// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Numeric traits for generic mathematics use std::ops::{Add, Sub, Mul, Div, Rem, Neg}; use std::ops::{Not, BitAnd, BitOr, BitXor, Shl, Shr}; use std::{usize, u8, u16, u32, u64}; use std::{isize, i8, i16, i32, i64}; use std::{f32, f64}; use std::mem::{self, size_of}; use std::num::FpCategory; /// The base trait for numeric types pub trait Num: PartialEq + Zero + One + Add + Sub + Mul + Div + Rem { /// Parse error for `from_str_radix` type FromStrRadixErr; /// Convert from a string and radix <= 36. fn from_str_radix(str: &str, radix: u32) -> Result; } macro_rules! int_trait_impl { ($name:ident for $($t:ty)*) => ($( impl $name for $t { type FromStrRadixErr = ::std::num::ParseIntError; fn from_str_radix(s: &str, radix: u32) -> Result { <$t>::from_str_radix(s, radix) } } )*) } // FIXME: Temporary replacements for unstable ::std::num::ParseFloatError and // ::std::num::FloatErrorKind. These can be removed once the std float implementation of // from_str_radix stabilises. pub enum FloatErrorKind { Empty, Invalid } pub struct ParseFloatError { pub kind: FloatErrorKind } // FIXME: This should be removed and replaced with the std implementation of from_str_radix once // it is stabilised. macro_rules! float_trait_impl { ($name:ident for $($t:ty)*) => ($( impl $name for $t { type FromStrRadixErr = ParseFloatError; fn from_str_radix(src: &str, radix: u32) -> Result { use self::FloatErrorKind::*; use self::ParseFloatError as PFE; // Special values match src { "inf" => return Ok(Float::infinity()), "-inf" => return Ok(Float::neg_infinity()), "NaN" => return Ok(Float::nan()), _ => {}, } fn slice_shift_char(src: &str) -> Option<(char, &str)> { src.chars().nth(0).map(|ch| (ch, &src[1..])) } let (is_positive, src) = match slice_shift_char(src) { None => return Err(PFE { kind: Empty }), Some(('-', "")) => return Err(PFE { kind: Empty }), Some(('-', src)) => (false, src), Some((_, _)) => (true, src), }; // The significand to accumulate let mut sig = if is_positive { 0.0 } else { -0.0 }; // Necessary to detect overflow let mut prev_sig = sig; let mut cs = src.chars().enumerate(); // Exponent prefix and exponent index offset let mut exp_info = None::<(char, usize)>; // Parse the integer part of the significand for (i, c) in cs.by_ref() { match c.to_digit(radix) { Some(digit) => { // shift significand one digit left sig = sig * (radix as $t); // add/subtract current digit depending on sign if is_positive { sig = sig + ((digit as isize) as $t); } else { sig = sig - ((digit as isize) as $t); } // Detect overflow by comparing to last value, except // if we've not seen any non-zero digits. if prev_sig != 0.0 { if is_positive && sig <= prev_sig { return Ok(Float::infinity()); } if !is_positive && sig >= prev_sig { return Ok(Float::neg_infinity()); } // Detect overflow by reversing the shift-and-add process if is_positive && (prev_sig != (sig - digit as $t) / radix as $t) { return Ok(Float::infinity()); } if !is_positive && (prev_sig != (sig + digit as $t) / radix as $t) { return Ok(Float::neg_infinity()); } } prev_sig = sig; }, None => match c { 'e' | 'E' | 'p' | 'P' => { exp_info = Some((c, i + 1)); break; // start of exponent }, '.' => { break; // start of fractional part }, _ => { return Err(PFE { kind: Invalid }); }, }, } } // If we are not yet at the exponent parse the fractional // part of the significand if exp_info.is_none() { let mut power = 1.0; for (i, c) in cs.by_ref() { match c.to_digit(radix) { Some(digit) => { // Decrease power one order of magnitude power = power / (radix as $t); // add/subtract current digit depending on sign sig = if is_positive { sig + (digit as $t) * power } else { sig - (digit as $t) * power }; // Detect overflow by comparing to last value if is_positive && sig < prev_sig { return Ok(Float::infinity()); } if !is_positive && sig > prev_sig { return Ok(Float::neg_infinity()); } prev_sig = sig; }, None => match c { 'e' | 'E' | 'p' | 'P' => { exp_info = Some((c, i + 1)); break; // start of exponent }, _ => { return Err(PFE { kind: Invalid }); }, }, } } } // Parse and calculate the exponent let exp = match exp_info { Some((c, offset)) => { let base = match c { 'E' | 'e' if radix == 10 => 10.0, 'P' | 'p' if radix == 16 => 2.0, _ => return Err(PFE { kind: Invalid }), }; // Parse the exponent as decimal integer let src = &src[offset..]; let (is_positive, exp) = match slice_shift_char(src) { Some(('-', src)) => (false, src.parse::()), Some(('+', src)) => (true, src.parse::()), Some((_, _)) => (true, src.parse::()), None => return Err(PFE { kind: Invalid }), }; match (is_positive, exp) { (true, Ok(exp)) => base.powi(exp as i32), (false, Ok(exp)) => 1.0 / base.powi(exp as i32), (_, Err(_)) => return Err(PFE { kind: Invalid }), } }, None => 1.0, // no exponent }; Ok(sig * exp) } } )*) } int_trait_impl!(Num for usize u8 u16 u32 u64 isize i8 i16 i32 i64); float_trait_impl!(Num for f32 f64); /// Defines an additive identity element for `Self`. /// /// # Deriving /// /// This trait can be automatically be derived using `#[deriving(Zero)]` /// attribute. If you choose to use this, make sure that the laws outlined in /// the documentation for `Zero::zero` still hold. pub trait Zero: Add { /// Returns the additive identity element of `Self`, `0`. /// /// # Laws /// /// ```{.text} /// a + 0 = a ∀ a ∈ Self /// 0 + a = a ∀ a ∈ Self /// ``` /// /// # Purity /// /// This function should return the same result at all times regardless of /// external mutable state, for example values stored in TLS or in /// `static mut`s. // FIXME (#5527): This should be an associated constant fn zero() -> Self; /// Returns `true` if `self` is equal to the additive identity. #[inline] fn is_zero(&self) -> bool; } macro_rules! zero_impl { ($t:ty, $v:expr) => { impl Zero for $t { #[inline] fn zero() -> $t { $v } #[inline] fn is_zero(&self) -> bool { *self == $v } } } } zero_impl!(usize, 0usize); zero_impl!(u8, 0u8); zero_impl!(u16, 0u16); zero_impl!(u32, 0u32); zero_impl!(u64, 0u64); zero_impl!(isize, 0isize); zero_impl!(i8, 0i8); zero_impl!(i16, 0i16); zero_impl!(i32, 0i32); zero_impl!(i64, 0i64); zero_impl!(f32, 0.0f32); zero_impl!(f64, 0.0f64); /// Defines a multiplicative identity element for `Self`. pub trait One: Mul { /// Returns the multiplicative identity element of `Self`, `1`. /// /// # Laws /// /// ```{.text} /// a * 1 = a ∀ a ∈ Self /// 1 * a = a ∀ a ∈ Self /// ``` /// /// # Purity /// /// This function should return the same result at all times regardless of /// external mutable state, for example values stored in TLS or in /// `static mut`s. // FIXME (#5527): This should be an associated constant fn one() -> Self; } macro_rules! one_impl { ($t:ty, $v:expr) => { impl One for $t { #[inline] fn one() -> $t { $v } } } } one_impl!(usize, 1usize); one_impl!(u8, 1u8); one_impl!(u16, 1u16); one_impl!(u32, 1u32); one_impl!(u64, 1u64); one_impl!(isize, 1isize); one_impl!(i8, 1i8); one_impl!(i16, 1i16); one_impl!(i32, 1i32); one_impl!(i64, 1i64); one_impl!(f32, 1.0f32); one_impl!(f64, 1.0f64); /// Useful functions for signed numbers (i.e. numbers that can be negative). pub trait Signed: Num + Neg { /// Computes the absolute value. /// /// For `f32` and `f64`, `NaN` will be returned if the number is `NaN`. /// /// For signed integers, `::MIN` will be returned if the number is `::MIN`. fn abs(&self) -> Self; /// The positive difference of two numbers. /// /// Returns `zero` if the number is less than or equal to `other`, otherwise the difference /// between `self` and `other` is returned. fn abs_sub(&self, other: &Self) -> Self; /// Returns the sign of the number. /// /// For `f32` and `f64`: /// /// * `1.0` if the number is positive, `+0.0` or `INFINITY` /// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` /// * `NaN` if the number is `NaN` /// /// For signed integers: /// /// * `0` if the number is zero /// * `1` if the number is positive /// * `-1` if the number is negative fn signum(&self) -> Self; /// Returns true if the number is positive and false if the number is zero or negative. fn is_positive(&self) -> bool; /// Returns true if the number is negative and false if the number is zero or positive. fn is_negative(&self) -> bool; } macro_rules! signed_impl { ($($t:ty)*) => ($( impl Signed for $t { #[inline] fn abs(&self) -> $t { if self.is_negative() { -*self } else { *self } } #[inline] fn abs_sub(&self, other: &$t) -> $t { if *self <= *other { 0 } else { *self - *other } } #[inline] fn signum(&self) -> $t { match *self { n if n > 0 => 1, 0 => 0, _ => -1, } } #[inline] fn is_positive(&self) -> bool { *self > 0 } #[inline] fn is_negative(&self) -> bool { *self < 0 } } )*) } signed_impl!(isize i8 i16 i32 i64); macro_rules! signed_float_impl { ($t:ty, $nan:expr, $inf:expr, $neg_inf:expr) => { impl Signed for $t { /// Computes the absolute value. Returns `NAN` if the number is `NAN`. #[inline] fn abs(&self) -> $t { <$t>::abs(*self) } /// The positive difference of two numbers. Returns `0.0` if the number is /// less than or equal to `other`, otherwise the difference between`self` /// and `other` is returned. #[inline] fn abs_sub(&self, other: &$t) -> $t { <$t>::abs_sub(*self, *other) } /// # Returns /// /// - `1.0` if the number is positive, `+0.0` or `INFINITY` /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` /// - `NAN` if the number is NaN #[inline] fn signum(&self) -> $t { <$t>::signum(*self) } /// Returns `true` if the number is positive, including `+0.0` and `INFINITY` #[inline] fn is_positive(&self) -> bool { *self > 0.0 || (1.0 / *self) == $inf } /// Returns `true` if the number is negative, including `-0.0` and `NEG_INFINITY` #[inline] fn is_negative(&self) -> bool { *self < 0.0 || (1.0 / *self) == $neg_inf } } } } signed_float_impl!(f32, f32::NAN, f32::INFINITY, f32::NEG_INFINITY); signed_float_impl!(f64, f64::NAN, f64::INFINITY, f64::NEG_INFINITY); /// A trait for values which cannot be negative pub trait Unsigned: Num {} macro_rules! empty_trait_impl { ($name:ident for $($t:ty)*) => ($( impl $name for $t {} )*) } empty_trait_impl!(Unsigned for usize u8 u16 u32 u64); /// Numbers which have upper and lower bounds pub trait Bounded { // FIXME (#5527): These should be associated constants /// returns the smallest finite number this type can represent fn min_value() -> Self; /// returns the largest finite number this type can represent fn max_value() -> Self; } macro_rules! bounded_impl { ($t:ty, $min:expr, $max:expr) => { impl Bounded for $t { #[inline] fn min_value() -> $t { $min } #[inline] fn max_value() -> $t { $max } } } } bounded_impl!(usize, usize::MIN, usize::MAX); bounded_impl!(u8, u8::MIN, u8::MAX); bounded_impl!(u16, u16::MIN, u16::MAX); bounded_impl!(u32, u32::MIN, u32::MAX); bounded_impl!(u64, u64::MIN, u64::MAX); bounded_impl!(isize, isize::MIN, isize::MAX); bounded_impl!(i8, i8::MIN, i8::MAX); bounded_impl!(i16, i16::MIN, i16::MAX); bounded_impl!(i32, i32::MIN, i32::MAX); bounded_impl!(i64, i64::MIN, i64::MAX); bounded_impl!(f32, f32::MIN, f32::MAX); bounded_impl!(f64, f64::MIN, f64::MAX); macro_rules! for_each_tuple_ { ( $m:ident !! ) => ( $m! { } ); ( $m:ident !! $h:ident, $($t:ident,)* ) => ( $m! { $h $($t)* } for_each_tuple_! { $m !! $($t,)* } ); } macro_rules! for_each_tuple { ( $m:ident ) => ( for_each_tuple_! { $m !! A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, } ); } macro_rules! bounded_tuple { ( $($name:ident)* ) => ( impl<$($name: Bounded,)*> Bounded for ($($name,)*) { fn min_value() -> Self { ($($name::min_value(),)*) } fn max_value() -> Self { ($($name::max_value(),)*) } } ); } for_each_tuple!(bounded_tuple); /// Saturating math operations pub trait Saturating { /// Saturating addition operator. /// Returns a+b, saturating at the numeric bounds instead of overflowing. fn saturating_add(self, v: Self) -> Self; /// Saturating subtraction operator. /// Returns a-b, saturating at the numeric bounds instead of overflowing. fn saturating_sub(self, v: Self) -> Self; } impl Saturating for T { #[inline] fn saturating_add(self, v: T) -> T { match self.checked_add(&v) { Some(x) => x, None => if v >= Zero::zero() { Bounded::max_value() } else { Bounded::min_value() } } } #[inline] fn saturating_sub(self, v: T) -> T { match self.checked_sub(&v) { Some(x) => x, None => if v >= Zero::zero() { Bounded::min_value() } else { Bounded::max_value() } } } } /// Performs addition that returns `None` instead of wrapping around on /// overflow. pub trait CheckedAdd: Add { /// Adds two numbers, checking for overflow. If overflow happens, `None` is /// returned. fn checked_add(&self, v: &Self) -> Option; } macro_rules! checked_impl { ($trait_name:ident, $method:ident, $t:ty) => { impl $trait_name for $t { #[inline] fn $method(&self, v: &$t) -> Option<$t> { <$t>::$method(*self, *v) } } } } checked_impl!(CheckedAdd, checked_add, u8); checked_impl!(CheckedAdd, checked_add, u16); checked_impl!(CheckedAdd, checked_add, u32); checked_impl!(CheckedAdd, checked_add, u64); checked_impl!(CheckedAdd, checked_add, usize); checked_impl!(CheckedAdd, checked_add, i8); checked_impl!(CheckedAdd, checked_add, i16); checked_impl!(CheckedAdd, checked_add, i32); checked_impl!(CheckedAdd, checked_add, i64); checked_impl!(CheckedAdd, checked_add, isize); /// Performs subtraction that returns `None` instead of wrapping around on underflow. pub trait CheckedSub: Sub { /// Subtracts two numbers, checking for underflow. If underflow happens, /// `None` is returned. fn checked_sub(&self, v: &Self) -> Option; } checked_impl!(CheckedSub, checked_sub, u8); checked_impl!(CheckedSub, checked_sub, u16); checked_impl!(CheckedSub, checked_sub, u32); checked_impl!(CheckedSub, checked_sub, u64); checked_impl!(CheckedSub, checked_sub, usize); checked_impl!(CheckedSub, checked_sub, i8); checked_impl!(CheckedSub, checked_sub, i16); checked_impl!(CheckedSub, checked_sub, i32); checked_impl!(CheckedSub, checked_sub, i64); checked_impl!(CheckedSub, checked_sub, isize); /// Performs multiplication that returns `None` instead of wrapping around on underflow or /// overflow. pub trait CheckedMul: Mul { /// Multiplies two numbers, checking for underflow or overflow. If underflow /// or overflow happens, `None` is returned. fn checked_mul(&self, v: &Self) -> Option; } checked_impl!(CheckedMul, checked_mul, u8); checked_impl!(CheckedMul, checked_mul, u16); checked_impl!(CheckedMul, checked_mul, u32); checked_impl!(CheckedMul, checked_mul, u64); checked_impl!(CheckedMul, checked_mul, usize); checked_impl!(CheckedMul, checked_mul, i8); checked_impl!(CheckedMul, checked_mul, i16); checked_impl!(CheckedMul, checked_mul, i32); checked_impl!(CheckedMul, checked_mul, i64); checked_impl!(CheckedMul, checked_mul, isize); /// Performs division that returns `None` instead of panicking on division by zero and instead of /// wrapping around on underflow and overflow. pub trait CheckedDiv: Div { /// Divides two numbers, checking for underflow, overflow and division by /// zero. If any of that happens, `None` is returned. fn checked_div(&self, v: &Self) -> Option; } macro_rules! checkeddiv_int_impl { ($t:ty, $min:expr) => { impl CheckedDiv for $t { #[inline] fn checked_div(&self, v: &$t) -> Option<$t> { if *v == 0 || (*self == $min && *v == -1) { None } else { Some(*self / *v) } } } } } checkeddiv_int_impl!(isize, isize::MIN); checkeddiv_int_impl!(i8, i8::MIN); checkeddiv_int_impl!(i16, i16::MIN); checkeddiv_int_impl!(i32, i32::MIN); checkeddiv_int_impl!(i64, i64::MIN); macro_rules! checkeddiv_uint_impl { ($($t:ty)*) => ($( impl CheckedDiv for $t { #[inline] fn checked_div(&self, v: &$t) -> Option<$t> { if *v == 0 { None } else { Some(*self / *v) } } } )*) } checkeddiv_uint_impl!(usize u8 u16 u32 u64); pub trait PrimInt : Sized + Copy + Num + NumCast + Bounded + PartialOrd + Ord + Eq + Not + BitAnd + BitOr + BitXor + Shl + Shr + CheckedAdd + CheckedSub + CheckedMul + CheckedDiv + Saturating { /// Returns the number of ones in the binary representation of `self`. /// /// # Examples /// /// ``` /// use num::traits::PrimInt; /// /// let n = 0b01001100u8; /// /// assert_eq!(n.count_ones(), 3); /// ``` fn count_ones(self) -> u32; /// Returns the number of zeros in the binary representation of `self`. /// /// # Examples /// /// ``` /// use num::traits::PrimInt; /// /// let n = 0b01001100u8; /// /// assert_eq!(n.count_zeros(), 5); /// ``` fn count_zeros(self) -> u32; /// Returns the number of leading zeros in the binary representation /// of `self`. /// /// # Examples /// /// ``` /// use num::traits::PrimInt; /// /// let n = 0b0101000u16; /// /// assert_eq!(n.leading_zeros(), 10); /// ``` fn leading_zeros(self) -> u32; /// Returns the number of trailing zeros in the binary representation /// of `self`. /// /// # Examples /// /// ``` /// use num::traits::PrimInt; /// /// let n = 0b0101000u16; /// /// assert_eq!(n.trailing_zeros(), 3); /// ``` fn trailing_zeros(self) -> u32; /// Shifts the bits to the left by a specified amount amount, `n`, wrapping /// the truncated bits to the end of the resulting integer. /// /// # Examples /// /// ``` /// use num::traits::PrimInt; /// /// let n = 0x0123456789ABCDEFu64; /// let m = 0x3456789ABCDEF012u64; /// /// assert_eq!(n.rotate_left(12), m); /// ``` fn rotate_left(self, n: u32) -> Self; /// Shifts the bits to the right by a specified amount amount, `n`, wrapping /// the truncated bits to the beginning of the resulting integer. /// /// # Examples /// /// ``` /// use num::traits::PrimInt; /// /// let n = 0x0123456789ABCDEFu64; /// let m = 0xDEF0123456789ABCu64; /// /// assert_eq!(n.rotate_right(12), m); /// ``` fn rotate_right(self, n: u32) -> Self; /// Reverses the byte order of the integer. /// /// # Examples /// /// ``` /// use num::traits::PrimInt; /// /// let n = 0x0123456789ABCDEFu64; /// let m = 0xEFCDAB8967452301u64; /// /// assert_eq!(n.swap_bytes(), m); /// ``` fn swap_bytes(self) -> Self; /// Convert an integer from big endian to the target's endianness. /// /// On big endian this is a no-op. On little endian the bytes are swapped. /// /// # Examples /// /// ``` /// use num::traits::PrimInt; /// /// let n = 0x0123456789ABCDEFu64; /// /// if cfg!(target_endian = "big") { /// assert_eq!(u64::from_be(n), n) /// } else { /// assert_eq!(u64::from_be(n), n.swap_bytes()) /// } /// ``` fn from_be(x: Self) -> Self; /// Convert an integer from little endian to the target's endianness. /// /// On little endian this is a no-op. On big endian the bytes are swapped. /// /// # Examples /// /// ``` /// use num::traits::PrimInt; /// /// let n = 0x0123456789ABCDEFu64; /// /// if cfg!(target_endian = "little") { /// assert_eq!(u64::from_le(n), n) /// } else { /// assert_eq!(u64::from_le(n), n.swap_bytes()) /// } /// ``` fn from_le(x: Self) -> Self; /// Convert `self` to big endian from the target's endianness. /// /// On big endian this is a no-op. On little endian the bytes are swapped. /// /// # Examples /// /// ``` /// use num::traits::PrimInt; /// /// let n = 0x0123456789ABCDEFu64; /// /// if cfg!(target_endian = "big") { /// assert_eq!(n.to_be(), n) /// } else { /// assert_eq!(n.to_be(), n.swap_bytes()) /// } /// ``` fn to_be(self) -> Self; /// Convert `self` to little endian from the target's endianness. /// /// On little endian this is a no-op. On big endian the bytes are swapped. /// /// # Examples /// /// ``` /// use num::traits::PrimInt; /// /// let n = 0x0123456789ABCDEFu64; /// /// if cfg!(target_endian = "little") { /// assert_eq!(n.to_le(), n) /// } else { /// assert_eq!(n.to_le(), n.swap_bytes()) /// } /// ``` fn to_le(self) -> Self; /// Raises self to the power of `exp`, using exponentiation by squaring. /// /// # Examples /// /// ``` /// use num::traits::PrimInt; /// /// assert_eq!(2i32.pow(4), 16); /// ``` fn pow(self, mut exp: u32) -> Self; } macro_rules! prim_int_impl { ($($T:ty)*) => ($( impl PrimInt for $T { fn count_ones(self) -> u32 { <$T>::count_ones(self) } fn count_zeros(self) -> u32 { <$T>::count_zeros(self) } fn leading_zeros(self) -> u32 { <$T>::leading_zeros(self) } fn trailing_zeros(self) -> u32 { <$T>::trailing_zeros(self) } fn rotate_left(self, n: u32) -> Self { <$T>::rotate_left(self, n) } fn rotate_right(self, n: u32) -> Self { <$T>::rotate_right(self, n) } fn swap_bytes(self) -> Self { <$T>::swap_bytes(self) } fn from_be(x: Self) -> Self { <$T>::from_be(x) } fn from_le(x: Self) -> Self { <$T>::from_le(x) } fn to_be(self) -> Self { <$T>::to_be(self) } fn to_le(self) -> Self { <$T>::to_le(self) } fn pow(self, exp: u32) -> Self { <$T>::pow(self, exp) } } )*) } prim_int_impl!(u8 u16 u32 u64 usize i8 i16 i32 i64 isize); /// A generic trait for converting a value to a number. pub trait ToPrimitive { /// Converts the value of `self` to an `isize`. #[inline] fn to_isize(&self) -> Option { self.to_i64().and_then(|x| x.to_isize()) } /// Converts the value of `self` to an `i8`. #[inline] fn to_i8(&self) -> Option { self.to_i64().and_then(|x| x.to_i8()) } /// Converts the value of `self` to an `i16`. #[inline] fn to_i16(&self) -> Option { self.to_i64().and_then(|x| x.to_i16()) } /// Converts the value of `self` to an `i32`. #[inline] fn to_i32(&self) -> Option { self.to_i64().and_then(|x| x.to_i32()) } /// Converts the value of `self` to an `i64`. fn to_i64(&self) -> Option; /// Converts the value of `self` to a `usize`. #[inline] fn to_usize(&self) -> Option { self.to_u64().and_then(|x| x.to_usize()) } /// Converts the value of `self` to an `u8`. #[inline] fn to_u8(&self) -> Option { self.to_u64().and_then(|x| x.to_u8()) } /// Converts the value of `self` to an `u16`. #[inline] fn to_u16(&self) -> Option { self.to_u64().and_then(|x| x.to_u16()) } /// Converts the value of `self` to an `u32`. #[inline] fn to_u32(&self) -> Option { self.to_u64().and_then(|x| x.to_u32()) } /// Converts the value of `self` to an `u64`. #[inline] fn to_u64(&self) -> Option; /// Converts the value of `self` to an `f32`. #[inline] fn to_f32(&self) -> Option { self.to_f64().and_then(|x| x.to_f32()) } /// Converts the value of `self` to an `f64`. #[inline] fn to_f64(&self) -> Option { self.to_i64().and_then(|x| x.to_f64()) } } macro_rules! impl_to_primitive_int_to_int { ($SrcT:ty, $DstT:ty, $slf:expr) => ( { if size_of::<$SrcT>() <= size_of::<$DstT>() { Some($slf as $DstT) } else { let n = $slf as i64; let min_value: $DstT = Bounded::min_value(); let max_value: $DstT = Bounded::max_value(); if min_value as i64 <= n && n <= max_value as i64 { Some($slf as $DstT) } else { None } } } ) } macro_rules! impl_to_primitive_int_to_uint { ($SrcT:ty, $DstT:ty, $slf:expr) => ( { let zero: $SrcT = Zero::zero(); let max_value: $DstT = Bounded::max_value(); if zero <= $slf && $slf as u64 <= max_value as u64 { Some($slf as $DstT) } else { None } } ) } macro_rules! impl_to_primitive_int { ($T:ty) => ( impl ToPrimitive for $T { #[inline] fn to_isize(&self) -> Option { impl_to_primitive_int_to_int!($T, isize, *self) } #[inline] fn to_i8(&self) -> Option { impl_to_primitive_int_to_int!($T, i8, *self) } #[inline] fn to_i16(&self) -> Option { impl_to_primitive_int_to_int!($T, i16, *self) } #[inline] fn to_i32(&self) -> Option { impl_to_primitive_int_to_int!($T, i32, *self) } #[inline] fn to_i64(&self) -> Option { impl_to_primitive_int_to_int!($T, i64, *self) } #[inline] fn to_usize(&self) -> Option { impl_to_primitive_int_to_uint!($T, usize, *self) } #[inline] fn to_u8(&self) -> Option { impl_to_primitive_int_to_uint!($T, u8, *self) } #[inline] fn to_u16(&self) -> Option { impl_to_primitive_int_to_uint!($T, u16, *self) } #[inline] fn to_u32(&self) -> Option { impl_to_primitive_int_to_uint!($T, u32, *self) } #[inline] fn to_u64(&self) -> Option { impl_to_primitive_int_to_uint!($T, u64, *self) } #[inline] fn to_f32(&self) -> Option { Some(*self as f32) } #[inline] fn to_f64(&self) -> Option { Some(*self as f64) } } ) } impl_to_primitive_int! { isize } impl_to_primitive_int! { i8 } impl_to_primitive_int! { i16 } impl_to_primitive_int! { i32 } impl_to_primitive_int! { i64 } macro_rules! impl_to_primitive_uint_to_int { ($DstT:ty, $slf:expr) => ( { let max_value: $DstT = Bounded::max_value(); if $slf as u64 <= max_value as u64 { Some($slf as $DstT) } else { None } } ) } macro_rules! impl_to_primitive_uint_to_uint { ($SrcT:ty, $DstT:ty, $slf:expr) => ( { if size_of::<$SrcT>() <= size_of::<$DstT>() { Some($slf as $DstT) } else { let zero: $SrcT = Zero::zero(); let max_value: $DstT = Bounded::max_value(); if zero <= $slf && $slf as u64 <= max_value as u64 { Some($slf as $DstT) } else { None } } } ) } macro_rules! impl_to_primitive_uint { ($T:ty) => ( impl ToPrimitive for $T { #[inline] fn to_isize(&self) -> Option { impl_to_primitive_uint_to_int!(isize, *self) } #[inline] fn to_i8(&self) -> Option { impl_to_primitive_uint_to_int!(i8, *self) } #[inline] fn to_i16(&self) -> Option { impl_to_primitive_uint_to_int!(i16, *self) } #[inline] fn to_i32(&self) -> Option { impl_to_primitive_uint_to_int!(i32, *self) } #[inline] fn to_i64(&self) -> Option { impl_to_primitive_uint_to_int!(i64, *self) } #[inline] fn to_usize(&self) -> Option { impl_to_primitive_uint_to_uint!($T, usize, *self) } #[inline] fn to_u8(&self) -> Option { impl_to_primitive_uint_to_uint!($T, u8, *self) } #[inline] fn to_u16(&self) -> Option { impl_to_primitive_uint_to_uint!($T, u16, *self) } #[inline] fn to_u32(&self) -> Option { impl_to_primitive_uint_to_uint!($T, u32, *self) } #[inline] fn to_u64(&self) -> Option { impl_to_primitive_uint_to_uint!($T, u64, *self) } #[inline] fn to_f32(&self) -> Option { Some(*self as f32) } #[inline] fn to_f64(&self) -> Option { Some(*self as f64) } } ) } impl_to_primitive_uint! { usize } impl_to_primitive_uint! { u8 } impl_to_primitive_uint! { u16 } impl_to_primitive_uint! { u32 } impl_to_primitive_uint! { u64 } macro_rules! impl_to_primitive_float_to_float { ($SrcT:ident, $DstT:ident, $slf:expr) => ( if size_of::<$SrcT>() <= size_of::<$DstT>() { Some($slf as $DstT) } else { let n = $slf as f64; let max_value: $SrcT = ::std::$SrcT::MAX; if -max_value as f64 <= n && n <= max_value as f64 { Some($slf as $DstT) } else { None } } ) } macro_rules! impl_to_primitive_float { ($T:ident) => ( impl ToPrimitive for $T { #[inline] fn to_isize(&self) -> Option { Some(*self as isize) } #[inline] fn to_i8(&self) -> Option { Some(*self as i8) } #[inline] fn to_i16(&self) -> Option { Some(*self as i16) } #[inline] fn to_i32(&self) -> Option { Some(*self as i32) } #[inline] fn to_i64(&self) -> Option { Some(*self as i64) } #[inline] fn to_usize(&self) -> Option { Some(*self as usize) } #[inline] fn to_u8(&self) -> Option { Some(*self as u8) } #[inline] fn to_u16(&self) -> Option { Some(*self as u16) } #[inline] fn to_u32(&self) -> Option { Some(*self as u32) } #[inline] fn to_u64(&self) -> Option { Some(*self as u64) } #[inline] fn to_f32(&self) -> Option { impl_to_primitive_float_to_float!($T, f32, *self) } #[inline] fn to_f64(&self) -> Option { impl_to_primitive_float_to_float!($T, f64, *self) } } ) } impl_to_primitive_float! { f32 } impl_to_primitive_float! { f64 } /// A generic trait for converting a number to a value. pub trait FromPrimitive: Sized { /// Convert an `isize` to return an optional value of this type. If the /// value cannot be represented by this value, the `None` is returned. #[inline] fn from_isize(n: isize) -> Option { FromPrimitive::from_i64(n as i64) } /// Convert an `i8` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_i8(n: i8) -> Option { FromPrimitive::from_i64(n as i64) } /// Convert an `i16` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_i16(n: i16) -> Option { FromPrimitive::from_i64(n as i64) } /// Convert an `i32` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_i32(n: i32) -> Option { FromPrimitive::from_i64(n as i64) } /// Convert an `i64` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. fn from_i64(n: i64) -> Option; /// Convert a `usize` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_usize(n: usize) -> Option { FromPrimitive::from_u64(n as u64) } /// Convert an `u8` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_u8(n: u8) -> Option { FromPrimitive::from_u64(n as u64) } /// Convert an `u16` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_u16(n: u16) -> Option { FromPrimitive::from_u64(n as u64) } /// Convert an `u32` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_u32(n: u32) -> Option { FromPrimitive::from_u64(n as u64) } /// Convert an `u64` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. fn from_u64(n: u64) -> Option; /// Convert a `f32` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_f32(n: f32) -> Option { FromPrimitive::from_f64(n as f64) } /// Convert a `f64` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_f64(n: f64) -> Option { FromPrimitive::from_i64(n as i64) } } macro_rules! impl_from_primitive { ($T:ty, $to_ty:ident) => ( #[allow(deprecated)] impl FromPrimitive for $T { #[inline] fn from_i8(n: i8) -> Option<$T> { n.$to_ty() } #[inline] fn from_i16(n: i16) -> Option<$T> { n.$to_ty() } #[inline] fn from_i32(n: i32) -> Option<$T> { n.$to_ty() } #[inline] fn from_i64(n: i64) -> Option<$T> { n.$to_ty() } #[inline] fn from_u8(n: u8) -> Option<$T> { n.$to_ty() } #[inline] fn from_u16(n: u16) -> Option<$T> { n.$to_ty() } #[inline] fn from_u32(n: u32) -> Option<$T> { n.$to_ty() } #[inline] fn from_u64(n: u64) -> Option<$T> { n.$to_ty() } #[inline] fn from_f32(n: f32) -> Option<$T> { n.$to_ty() } #[inline] fn from_f64(n: f64) -> Option<$T> { n.$to_ty() } } ) } impl_from_primitive! { isize, to_isize } impl_from_primitive! { i8, to_i8 } impl_from_primitive! { i16, to_i16 } impl_from_primitive! { i32, to_i32 } impl_from_primitive! { i64, to_i64 } impl_from_primitive! { usize, to_usize } impl_from_primitive! { u8, to_u8 } impl_from_primitive! { u16, to_u16 } impl_from_primitive! { u32, to_u32 } impl_from_primitive! { u64, to_u64 } impl_from_primitive! { f32, to_f32 } impl_from_primitive! { f64, to_f64 } /// Cast from one machine scalar to another. /// /// # Examples /// /// ``` /// use num; /// /// let twenty: f32 = num::cast(0x14).unwrap(); /// assert_eq!(twenty, 20f32); /// ``` /// #[inline] pub fn cast(n: T) -> Option { NumCast::from(n) } /// An interface for casting between machine scalars. pub trait NumCast: ToPrimitive { /// Creates a number from another value that can be converted into /// a primitive via the `ToPrimitive` trait. fn from(n: T) -> Option; } macro_rules! impl_num_cast { ($T:ty, $conv:ident) => ( impl NumCast for $T { #[inline] #[allow(deprecated)] fn from(n: N) -> Option<$T> { // `$conv` could be generated using `concat_idents!`, but that // macro seems to be broken at the moment n.$conv() } } ) } impl_num_cast! { u8, to_u8 } impl_num_cast! { u16, to_u16 } impl_num_cast! { u32, to_u32 } impl_num_cast! { u64, to_u64 } impl_num_cast! { usize, to_usize } impl_num_cast! { i8, to_i8 } impl_num_cast! { i16, to_i16 } impl_num_cast! { i32, to_i32 } impl_num_cast! { i64, to_i64 } impl_num_cast! { isize, to_isize } impl_num_cast! { f32, to_f32 } impl_num_cast! { f64, to_f64 } pub trait Float : Num + Copy + NumCast + PartialOrd + Neg { /// Returns the `NaN` value. /// /// ``` /// use num::traits::Float; /// /// let nan: f32 = Float::nan(); /// /// assert!(nan.is_nan()); /// ``` fn nan() -> Self; /// Returns the infinite value. /// /// ``` /// use num::traits::Float; /// use std::f32; /// /// let infinity: f32 = Float::infinity(); /// /// assert!(infinity.is_infinite()); /// assert!(!infinity.is_finite()); /// assert!(infinity > f32::MAX); /// ``` fn infinity() -> Self; /// Returns the negative infinite value. /// /// ``` /// use num::traits::Float; /// use std::f32; /// /// let neg_infinity: f32 = Float::neg_infinity(); /// /// assert!(neg_infinity.is_infinite()); /// assert!(!neg_infinity.is_finite()); /// assert!(neg_infinity < f32::MIN); /// ``` fn neg_infinity() -> Self; /// Returns `-0.0`. /// /// ``` /// use num::traits::{Zero, Float}; /// /// let inf: f32 = Float::infinity(); /// let zero: f32 = Zero::zero(); /// let neg_zero: f32 = Float::neg_zero(); /// /// assert_eq!(zero, neg_zero); /// assert_eq!(7.0f32/inf, zero); /// assert_eq!(zero * 10.0, zero); /// ``` fn neg_zero() -> Self; /// Returns the smallest finite value that this type can represent. /// /// ``` /// use num::traits::Float; /// use std::f64; /// /// let x: f64 = Float::min_value(); /// /// assert_eq!(x, f64::MIN); /// ``` fn min_value() -> Self; /// Returns the smallest positive, normalized value that this type can represent. /// /// ``` /// use num::traits::Float; /// use std::f64; /// /// let x: f64 = Float::min_positive_value(); /// /// assert_eq!(x, f64::MIN_POSITIVE); /// ``` fn min_positive_value() -> Self; /// Returns the largest finite value that this type can represent. /// /// ``` /// use num::traits::Float; /// use std::f64; /// /// let x: f64 = Float::max_value(); /// assert_eq!(x, f64::MAX); /// ``` fn max_value() -> Self; /// Returns `true` if this value is `NaN` and false otherwise. /// /// ``` /// use num::traits::Float; /// use std::f64; /// /// let nan = f64::NAN; /// let f = 7.0; /// /// assert!(nan.is_nan()); /// assert!(!f.is_nan()); /// ``` fn is_nan(self) -> bool; /// Returns `true` if this value is positive infinity or negative infinity and /// false otherwise. /// /// ``` /// use num::traits::Float; /// use std::f32; /// /// let f = 7.0f32; /// let inf: f32 = Float::infinity(); /// let neg_inf: f32 = Float::neg_infinity(); /// let nan: f32 = f32::NAN; /// /// assert!(!f.is_infinite()); /// assert!(!nan.is_infinite()); /// /// assert!(inf.is_infinite()); /// assert!(neg_inf.is_infinite()); /// ``` fn is_infinite(self) -> bool; /// Returns `true` if this number is neither infinite nor `NaN`. /// /// ``` /// use num::traits::Float; /// use std::f32; /// /// let f = 7.0f32; /// let inf: f32 = Float::infinity(); /// let neg_inf: f32 = Float::neg_infinity(); /// let nan: f32 = f32::NAN; /// /// assert!(f.is_finite()); /// /// assert!(!nan.is_finite()); /// assert!(!inf.is_finite()); /// assert!(!neg_inf.is_finite()); /// ``` fn is_finite(self) -> bool; /// Returns `true` if the number is neither zero, infinite, /// [subnormal][subnormal], or `NaN`. /// /// ``` /// use num::traits::Float; /// use std::f32; /// /// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32 /// let max = f32::MAX; /// let lower_than_min = 1.0e-40_f32; /// let zero = 0.0f32; /// /// assert!(min.is_normal()); /// assert!(max.is_normal()); /// /// assert!(!zero.is_normal()); /// assert!(!f32::NAN.is_normal()); /// assert!(!f32::INFINITY.is_normal()); /// // Values between `0` and `min` are Subnormal. /// assert!(!lower_than_min.is_normal()); /// ``` /// [subnormal]: http://en.wikipedia.org/wiki/Denormal_number fn is_normal(self) -> bool; /// Returns the floating point category of the number. If only one property /// is going to be tested, it is generally faster to use the specific /// predicate instead. /// /// ``` /// use num::traits::Float; /// use std::num::FpCategory; /// use std::f32; /// /// let num = 12.4f32; /// let inf = f32::INFINITY; /// /// assert_eq!(num.classify(), FpCategory::Normal); /// assert_eq!(inf.classify(), FpCategory::Infinite); /// ``` fn classify(self) -> FpCategory; /// Returns the largest integer less than or equal to a number. /// /// ``` /// use num::traits::Float; /// /// let f = 3.99; /// let g = 3.0; /// /// assert_eq!(f.floor(), 3.0); /// assert_eq!(g.floor(), 3.0); /// ``` fn floor(self) -> Self; /// Returns the smallest integer greater than or equal to a number. /// /// ``` /// use num::traits::Float; /// /// let f = 3.01; /// let g = 4.0; /// /// assert_eq!(f.ceil(), 4.0); /// assert_eq!(g.ceil(), 4.0); /// ``` fn ceil(self) -> Self; /// Returns the nearest integer to a number. Round half-way cases away from /// `0.0`. /// /// ``` /// use num::traits::Float; /// /// let f = 3.3; /// let g = -3.3; /// /// assert_eq!(f.round(), 3.0); /// assert_eq!(g.round(), -3.0); /// ``` fn round(self) -> Self; /// Return the integer part of a number. /// /// ``` /// use num::traits::Float; /// /// let f = 3.3; /// let g = -3.7; /// /// assert_eq!(f.trunc(), 3.0); /// assert_eq!(g.trunc(), -3.0); /// ``` fn trunc(self) -> Self; /// Returns the fractional part of a number. /// /// ``` /// use num::traits::Float; /// /// let x = 3.5; /// let y = -3.5; /// let abs_difference_x = (x.fract() - 0.5).abs(); /// let abs_difference_y = (y.fract() - (-0.5)).abs(); /// /// assert!(abs_difference_x < 1e-10); /// assert!(abs_difference_y < 1e-10); /// ``` fn fract(self) -> Self; /// Computes the absolute value of `self`. Returns `Float::nan()` if the /// number is `Float::nan()`. /// /// ``` /// use num::traits::Float; /// use std::f64; /// /// let x = 3.5; /// let y = -3.5; /// /// let abs_difference_x = (x.abs() - x).abs(); /// let abs_difference_y = (y.abs() - (-y)).abs(); /// /// assert!(abs_difference_x < 1e-10); /// assert!(abs_difference_y < 1e-10); /// /// assert!(f64::NAN.abs().is_nan()); /// ``` fn abs(self) -> Self; /// Returns a number that represents the sign of `self`. /// /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()` /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()` /// - `Float::nan()` if the number is `Float::nan()` /// /// ``` /// use num::traits::Float; /// use std::f64; /// /// let f = 3.5; /// /// assert_eq!(f.signum(), 1.0); /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0); /// /// assert!(f64::NAN.signum().is_nan()); /// ``` fn signum(self) -> Self; /// Returns `true` if `self` is positive, including `+0.0` and /// `Float::infinity()`. /// /// ``` /// use num::traits::Float; /// use std::f64; /// /// let nan: f64 = f64::NAN; /// /// let f = 7.0; /// let g = -7.0; /// /// assert!(f.is_sign_positive()); /// assert!(!g.is_sign_positive()); /// // Requires both tests to determine if is `NaN` /// assert!(!nan.is_sign_positive() && !nan.is_sign_negative()); /// ``` fn is_sign_positive(self) -> bool; /// Returns `true` if `self` is negative, including `-0.0` and /// `Float::neg_infinity()`. /// /// ``` /// use num::traits::Float; /// use std::f64; /// /// let nan = f64::NAN; /// /// let f = 7.0; /// let g = -7.0; /// /// assert!(!f.is_sign_negative()); /// assert!(g.is_sign_negative()); /// // Requires both tests to determine if is `NaN`. /// assert!(!nan.is_sign_positive() && !nan.is_sign_negative()); /// ``` fn is_sign_negative(self) -> bool; /// Fused multiply-add. Computes `(self * a) + b` with only one rounding /// error. This produces a more accurate result with better performance than /// a separate multiplication operation followed by an add. /// /// ``` /// use num::traits::Float; /// /// let m = 10.0; /// let x = 4.0; /// let b = 60.0; /// /// // 100.0 /// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` fn mul_add(self, a: Self, b: Self) -> Self; /// Take the reciprocal (inverse) of a number, `1/x`. /// /// ``` /// use num::traits::Float; /// /// let x = 2.0; /// let abs_difference = (x.recip() - (1.0/x)).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` fn recip(self) -> Self; /// Raise a number to an integer power. /// /// Using this function is generally faster than using `powf` /// /// ``` /// use num::traits::Float; /// /// let x = 2.0; /// let abs_difference = (x.powi(2) - x*x).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` fn powi(self, n: i32) -> Self; /// Raise a number to a floating point power. /// /// ``` /// use num::traits::Float; /// /// let x = 2.0; /// let abs_difference = (x.powf(2.0) - x*x).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` fn powf(self, n: Self) -> Self; /// Take the square root of a number. /// /// Returns NaN if `self` is a negative number. /// /// ``` /// use num::traits::Float; /// /// let positive = 4.0; /// let negative = -4.0; /// /// let abs_difference = (positive.sqrt() - 2.0).abs(); /// /// assert!(abs_difference < 1e-10); /// assert!(negative.sqrt().is_nan()); /// ``` fn sqrt(self) -> Self; /// Returns `e^(self)`, (the exponential function). /// /// ``` /// use num::traits::Float; /// /// let one = 1.0; /// // e^1 /// let e = one.exp(); /// /// // ln(e) - 1 == 0 /// let abs_difference = (e.ln() - 1.0).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` fn exp(self) -> Self; /// Returns `2^(self)`. /// /// ``` /// use num::traits::Float; /// /// let f = 2.0; /// /// // 2^2 - 4 == 0 /// let abs_difference = (f.exp2() - 4.0).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` fn exp2(self) -> Self; /// Returns the natural logarithm of the number. /// /// ``` /// use num::traits::Float; /// /// let one = 1.0; /// // e^1 /// let e = one.exp(); /// /// // ln(e) - 1 == 0 /// let abs_difference = (e.ln() - 1.0).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` fn ln(self) -> Self; /// Returns the logarithm of the number with respect to an arbitrary base. /// /// ``` /// use num::traits::Float; /// /// let ten = 10.0; /// let two = 2.0; /// /// // log10(10) - 1 == 0 /// let abs_difference_10 = (ten.log(10.0) - 1.0).abs(); /// /// // log2(2) - 1 == 0 /// let abs_difference_2 = (two.log(2.0) - 1.0).abs(); /// /// assert!(abs_difference_10 < 1e-10); /// assert!(abs_difference_2 < 1e-10); /// ``` fn log(self, base: Self) -> Self; /// Returns the base 2 logarithm of the number. /// /// ``` /// use num::traits::Float; /// /// let two = 2.0; /// /// // log2(2) - 1 == 0 /// let abs_difference = (two.log2() - 1.0).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` fn log2(self) -> Self; /// Returns the base 10 logarithm of the number. /// /// ``` /// use num::traits::Float; /// /// let ten = 10.0; /// /// // log10(10) - 1 == 0 /// let abs_difference = (ten.log10() - 1.0).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` fn log10(self) -> Self; /// Returns the maximum of the two numbers. /// /// ``` /// use num::traits::Float; /// /// let x = 1.0; /// let y = 2.0; /// /// assert_eq!(x.max(y), y); /// ``` fn max(self, other: Self) -> Self; /// Returns the minimum of the two numbers. /// /// ``` /// use num::traits::Float; /// /// let x = 1.0; /// let y = 2.0; /// /// assert_eq!(x.min(y), x); /// ``` fn min(self, other: Self) -> Self; /// The positive difference of two numbers. /// /// * If `self <= other`: `0:0` /// * Else: `self - other` /// /// ``` /// use num::traits::Float; /// /// let x = 3.0; /// let y = -3.0; /// /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs(); /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs(); /// /// assert!(abs_difference_x < 1e-10); /// assert!(abs_difference_y < 1e-10); /// ``` fn abs_sub(self, other: Self) -> Self; /// Take the cubic root of a number. /// /// ``` /// use num::traits::Float; /// /// let x = 8.0; /// /// // x^(1/3) - 2 == 0 /// let abs_difference = (x.cbrt() - 2.0).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` fn cbrt(self) -> Self; /// Calculate the length of the hypotenuse of a right-angle triangle given /// legs of length `x` and `y`. /// /// ``` /// use num::traits::Float; /// /// let x = 2.0; /// let y = 3.0; /// /// // sqrt(x^2 + y^2) /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` fn hypot(self, other: Self) -> Self; /// Computes the sine of a number (in radians). /// /// ``` /// use num::traits::Float; /// use std::f64; /// /// let x = f64::consts::PI/2.0; /// /// let abs_difference = (x.sin() - 1.0).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` fn sin(self) -> Self; /// Computes the cosine of a number (in radians). /// /// ``` /// use num::traits::Float; /// use std::f64; /// /// let x = 2.0*f64::consts::PI; /// /// let abs_difference = (x.cos() - 1.0).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` fn cos(self) -> Self; /// Computes the tangent of a number (in radians). /// /// ``` /// use num::traits::Float; /// use std::f64; /// /// let x = f64::consts::PI/4.0; /// let abs_difference = (x.tan() - 1.0).abs(); /// /// assert!(abs_difference < 1e-14); /// ``` fn tan(self) -> Self; /// Computes the arcsine of a number. Return value is in radians in /// the range [-pi/2, pi/2] or NaN if the number is outside the range /// [-1, 1]. /// /// ``` /// use num::traits::Float; /// use std::f64; /// /// let f = f64::consts::PI / 2.0; /// /// // asin(sin(pi/2)) /// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` fn asin(self) -> Self; /// Computes the arccosine of a number. Return value is in radians in /// the range [0, pi] or NaN if the number is outside the range /// [-1, 1]. /// /// ``` /// use num::traits::Float; /// use std::f64; /// /// let f = f64::consts::PI / 4.0; /// /// // acos(cos(pi/4)) /// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` fn acos(self) -> Self; /// Computes the arctangent of a number. Return value is in radians in the /// range [-pi/2, pi/2]; /// /// ``` /// use num::traits::Float; /// /// let f = 1.0; /// /// // atan(tan(1)) /// let abs_difference = (f.tan().atan() - 1.0).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` fn atan(self) -> Self; /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`). /// /// * `x = 0`, `y = 0`: `0` /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]` /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]` /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)` /// /// ``` /// use num::traits::Float; /// use std::f64; /// /// let pi = f64::consts::PI; /// // All angles from horizontal right (+x) /// // 45 deg counter-clockwise /// let x1 = 3.0; /// let y1 = -3.0; /// /// // 135 deg clockwise /// let x2 = -3.0; /// let y2 = 3.0; /// /// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs(); /// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs(); /// /// assert!(abs_difference_1 < 1e-10); /// assert!(abs_difference_2 < 1e-10); /// ``` fn atan2(self, other: Self) -> Self; /// Simultaneously computes the sine and cosine of the number, `x`. Returns /// `(sin(x), cos(x))`. /// /// ``` /// use num::traits::Float; /// use std::f64; /// /// let x = f64::consts::PI/4.0; /// let f = x.sin_cos(); /// /// let abs_difference_0 = (f.0 - x.sin()).abs(); /// let abs_difference_1 = (f.1 - x.cos()).abs(); /// /// assert!(abs_difference_0 < 1e-10); /// assert!(abs_difference_0 < 1e-10); /// ``` fn sin_cos(self) -> (Self, Self); /// Returns `e^(self) - 1` in a way that is accurate even if the /// number is close to zero. /// /// ``` /// use num::traits::Float; /// /// let x = 7.0; /// /// // e^(ln(7)) - 1 /// let abs_difference = (x.ln().exp_m1() - 6.0).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` fn exp_m1(self) -> Self; /// Returns `ln(1+n)` (natural logarithm) more accurately than if /// the operations were performed separately. /// /// ``` /// use num::traits::Float; /// use std::f64; /// /// let x = f64::consts::E - 1.0; /// /// // ln(1 + (e - 1)) == ln(e) == 1 /// let abs_difference = (x.ln_1p() - 1.0).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` fn ln_1p(self) -> Self; /// Hyperbolic sine function. /// /// ``` /// use num::traits::Float; /// use std::f64; /// /// let e = f64::consts::E; /// let x = 1.0; /// /// let f = x.sinh(); /// // Solving sinh() at 1 gives `(e^2-1)/(2e)` /// let g = (e*e - 1.0)/(2.0*e); /// let abs_difference = (f - g).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` fn sinh(self) -> Self; /// Hyperbolic cosine function. /// /// ``` /// use num::traits::Float; /// use std::f64; /// /// let e = f64::consts::E; /// let x = 1.0; /// let f = x.cosh(); /// // Solving cosh() at 1 gives this result /// let g = (e*e + 1.0)/(2.0*e); /// let abs_difference = (f - g).abs(); /// /// // Same result /// assert!(abs_difference < 1.0e-10); /// ``` fn cosh(self) -> Self; /// Hyperbolic tangent function. /// /// ``` /// use num::traits::Float; /// use std::f64; /// /// let e = f64::consts::E; /// let x = 1.0; /// /// let f = x.tanh(); /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` /// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2)); /// let abs_difference = (f - g).abs(); /// /// assert!(abs_difference < 1.0e-10); /// ``` fn tanh(self) -> Self; /// Inverse hyperbolic sine function. /// /// ``` /// use num::traits::Float; /// /// let x = 1.0; /// let f = x.sinh().asinh(); /// /// let abs_difference = (f - x).abs(); /// /// assert!(abs_difference < 1.0e-10); /// ``` fn asinh(self) -> Self; /// Inverse hyperbolic cosine function. /// /// ``` /// use num::traits::Float; /// /// let x = 1.0; /// let f = x.cosh().acosh(); /// /// let abs_difference = (f - x).abs(); /// /// assert!(abs_difference < 1.0e-10); /// ``` fn acosh(self) -> Self; /// Inverse hyperbolic tangent function. /// /// ``` /// use num::traits::Float; /// use std::f64; /// /// let e = f64::consts::E; /// let f = e.tanh().atanh(); /// /// let abs_difference = (f - e).abs(); /// /// assert!(abs_difference < 1.0e-10); /// ``` fn atanh(self) -> Self; /// Returns the mantissa, base 2 exponent, and sign as integers, respectively. /// The original number can be recovered by `sign * mantissa * 2 ^ exponent`. /// The floating point encoding is documented in the [Reference][floating-point]. /// /// ``` /// use num::traits::Float; /// /// let num = 2.0f32; /// /// // (8388608, -22, 1) /// let (mantissa, exponent, sign) = Float::integer_decode(num); /// let sign_f = sign as f32; /// let mantissa_f = mantissa as f32; /// let exponent_f = num.powf(exponent as f32); /// /// // 1 * 8388608 * 2^(-22) == 2 /// let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` /// [floating-point]: ../../../../../reference.html#machine-types fn integer_decode(self) -> (u64, i16, i8); } macro_rules! float_impl { ($T:ident $decode:ident) => ( impl Float for $T { fn nan() -> Self { ::std::$T::NAN } fn infinity() -> Self { ::std::$T::INFINITY } fn neg_infinity() -> Self { ::std::$T::NEG_INFINITY } fn neg_zero() -> Self { -0.0 } fn min_value() -> Self { ::std::$T::MIN } fn min_positive_value() -> Self { ::std::$T::MIN_POSITIVE } fn max_value() -> Self { ::std::$T::MAX } fn is_nan(self) -> bool { <$T>::is_nan(self) } fn is_infinite(self) -> bool { <$T>::is_infinite(self) } fn is_finite(self) -> bool { <$T>::is_finite(self) } fn is_normal(self) -> bool { <$T>::is_normal(self) } fn classify(self) -> FpCategory { <$T>::classify(self) } fn floor(self) -> Self { <$T>::floor(self) } fn ceil(self) -> Self { <$T>::ceil(self) } fn round(self) -> Self { <$T>::round(self) } fn trunc(self) -> Self { <$T>::trunc(self) } fn fract(self) -> Self { <$T>::fract(self) } fn abs(self) -> Self { <$T>::abs(self) } fn signum(self) -> Self { <$T>::signum(self) } fn is_sign_positive(self) -> bool { <$T>::is_sign_positive(self) } fn is_sign_negative(self) -> bool { <$T>::is_sign_negative(self) } fn mul_add(self, a: Self, b: Self) -> Self { <$T>::mul_add(self, a, b) } fn recip(self) -> Self { <$T>::recip(self) } fn powi(self, n: i32) -> Self { <$T>::powi(self, n) } fn powf(self, n: Self) -> Self { <$T>::powf(self, n) } fn sqrt(self) -> Self { <$T>::sqrt(self) } fn exp(self) -> Self { <$T>::exp(self) } fn exp2(self) -> Self { <$T>::exp2(self) } fn ln(self) -> Self { <$T>::ln(self) } fn log(self, base: Self) -> Self { <$T>::log(self, base) } fn log2(self) -> Self { <$T>::log2(self) } fn log10(self) -> Self { <$T>::log10(self) } fn max(self, other: Self) -> Self { <$T>::max(self, other) } fn min(self, other: Self) -> Self { <$T>::min(self, other) } fn abs_sub(self, other: Self) -> Self { <$T>::abs_sub(self, other) } fn cbrt(self) -> Self { <$T>::cbrt(self) } fn hypot(self, other: Self) -> Self { <$T>::hypot(self, other) } fn sin(self) -> Self { <$T>::sin(self) } fn cos(self) -> Self { <$T>::cos(self) } fn tan(self) -> Self { <$T>::tan(self) } fn asin(self) -> Self { <$T>::asin(self) } fn acos(self) -> Self { <$T>::acos(self) } fn atan(self) -> Self { <$T>::atan(self) } fn atan2(self, other: Self) -> Self { <$T>::atan2(self, other) } fn sin_cos(self) -> (Self, Self) { <$T>::sin_cos(self) } fn exp_m1(self) -> Self { <$T>::exp_m1(self) } fn ln_1p(self) -> Self { <$T>::ln_1p(self) } fn sinh(self) -> Self { <$T>::sinh(self) } fn cosh(self) -> Self { <$T>::cosh(self) } fn tanh(self) -> Self { <$T>::tanh(self) } fn asinh(self) -> Self { <$T>::asinh(self) } fn acosh(self) -> Self { <$T>::acosh(self) } fn atanh(self) -> Self { <$T>::atanh(self) } fn integer_decode(self) -> (u64, i16, i8) { $decode(self) } } ) } fn integer_decode_f32(f: f32) -> (u64, i16, i8) { let bits: u32 = unsafe { mem::transmute(f) }; let sign: i8 = if bits >> 31 == 0 { 1 } else { -1 }; let mut exponent: i16 = ((bits >> 23) & 0xff) as i16; let mantissa = if exponent == 0 { (bits & 0x7fffff) << 1 } else { (bits & 0x7fffff) | 0x800000 }; // Exponent bias + mantissa shift exponent -= 127 + 23; (mantissa as u64, exponent, sign) } fn integer_decode_f64(f: f64) -> (u64, i16, i8) { let bits: u64 = unsafe { mem::transmute(f) }; let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 }; let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16; let mantissa = if exponent == 0 { (bits & 0xfffffffffffff) << 1 } else { (bits & 0xfffffffffffff) | 0x10000000000000 }; // Exponent bias + mantissa shift exponent -= 1023 + 52; (mantissa, exponent, sign) } float_impl!(f32 integer_decode_f32); float_impl!(f64 integer_decode_f64);