use std::mem::size_of; use identities::Zero; use bounds::Bounded; /// A generic trait for converting a value to a number. pub trait ToPrimitive { /// Converts the value of `self` to an `isize`. #[inline] fn to_isize(&self) -> Option { self.to_i64().and_then(|x| x.to_isize()) } /// Converts the value of `self` to an `i8`. #[inline] fn to_i8(&self) -> Option { self.to_i64().and_then(|x| x.to_i8()) } /// Converts the value of `self` to an `i16`. #[inline] fn to_i16(&self) -> Option { self.to_i64().and_then(|x| x.to_i16()) } /// Converts the value of `self` to an `i32`. #[inline] fn to_i32(&self) -> Option { self.to_i64().and_then(|x| x.to_i32()) } /// Converts the value of `self` to an `i64`. fn to_i64(&self) -> Option; /// Converts the value of `self` to a `usize`. #[inline] fn to_usize(&self) -> Option { self.to_u64().and_then(|x| x.to_usize()) } /// Converts the value of `self` to an `u8`. #[inline] fn to_u8(&self) -> Option { self.to_u64().and_then(|x| x.to_u8()) } /// Converts the value of `self` to an `u16`. #[inline] fn to_u16(&self) -> Option { self.to_u64().and_then(|x| x.to_u16()) } /// Converts the value of `self` to an `u32`. #[inline] fn to_u32(&self) -> Option { self.to_u64().and_then(|x| x.to_u32()) } /// Converts the value of `self` to an `u64`. #[inline] fn to_u64(&self) -> Option; /// Converts the value of `self` to an `f32`. #[inline] fn to_f32(&self) -> Option { self.to_f64().and_then(|x| x.to_f32()) } /// Converts the value of `self` to an `f64`. #[inline] fn to_f64(&self) -> Option { self.to_i64().and_then(|x| x.to_f64()) } } macro_rules! impl_to_primitive_int_to_int { ($SrcT:ty, $DstT:ty, $slf:expr) => ( { if size_of::<$SrcT>() <= size_of::<$DstT>() { Some($slf as $DstT) } else { let n = $slf as i64; let min_value: $DstT = Bounded::min_value(); let max_value: $DstT = Bounded::max_value(); if min_value as i64 <= n && n <= max_value as i64 { Some($slf as $DstT) } else { None } } } ) } macro_rules! impl_to_primitive_int_to_uint { ($SrcT:ty, $DstT:ty, $slf:expr) => ( { let zero: $SrcT = Zero::zero(); let max_value: $DstT = Bounded::max_value(); if zero <= $slf && $slf as u64 <= max_value as u64 { Some($slf as $DstT) } else { None } } ) } macro_rules! impl_to_primitive_int { ($T:ty) => ( impl ToPrimitive for $T { #[inline] fn to_isize(&self) -> Option { impl_to_primitive_int_to_int!($T, isize, *self) } #[inline] fn to_i8(&self) -> Option { impl_to_primitive_int_to_int!($T, i8, *self) } #[inline] fn to_i16(&self) -> Option { impl_to_primitive_int_to_int!($T, i16, *self) } #[inline] fn to_i32(&self) -> Option { impl_to_primitive_int_to_int!($T, i32, *self) } #[inline] fn to_i64(&self) -> Option { impl_to_primitive_int_to_int!($T, i64, *self) } #[inline] fn to_usize(&self) -> Option { impl_to_primitive_int_to_uint!($T, usize, *self) } #[inline] fn to_u8(&self) -> Option { impl_to_primitive_int_to_uint!($T, u8, *self) } #[inline] fn to_u16(&self) -> Option { impl_to_primitive_int_to_uint!($T, u16, *self) } #[inline] fn to_u32(&self) -> Option { impl_to_primitive_int_to_uint!($T, u32, *self) } #[inline] fn to_u64(&self) -> Option { impl_to_primitive_int_to_uint!($T, u64, *self) } #[inline] fn to_f32(&self) -> Option { Some(*self as f32) } #[inline] fn to_f64(&self) -> Option { Some(*self as f64) } } ) } impl_to_primitive_int!(isize); impl_to_primitive_int!(i8); impl_to_primitive_int!(i16); impl_to_primitive_int!(i32); impl_to_primitive_int!(i64); macro_rules! impl_to_primitive_uint_to_int { ($DstT:ty, $slf:expr) => ( { let max_value: $DstT = Bounded::max_value(); if $slf as u64 <= max_value as u64 { Some($slf as $DstT) } else { None } } ) } macro_rules! impl_to_primitive_uint_to_uint { ($SrcT:ty, $DstT:ty, $slf:expr) => ( { if size_of::<$SrcT>() <= size_of::<$DstT>() { Some($slf as $DstT) } else { let zero: $SrcT = Zero::zero(); let max_value: $DstT = Bounded::max_value(); if zero <= $slf && $slf as u64 <= max_value as u64 { Some($slf as $DstT) } else { None } } } ) } macro_rules! impl_to_primitive_uint { ($T:ty) => ( impl ToPrimitive for $T { #[inline] fn to_isize(&self) -> Option { impl_to_primitive_uint_to_int!(isize, *self) } #[inline] fn to_i8(&self) -> Option { impl_to_primitive_uint_to_int!(i8, *self) } #[inline] fn to_i16(&self) -> Option { impl_to_primitive_uint_to_int!(i16, *self) } #[inline] fn to_i32(&self) -> Option { impl_to_primitive_uint_to_int!(i32, *self) } #[inline] fn to_i64(&self) -> Option { impl_to_primitive_uint_to_int!(i64, *self) } #[inline] fn to_usize(&self) -> Option { impl_to_primitive_uint_to_uint!($T, usize, *self) } #[inline] fn to_u8(&self) -> Option { impl_to_primitive_uint_to_uint!($T, u8, *self) } #[inline] fn to_u16(&self) -> Option { impl_to_primitive_uint_to_uint!($T, u16, *self) } #[inline] fn to_u32(&self) -> Option { impl_to_primitive_uint_to_uint!($T, u32, *self) } #[inline] fn to_u64(&self) -> Option { impl_to_primitive_uint_to_uint!($T, u64, *self) } #[inline] fn to_f32(&self) -> Option { Some(*self as f32) } #[inline] fn to_f64(&self) -> Option { Some(*self as f64) } } ) } impl_to_primitive_uint!(usize); impl_to_primitive_uint!(u8); impl_to_primitive_uint!(u16); impl_to_primitive_uint!(u32); impl_to_primitive_uint!(u64); macro_rules! impl_to_primitive_float_to_float { ($SrcT:ident, $DstT:ident, $slf:expr) => ( if size_of::<$SrcT>() <= size_of::<$DstT>() { Some($slf as $DstT) } else { // Make sure the value is in range for the cast. // NaN and +-inf are cast as they are. let n = $slf as f64; let max_value: $DstT = ::std::$DstT::MAX; if !n.is_finite() || (-max_value as f64 <= n && n <= max_value as f64) { Some($slf as $DstT) } else { None } } ) } macro_rules! impl_to_primitive_float { ($T:ident) => ( impl ToPrimitive for $T { #[inline] fn to_isize(&self) -> Option { Some(*self as isize) } #[inline] fn to_i8(&self) -> Option { Some(*self as i8) } #[inline] fn to_i16(&self) -> Option { Some(*self as i16) } #[inline] fn to_i32(&self) -> Option { Some(*self as i32) } #[inline] fn to_i64(&self) -> Option { Some(*self as i64) } #[inline] fn to_usize(&self) -> Option { Some(*self as usize) } #[inline] fn to_u8(&self) -> Option { Some(*self as u8) } #[inline] fn to_u16(&self) -> Option { Some(*self as u16) } #[inline] fn to_u32(&self) -> Option { Some(*self as u32) } #[inline] fn to_u64(&self) -> Option { Some(*self as u64) } #[inline] fn to_f32(&self) -> Option { impl_to_primitive_float_to_float!($T, f32, *self) } #[inline] fn to_f64(&self) -> Option { impl_to_primitive_float_to_float!($T, f64, *self) } } ) } impl_to_primitive_float!(f32); impl_to_primitive_float!(f64); /// A generic trait for converting a number to a value. pub trait FromPrimitive: Sized { /// Convert an `isize` to return an optional value of this type. If the /// value cannot be represented by this value, the `None` is returned. #[inline] fn from_isize(n: isize) -> Option { FromPrimitive::from_i64(n as i64) } /// Convert an `i8` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_i8(n: i8) -> Option { FromPrimitive::from_i64(n as i64) } /// Convert an `i16` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_i16(n: i16) -> Option { FromPrimitive::from_i64(n as i64) } /// Convert an `i32` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_i32(n: i32) -> Option { FromPrimitive::from_i64(n as i64) } /// Convert an `i64` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. fn from_i64(n: i64) -> Option; /// Convert a `usize` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_usize(n: usize) -> Option { FromPrimitive::from_u64(n as u64) } /// Convert an `u8` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_u8(n: u8) -> Option { FromPrimitive::from_u64(n as u64) } /// Convert an `u16` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_u16(n: u16) -> Option { FromPrimitive::from_u64(n as u64) } /// Convert an `u32` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_u32(n: u32) -> Option { FromPrimitive::from_u64(n as u64) } /// Convert an `u64` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. fn from_u64(n: u64) -> Option; /// Convert a `f32` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_f32(n: f32) -> Option { FromPrimitive::from_f64(n as f64) } /// Convert a `f64` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_f64(n: f64) -> Option { FromPrimitive::from_i64(n as i64) } } macro_rules! impl_from_primitive { ($T:ty, $to_ty:ident) => ( #[allow(deprecated)] impl FromPrimitive for $T { #[inline] fn from_i8(n: i8) -> Option<$T> { n.$to_ty() } #[inline] fn from_i16(n: i16) -> Option<$T> { n.$to_ty() } #[inline] fn from_i32(n: i32) -> Option<$T> { n.$to_ty() } #[inline] fn from_i64(n: i64) -> Option<$T> { n.$to_ty() } #[inline] fn from_u8(n: u8) -> Option<$T> { n.$to_ty() } #[inline] fn from_u16(n: u16) -> Option<$T> { n.$to_ty() } #[inline] fn from_u32(n: u32) -> Option<$T> { n.$to_ty() } #[inline] fn from_u64(n: u64) -> Option<$T> { n.$to_ty() } #[inline] fn from_f32(n: f32) -> Option<$T> { n.$to_ty() } #[inline] fn from_f64(n: f64) -> Option<$T> { n.$to_ty() } } ) } impl_from_primitive!(isize, to_isize); impl_from_primitive!(i8, to_i8); impl_from_primitive!(i16, to_i16); impl_from_primitive!(i32, to_i32); impl_from_primitive!(i64, to_i64); impl_from_primitive!(usize, to_usize); impl_from_primitive!(u8, to_u8); impl_from_primitive!(u16, to_u16); impl_from_primitive!(u32, to_u32); impl_from_primitive!(u64, to_u64); impl_from_primitive!(f32, to_f32); impl_from_primitive!(f64, to_f64); /// Cast from one machine scalar to another. /// /// # Examples /// /// ``` /// # use num_traits as num; /// let twenty: f32 = num::cast(0x14).unwrap(); /// assert_eq!(twenty, 20f32); /// ``` /// #[inline] pub fn cast(n: T) -> Option { NumCast::from(n) } /// An interface for casting between machine scalars. pub trait NumCast: Sized + ToPrimitive { /// Creates a number from another value that can be converted into /// a primitive via the `ToPrimitive` trait. fn from(n: T) -> Option; } macro_rules! impl_num_cast { ($T:ty, $conv:ident) => ( impl NumCast for $T { #[inline] #[allow(deprecated)] fn from(n: N) -> Option<$T> { // `$conv` could be generated using `concat_idents!`, but that // macro seems to be broken at the moment n.$conv() } } ) } impl_num_cast!(u8, to_u8); impl_num_cast!(u16, to_u16); impl_num_cast!(u32, to_u32); impl_num_cast!(u64, to_u64); impl_num_cast!(usize, to_usize); impl_num_cast!(i8, to_i8); impl_num_cast!(i16, to_i16); impl_num_cast!(i32, to_i32); impl_num_cast!(i64, to_i64); impl_num_cast!(isize, to_isize); impl_num_cast!(f32, to_f32); impl_num_cast!(f64, to_f64); #[test] fn to_primitive_float() { use std::f32; use std::f64; let f32_toolarge = 1e39f64; assert_eq!(f32_toolarge.to_f32(), None); assert_eq!((f32::MAX as f64).to_f32(), Some(f32::MAX)); assert_eq!((-f32::MAX as f64).to_f32(), Some(-f32::MAX)); assert_eq!(f64::INFINITY.to_f32(), Some(f32::INFINITY)); assert_eq!((f64::NEG_INFINITY).to_f32(), Some(f32::NEG_INFINITY)); assert!((f64::NAN).to_f32().map_or(false, |f| f.is_nan())); }