 8).mod_floor(& 3) == 2); - /// assert!(( 8).mod_floor(&-3) == -1); - /// assert!((-8).mod_floor(& 3) == 1); - /// assert!((-8).mod_floor(&-3) == -2); - /// - /// assert!(( 1).mod_floor(& 2) == 1); - /// assert!(( 1).mod_floor(&-2) == -1); - /// assert!((-1).mod_floor(& 2) == 1); - /// assert!((-1).mod_floor(&-2) == -1); - /// ~~~ - fn mod_floor(&self, other: &Self) -> Self; - - /// Greatest Common Divisor (GCD). - /// - /// # Examples - /// - /// ~~~ - /// # use num::Integer; - /// assert_eq!(6.gcd(&8), 2); - /// assert_eq!(7.gcd(&3), 1); - /// ~~~ - fn gcd(&self, other: &Self) -> Self; - - /// Lowest Common Multiple (LCM). - /// - /// # Examples - /// - /// ~~~ - /// # use num::Integer; - /// assert_eq!(7.lcm(&3), 21); - /// assert_eq!(2.lcm(&4), 4); - /// ~~~ - fn lcm(&self, other: &Self) -> Self; - - /// Deprecated, use `is_multiple_of` instead. - fn divides(&self, other: &Self) -> bool; - - /// Returns `true` if `other` is a multiple of `self`. - /// - /// # Examples - /// - /// ~~~ - /// # use num::Integer; - /// assert_eq!(9.is_multiple_of(&3), true); - /// assert_eq!(3.is_multiple_of(&9), false); - /// ~~~ - fn is_multiple_of(&self, other: &Self) -> bool; - - /// Returns `true` if the number is even. - /// - /// # Examples - /// - /// ~~~ - /// # use num::Integer; - /// assert_eq!(3.is_even(), false); - /// assert_eq!(4.is_even(), true); - /// ~~~ - fn is_even(&self) -> bool; - - /// Returns `true` if the number is odd. - /// - /// # Examples - /// - /// ~~~ - /// # use num::Integer; - /// assert_eq!(3.is_odd(), true); - /// assert_eq!(4.is_odd(), false); - /// ~~~ - fn is_odd(&self) -> bool; - - /// Simultaneous truncated integer division and modulus. - /// Returns `(quotient, remainder)`. - /// - /// # Examples - /// - /// ~~~ - /// # use num::Integer; - /// assert_eq!(( 8).div_rem( &3), ( 2, 2)); - /// assert_eq!(( 8).div_rem(&-3), (-2, 2)); - /// assert_eq!((-8).div_rem( &3), (-2, -2)); - /// assert_eq!((-8).div_rem(&-3), ( 2, -2)); - /// - /// assert_eq!(( 1).div_rem( &2), ( 0, 1)); - /// assert_eq!(( 1).div_rem(&-2), ( 0, 1)); - /// assert_eq!((-1).div_rem( &2), ( 0, -1)); - /// assert_eq!((-1).div_rem(&-2), ( 0, -1)); - /// ~~~ - #[inline] - fn div_rem(&self, other: &Self) -> (Self, Self); - - /// Simultaneous floored integer division and modulus. - /// Returns `(quotient, remainder)`. - /// - /// # Examples - /// - /// ~~~ - /// # use num::Integer; - /// assert_eq!(( 8).div_mod_floor( &3), ( 2, 2)); - /// assert_eq!(( 8).div_mod_floor(&-3), (-3, -1)); - /// assert_eq!((-8).div_mod_floor( &3), (-3, 1)); - /// assert_eq!((-8).div_mod_floor(&-3), ( 2, -2)); - /// - /// assert_eq!(( 1).div_mod_floor( &2), ( 0, 1)); - /// assert_eq!(( 1).div_mod_floor(&-2), (-1, -1)); - /// assert_eq!((-1).div_mod_floor( &2), (-1, 1)); - /// assert_eq!((-1).div_mod_floor(&-2), ( 0, -1)); - /// ~~~ - fn div_mod_floor(&self, other: &Self) -> (Self, Self) { - (self.div_floor(other), self.mod_floor(other)) - } -} - -/// Simultaneous integer division and modulus -#[inline] pub fn div_rem(x: T, y: T) -> (T, T) { x.div_rem(&y) } -/// Floored integer division -#[inline] pub fn div_floor(x: T, y: T) -> T { x.div_floor(&y) } -/// Floored integer modulus -#[inline] pub fn mod_floor(x: T, y: T) -> T { x.mod_floor(&y) } -/// Simultaneous floored integer division and modulus -#[inline] pub fn div_mod_floor(x: T, y: T) -> (T, T) { x.div_mod_floor(&y) } - -/// Calculates the Greatest Common Divisor (GCD) of the number and `other`. The -/// result is always positive. -#[inline(always)] pub fn gcd(x: T, y: T) -> T { x.gcd(&y) } -/// Calculates the Lowest Common Multiple (LCM) of the number and `other`. -#[inline(always)] pub fn lcm(x: T, y: T) -> T { x.lcm(&y) } - -macro_rules! impl_integer_for_isize { - ($T:ty, $test_mod:ident) => ( - impl Integer for $T { - /// Floored integer division - #[inline] - fn div_floor(&self, other: &$T) -> $T { - // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, - // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) - match self.div_rem(other) { - (d, r) if (r > 0 && *other < 0) - || (r < 0 && *other > 0) => d - 1, - (d, _) => d, - } - } - - /// Floored integer modulo - #[inline] - fn mod_floor(&self, other: &$T) -> $T { - // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, - // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) - match *self % *other { - r if (r > 0 && *other < 0) - || (r < 0 && *other > 0) => r + *other, - r => r, - } - } - - /// Calculates `div_floor` and `mod_floor` simultaneously - #[inline] - fn div_mod_floor(&self, other: &$T) -> ($T,$T) { - // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, - // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) - match self.div_rem(other) { - (d, r) if (r > 0 && *other < 0) - || (r < 0 && *other > 0) => (d - 1, r + *other), - (d, r) => (d, r), - } - } - - /// Calculates the Greatest Common Divisor (GCD) of the number and - /// `other`. The result is always positive. - #[inline] - fn gcd(&self, other: &$T) -> $T { - // Use Stein's algorithm - let mut m = *self; - let mut n = *other; - if m == 0 || n == 0 { return (m | n).abs() } - - // find common factors of 2 - let shift = (m | n).trailing_zeros(); - - // The algorithm needs positive numbers, but the minimum value - // can't be represented as a positive one. - // It's also a power of two, so the gcd can be - // calculated by bitshifting in that case - - // Assuming two's complement, the number created by the shift - // is positive for all numbers except gcd = abs(min value) - // The call to .abs() causes a panic in debug mode - if m == <$T>::min_value() || n == <$T>::min_value() { - return (1 << shift).abs() - } - - // guaranteed to be positive now, rest like unsigned algorithm - m = m.abs(); - n = n.abs(); - - // divide n and m by 2 until odd - // m inside loop - n >>= n.trailing_zeros(); - - while m != 0 { - m >>= m.trailing_zeros(); - if n > m { ::std::mem::swap(&mut n, &mut m) } - m -= n; - } - - n << shift - } - - /// Calculates the Lowest Common Multiple (LCM) of the number and - /// `other`. - #[inline] - fn lcm(&self, other: &$T) -> $T { - // should not have to recalculate abs - (*self * (*other / self.gcd(other))).abs() - } - - /// Deprecated, use `is_multiple_of` instead. - #[inline] - fn divides(&self, other: &$T) -> bool { return self.is_multiple_of(other); } - - /// Returns `true` if the number is a multiple of `other`. - #[inline] - fn is_multiple_of(&self, other: &$T) -> bool { *self % *other == 0 } - - /// Returns `true` if the number is divisible by `2` - #[inline] - fn is_even(&self) -> bool { (*self) & 1 == 0 } - - /// Returns `true` if the number is not divisible by `2` - #[inline] - fn is_odd(&self) -> bool { !self.is_even() } - - /// Simultaneous truncated integer division and modulus. - #[inline] - fn div_rem(&self, other: &$T) -> ($T, $T) { - (*self / *other, *self % *other) - } - } - - #[cfg(test)] - mod $test_mod { - use Integer; - - /// Checks that the division rule holds for: - /// - /// - `n`: numerator (dividend) - /// - `d`: denominator (divisor) - /// - `qr`: quotient and remainder - #[cfg(test)] - fn test_division_rule((n,d): ($T,$T), (q,r): ($T,$T)) { - assert_eq!(d * q + r, n); - } - - #[test] - fn test_div_rem() { - fn test_nd_dr(nd: ($T,$T), qr: ($T,$T)) { - let (n,d) = nd; - let separate_div_rem = (n / d, n % d); - let combined_div_rem = n.div_rem(&d); - - assert_eq!(separate_div_rem, qr); - assert_eq!(combined_div_rem, qr); - - test_division_rule(nd, separate_div_rem); - test_division_rule(nd, combined_div_rem); - } - - test_nd_dr(( 8, 3), ( 2, 2)); - test_nd_dr(( 8, -3), (-2, 2)); - test_nd_dr((-8, 3), (-2, -2)); - test_nd_dr((-8, -3), ( 2, -2)); - - test_nd_dr(( 1, 2), ( 0, 1)); - test_nd_dr(( 1, -2), ( 0, 1)); - test_nd_dr((-1, 2), ( 0, -1)); - test_nd_dr((-1, -2), ( 0, -1)); - } - - #[test] - fn test_div_mod_floor() { - fn test_nd_dm(nd: ($T,$T), dm: ($T,$T)) { - let (n,d) = nd; - let separate_div_mod_floor = (n.div_floor(&d), n.mod_floor(&d)); - let combined_div_mod_floor = n.div_mod_floor(&d); - - assert_eq!(separate_div_mod_floor, dm); - assert_eq!(combined_div_mod_floor, dm); - - test_division_rule(nd, separate_div_mod_floor); - test_division_rule(nd, combined_div_mod_floor); - } - - test_nd_dm(( 8, 3), ( 2, 2)); - test_nd_dm(( 8, -3), (-3, -1)); - test_nd_dm((-8, 3), (-3, 1)); - test_nd_dm((-8, -3), ( 2, -2)); - - test_nd_dm(( 1, 2), ( 0, 1)); - test_nd_dm(( 1, -2), (-1, -1)); - test_nd_dm((-1, 2), (-1, 1)); - test_nd_dm((-1, -2), ( 0, -1)); - } - - #[test] - fn test_gcd() { - assert_eq!((10 as $T).gcd(&2), 2 as $T); - assert_eq!((10 as $T).gcd(&3), 1 as $T); - assert_eq!((0 as $T).gcd(&3), 3 as $T); - assert_eq!((3 as $T).gcd(&3), 3 as $T); - assert_eq!((56 as $T).gcd(&42), 14 as $T); - assert_eq!((3 as $T).gcd(&-3), 3 as $T); - assert_eq!((-6 as $T).gcd(&3), 3 as $T); - assert_eq!((-4 as $T).gcd(&-2), 2 as $T); - } - - #[test] - fn test_gcd_cmp_with_euclidean() { - fn euclidean_gcd(mut m: $T, mut n: $T) -> $T { - while m != 0 { - ::std::mem::swap(&mut m, &mut n); - m %= n; - } - - n.abs() - } - - // gcd(-128, b) = 128 is not representable as positive value - // for i8 - for i in -127..127 { - for j in -127..127 { - assert_eq!(euclidean_gcd(i,j), i.gcd(&j)); - } - } - - // last value - // FIXME: Use inclusive ranges for above loop when implemented - let i = 127; - for j in -127..127 { - assert_eq!(euclidean_gcd(i,j), i.gcd(&j)); - } - assert_eq!(127.gcd(&127), 127); - } - - #[test] - fn test_gcd_min_val() { - let min = <$T>::min_value(); - let max = <$T>::max_value(); - let max_pow2 = max / 2 + 1; - assert_eq!(min.gcd(&max), 1 as $T); - assert_eq!(max.gcd(&min), 1 as $T); - assert_eq!(min.gcd(&max_pow2), max_pow2); - assert_eq!(max_pow2.gcd(&min), max_pow2); - assert_eq!(min.gcd(&42), 2 as $T); - assert_eq!((42 as $T).gcd(&min), 2 as $T); - } - - #[test] - #[should_panic] - fn test_gcd_min_val_min_val() { - let min = <$T>::min_value(); - assert!(min.gcd(&min) >= 0); - } - - #[test] - #[should_panic] - fn test_gcd_min_val_0() { - let min = <$T>::min_value(); - assert!(min.gcd(&0) >= 0); - } - - #[test] - #[should_panic] - fn test_gcd_0_min_val() { - let min = <$T>::min_value(); - assert!((0 as $T).gcd(&min) >= 0); - } - - #[test] - fn test_lcm() { - assert_eq!((1 as $T).lcm(&0), 0 as $T); - assert_eq!((0 as $T).lcm(&1), 0 as $T); - assert_eq!((1 as $T).lcm(&1), 1 as $T); - assert_eq!((-1 as $T).lcm(&1), 1 as $T); - assert_eq!((1 as $T).lcm(&-1), 1 as $T); - assert_eq!((-1 as $T).lcm(&-1), 1 as $T); - assert_eq!((8 as $T).lcm(&9), 72 as $T); - assert_eq!((11 as $T).lcm(&5), 55 as $T); - } - - #[test] - fn test_even() { - assert_eq!((-4 as $T).is_even(), true); - assert_eq!((-3 as $T).is_even(), false); - assert_eq!((-2 as $T).is_even(), true); - assert_eq!((-1 as $T).is_even(), false); - assert_eq!((0 as $T).is_even(), true); - assert_eq!((1 as $T).is_even(), false); - assert_eq!((2 as $T).is_even(), true); - assert_eq!((3 as $T).is_even(), false); - assert_eq!((4 as $T).is_even(), true); - } - - #[test] - fn test_odd() { - assert_eq!((-4 as $T).is_odd(), false); - assert_eq!((-3 as $T).is_odd(), true); - assert_eq!((-2 as $T).is_odd(), false); - assert_eq!((-1 as $T).is_odd(), true); - assert_eq!((0 as $T).is_odd(), false); - assert_eq!((1 as $T).is_odd(), true); - assert_eq!((2 as $T).is_odd(), false); - assert_eq!((3 as $T).is_odd(), true); - assert_eq!((4 as $T).is_odd(), false); - } - } - ) -} - -impl_integer_for_isize!(i8, test_integer_i8); -impl_integer_for_isize!(i16, test_integer_i16); -impl_integer_for_isize!(i32, test_integer_i32); -impl_integer_for_isize!(i64, test_integer_i64); -impl_integer_for_isize!(isize, test_integer_isize); - -macro_rules! impl_integer_for_usize { - ($T:ty, $test_mod:ident) => ( - impl Integer for $T { - /// Unsigned integer division. Returns the same result as `div` (`/`). - #[inline] - fn div_floor(&self, other: &$T) -> $T { *self / *other } - - /// Unsigned integer modulo operation. Returns the same result as `rem` (`%`). - #[inline] - fn mod_floor(&self, other: &$T) -> $T { *self % *other } - - /// Calculates the Greatest Common Divisor (GCD) of the number and `other` - #[inline] - fn gcd(&self, other: &$T) -> $T { - // Use Stein's algorithm - let mut m = *self; - let mut n = *other; - if m == 0 || n == 0 { return m | n } - - // find common factors of 2 - let shift = (m | n).trailing_zeros(); - - // divide n and m by 2 until odd - // m inside loop - n >>= n.trailing_zeros(); - - while m != 0 { - m >>= m.trailing_zeros(); - if n > m { ::std::mem::swap(&mut n, &mut m) } - m -= n; - } - - n << shift - } - - /// Calculates the Lowest Common Multiple (LCM) of the number and `other`. - #[inline] - fn lcm(&self, other: &$T) -> $T { - *self * (*other / self.gcd(other)) - } - - /// Deprecated, use `is_multiple_of` instead. - #[inline] - fn divides(&self, other: &$T) -> bool { return self.is_multiple_of(other); } - - /// Returns `true` if the number is a multiple of `other`. - #[inline] - fn is_multiple_of(&self, other: &$T) -> bool { *self % *other == 0 } - - /// Returns `true` if the number is divisible by `2`. - #[inline] - fn is_even(&self) -> bool { (*self) & 1 == 0 } - - /// Returns `true` if the number is not divisible by `2`. - #[inline] - fn is_odd(&self) -> bool { !(*self).is_even() } - - /// Simultaneous truncated integer division and modulus. - #[inline] - fn div_rem(&self, other: &$T) -> ($T, $T) { - (*self / *other, *self % *other) - } - } - - #[cfg(test)] - mod $test_mod { - use Integer; - - #[test] - fn test_div_mod_floor() { - assert_eq!((10 as $T).div_floor(&(3 as $T)), 3 as $T); - assert_eq!((10 as $T).mod_floor(&(3 as $T)), 1 as $T); - assert_eq!((10 as $T).div_mod_floor(&(3 as $T)), (3 as $T, 1 as $T)); - assert_eq!((5 as $T).div_floor(&(5 as $T)), 1 as $T); - assert_eq!((5 as $T).mod_floor(&(5 as $T)), 0 as $T); - assert_eq!((5 as $T).div_mod_floor(&(5 as $T)), (1 as $T, 0 as $T)); - assert_eq!((3 as $T).div_floor(&(7 as $T)), 0 as $T); - assert_eq!((3 as $T).mod_floor(&(7 as $T)), 3 as $T); - assert_eq!((3 as $T).div_mod_floor(&(7 as $T)), (0 as $T, 3 as $T)); - } - - #[test] - fn test_gcd() { - assert_eq!((10 as $T).gcd(&2), 2 as $T); - assert_eq!((10 as $T).gcd(&3), 1 as $T); - assert_eq!((0 as $T).gcd(&3), 3 as $T); - assert_eq!((3 as $T).gcd(&3), 3 as $T); - assert_eq!((56 as $T).gcd(&42), 14 as $T); - } - - #[test] - fn test_gcd_cmp_with_euclidean() { - fn euclidean_gcd(mut m: $T, mut n: $T) -> $T { - while m != 0 { - ::std::mem::swap(&mut m, &mut n); - m %= n; - } - n - } - - for i in 0..255 { - for j in 0..255 { - assert_eq!(euclidean_gcd(i,j), i.gcd(&j)); - } - } - - // last value - // FIXME: Use inclusive ranges for above loop when implemented - let i = 255; - for j in 0..255 { - assert_eq!(euclidean_gcd(i,j), i.gcd(&j)); - } - assert_eq!(255.gcd(&255), 255); - } - - #[test] - fn test_lcm() { - assert_eq!((1 as $T).lcm(&0), 0 as $T); - assert_eq!((0 as $T).lcm(&1), 0 as $T); - assert_eq!((1 as $T).lcm(&1), 1 as $T); - assert_eq!((8 as $T).lcm(&9), 72 as $T); - assert_eq!((11 as $T).lcm(&5), 55 as $T); - assert_eq!((15 as $T).lcm(&17), 255 as $T); - } - - #[test] - fn test_is_multiple_of() { - assert!((6 as $T).is_multiple_of(&(6 as $T))); - assert!((6 as $T).is_multiple_of(&(3 as $T))); - assert!((6 as $T).is_multiple_of(&(1 as $T))); - } - - #[test] - fn test_even() { - assert_eq!((0 as $T).is_even(), true); - assert_eq!((1 as $T).is_even(), false); - assert_eq!((2 as $T).is_even(), true); - assert_eq!((3 as $T).is_even(), false); - assert_eq!((4 as $T).is_even(), true); - } - - #[test] - fn test_odd() { - assert_eq!((0 as $T).is_odd(), false); - assert_eq!((1 as $T).is_odd(), true); - assert_eq!((2 as $T).is_odd(), false); - assert_eq!((3 as $T).is_odd(), true); - assert_eq!((4 as $T).is_odd(), false); - } - } - ) -} - -impl_integer_for_usize!(u8, test_integer_u8); -impl_integer_for_usize!(u16, test_integer_u16); -impl_integer_for_usize!(u32, test_integer_u32); -impl_integer_for_usize!(u64, test_integer_u64); -impl_integer_for_usize!(usize, test_integer_usize); - -#[test] -fn test_lcm_overflow() { - macro_rules! check { - ($t:ty, $x:expr, $y:expr, $r:expr) => { { - let x: $t = $x; - let y: $t = $y; - let o = x.checked_mul(y); - assert!(o.is_none(), - "sanity checking that {} input {} * {} overflows", - stringify!($t), x, y); - assert_eq!(x.lcm(&y), $r); - assert_eq!(y.lcm(&x), $r); - } } - } - - // Original bug (Issue #166) - check!(i64, 46656000000000000, 600, 46656000000000000); - - check!(i8, 0x40, 0x04, 0x40); - check!(u8, 0x80, 0x02, 0x80); - check!(i16, 0x40_00, 0x04, 0x40_00); - check!(u16, 0x80_00, 0x02, 0x80_00); - check!(i32, 0x4000_0000, 0x04, 0x4000_0000); - check!(u32, 0x8000_0000, 0x02, 0x8000_0000); - check!(i64, 0x4000_0000_0000_0000, 0x04, 0x4000_0000_0000_0000); - check!(u64, 0x8000_0000_0000_0000, 0x02, 0x8000_0000_0000_0000); -} diff --git a/src/lib.rs b/src/lib.rs index 48ef305..46e0adb 100644 --- a/src/lib.rs +++ b/src/lib.rs @@ -58,6 +58,7 @@ html_playground_url = "http://play.rust-lang.org/")] extern crate num_traits; +extern crate num_integer; #[cfg(feature = "rustc-serialize")] extern crate rustc_serialize; @@ -92,7 +93,7 @@ use std::ops::{Mul}; #[cfg(feature = "bigint")] pub mod bigint; pub mod complex; -pub mod integer; +pub mod integer { pub use num_integer::*; } pub mod iter; pub mod traits { pub use num_traits::*; } #[cfg(feature = "rational")]