// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Simple numerics. //! //! This crate contains arbitrary-sized integer, rational, and complex types. //! //! ## Example //! //! This example uses the BigRational type and [Newton's method][newt] to //! approximate a square root to arbitrary precision: //! //! ``` //! extern crate num; //! //! use num::bigint::BigInt; //! use num::rational::{Ratio, BigRational}; //! //! fn approx_sqrt(number: u64, iterations: uint) -> BigRational { //! let start: Ratio = Ratio::from_integer(FromPrimitive::from_u64(number).unwrap()); //! let mut approx = start.clone(); //! //! for _ in range(0, iterations) { //! approx = (approx + (start / approx)) / //! Ratio::from_integer(FromPrimitive::from_u64(2).unwrap()); //! } //! //! approx //! } //! //! fn main() { //! println!("{}", approx_sqrt(10, 4)); // prints 4057691201/1283082416 //! } //! ``` //! //! [newt]: https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method #![feature(macro_rules)] #![feature(default_type_params)] #![feature(slicing_syntax)] #![crate_name = "num"] #![experimental] #![crate_type = "rlib"] #![crate_type = "dylib"] #![license = "MIT/ASL2"] #![doc(html_logo_url = "http://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png", html_favicon_url = "http://www.rust-lang.org/favicon.ico", html_root_url = "http://doc.rust-lang.org/master/", html_playground_url = "http://play.rust-lang.org/")] #![allow(deprecated)] // from_str_radix extern crate rand; extern crate serialize; pub use bigint::{BigInt, BigUint}; pub use rational::{Rational, BigRational}; pub use complex::Complex; pub use integer::Integer; pub use traits::{Num, Zero, One, Signed, Unsigned, Bounded, Saturating, CheckedAdd, CheckedSub, CheckedMul, CheckedDiv}; pub mod bigint; pub mod complex; pub mod integer; pub mod traits; pub mod rational; /// Returns the additive identity, `0`. #[inline(always)] pub fn zero() -> T { Zero::zero() } /// Returns the multiplicative identity, `1`. #[inline(always)] pub fn one() -> T { One::one() } /// Computes the absolute value. /// /// For `f32` and `f64`, `NaN` will be returned if the number is `NaN` /// /// For signed integers, `::MIN` will be returned if the number is `::MIN`. #[inline(always)] pub fn abs(value: T) -> T { value.abs() } /// The positive difference of two numbers. /// /// Returns zero if `x` is less than or equal to `y`, otherwise the difference /// between `x` and `y` is returned. #[inline(always)] pub fn abs_sub(x: T, y: T) -> T { x.abs_sub(&y) } /// Returns the sign of the number. /// /// For `f32` and `f64`: /// /// * `1.0` if the number is positive, `+0.0` or `INFINITY` /// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` /// * `NaN` if the number is `NaN` /// /// For signed integers: /// /// * `0` if the number is zero /// * `1` if the number is positive /// * `-1` if the number is negative #[inline(always)] pub fn signum(value: T) -> T { value.signum() } /// Raises a value to the power of exp, using exponentiation by squaring. /// /// # Example /// /// ```rust /// use num; /// /// assert_eq!(num::pow(2i, 4), 16); /// ``` #[inline] pub fn pow>(mut base: T, mut exp: uint) -> T { if exp == 1 { base } else { let mut acc = one::(); while exp > 0 { if (exp & 1) == 1 { acc = acc * base; } base = base * base; exp = exp >> 1; } acc } }