// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Integer trait and functions. #![doc(html_logo_url = "https://rust-num.github.io/num/rust-logo-128x128-blk-v2.png", html_favicon_url = "https://rust-num.github.io/num/favicon.ico", html_root_url = "https://rust-num.github.io/num/", html_playground_url = "http://play.integer32.com/")] extern crate num_traits as traits; use std::ops::Add; use traits::{Num, Signed}; pub trait Integer: Sized + Num + PartialOrd + Ord + Eq { /// Floored integer division. /// /// # Examples /// /// ~~~ /// # use num_integer::Integer; /// assert!(( 8).div_floor(& 3) == 2); /// assert!(( 8).div_floor(&-3) == -3); /// assert!((-8).div_floor(& 3) == -3); /// assert!((-8).div_floor(&-3) == 2); /// /// assert!(( 1).div_floor(& 2) == 0); /// assert!(( 1).div_floor(&-2) == -1); /// assert!((-1).div_floor(& 2) == -1); /// assert!((-1).div_floor(&-2) == 0); /// ~~~ fn div_floor(&self, other: &Self) -> Self; /// Floored integer modulo, satisfying: /// /// ~~~ /// # use num_integer::Integer; /// # let n = 1; let d = 1; /// assert!(n.div_floor(&d) * d + n.mod_floor(&d) == n) /// ~~~ /// /// # Examples /// /// ~~~ /// # use num_integer::Integer; /// assert!(( 8).mod_floor(& 3) == 2); /// assert!(( 8).mod_floor(&-3) == -1); /// assert!((-8).mod_floor(& 3) == 1); /// assert!((-8).mod_floor(&-3) == -2); /// /// assert!(( 1).mod_floor(& 2) == 1); /// assert!(( 1).mod_floor(&-2) == -1); /// assert!((-1).mod_floor(& 2) == 1); /// assert!((-1).mod_floor(&-2) == -1); /// ~~~ fn mod_floor(&self, other: &Self) -> Self; /// Greatest Common Divisor (GCD). /// /// # Examples /// /// ~~~ /// # use num_integer::Integer; /// assert_eq!(6.gcd(&8), 2); /// assert_eq!(7.gcd(&3), 1); /// ~~~ fn gcd(&self, other: &Self) -> Self; /// Lowest Common Multiple (LCM). /// /// # Examples /// /// ~~~ /// # use num_integer::Integer; /// assert_eq!(7.lcm(&3), 21); /// assert_eq!(2.lcm(&4), 4); /// ~~~ fn lcm(&self, other: &Self) -> Self; /// Deprecated, use `is_multiple_of` instead. fn divides(&self, other: &Self) -> bool; /// Returns `true` if `other` is a multiple of `self`. /// /// # Examples /// /// ~~~ /// # use num_integer::Integer; /// assert_eq!(9.is_multiple_of(&3), true); /// assert_eq!(3.is_multiple_of(&9), false); /// ~~~ fn is_multiple_of(&self, other: &Self) -> bool; /// Returns `true` if the number is even. /// /// # Examples /// /// ~~~ /// # use num_integer::Integer; /// assert_eq!(3.is_even(), false); /// assert_eq!(4.is_even(), true); /// ~~~ fn is_even(&self) -> bool; /// Returns `true` if the number is odd. /// /// # Examples /// /// ~~~ /// # use num_integer::Integer; /// assert_eq!(3.is_odd(), true); /// assert_eq!(4.is_odd(), false); /// ~~~ fn is_odd(&self) -> bool; /// Simultaneous truncated integer division and modulus. /// Returns `(quotient, remainder)`. /// /// # Examples /// /// ~~~ /// # use num_integer::Integer; /// assert_eq!(( 8).div_rem( &3), ( 2, 2)); /// assert_eq!(( 8).div_rem(&-3), (-2, 2)); /// assert_eq!((-8).div_rem( &3), (-2, -2)); /// assert_eq!((-8).div_rem(&-3), ( 2, -2)); /// /// assert_eq!(( 1).div_rem( &2), ( 0, 1)); /// assert_eq!(( 1).div_rem(&-2), ( 0, 1)); /// assert_eq!((-1).div_rem( &2), ( 0, -1)); /// assert_eq!((-1).div_rem(&-2), ( 0, -1)); /// ~~~ #[inline] fn div_rem(&self, other: &Self) -> (Self, Self); /// Simultaneous floored integer division and modulus. /// Returns `(quotient, remainder)`. /// /// # Examples /// /// ~~~ /// # use num_integer::Integer; /// assert_eq!(( 8).div_mod_floor( &3), ( 2, 2)); /// assert_eq!(( 8).div_mod_floor(&-3), (-3, -1)); /// assert_eq!((-8).div_mod_floor( &3), (-3, 1)); /// assert_eq!((-8).div_mod_floor(&-3), ( 2, -2)); /// /// assert_eq!(( 1).div_mod_floor( &2), ( 0, 1)); /// assert_eq!(( 1).div_mod_floor(&-2), (-1, -1)); /// assert_eq!((-1).div_mod_floor( &2), (-1, 1)); /// assert_eq!((-1).div_mod_floor(&-2), ( 0, -1)); /// ~~~ fn div_mod_floor(&self, other: &Self) -> (Self, Self) { (self.div_floor(other), self.mod_floor(other)) } } /// Simultaneous integer division and modulus #[inline] pub fn div_rem(x: T, y: T) -> (T, T) { x.div_rem(&y) } /// Floored integer division #[inline] pub fn div_floor(x: T, y: T) -> T { x.div_floor(&y) } /// Floored integer modulus #[inline] pub fn mod_floor(x: T, y: T) -> T { x.mod_floor(&y) } /// Simultaneous floored integer division and modulus #[inline] pub fn div_mod_floor(x: T, y: T) -> (T, T) { x.div_mod_floor(&y) } /// Calculates the Greatest Common Divisor (GCD) of the number and `other`. The /// result is always positive. #[inline(always)] pub fn gcd(x: T, y: T) -> T { x.gcd(&y) } /// Calculates the Lowest Common Multiple (LCM) of the number and `other`. #[inline(always)] pub fn lcm(x: T, y: T) -> T { x.lcm(&y) } macro_rules! impl_integer_for_isize { ($T:ty, $test_mod:ident) => ( impl Integer for $T { /// Floored integer division #[inline] fn div_floor(&self, other: &Self) -> Self { // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) match self.div_rem(other) { (d, r) if (r > 0 && *other < 0) || (r < 0 && *other > 0) => d - 1, (d, _) => d, } } /// Floored integer modulo #[inline] fn mod_floor(&self, other: &Self) -> Self { // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) match *self % *other { r if (r > 0 && *other < 0) || (r < 0 && *other > 0) => r + *other, r => r, } } /// Calculates `div_floor` and `mod_floor` simultaneously #[inline] fn div_mod_floor(&self, other: &Self) -> (Self, Self) { // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) match self.div_rem(other) { (d, r) if (r > 0 && *other < 0) || (r < 0 && *other > 0) => (d - 1, r + *other), (d, r) => (d, r), } } /// Calculates the Greatest Common Divisor (GCD) of the number and /// `other`. The result is always positive. #[inline] fn gcd(&self, other: &Self) -> Self { // Use Stein's algorithm let mut m = *self; let mut n = *other; if m == 0 || n == 0 { return (m | n).abs() } // find common factors of 2 let shift = (m | n).trailing_zeros(); // The algorithm needs positive numbers, but the minimum value // can't be represented as a positive one. // It's also a power of two, so the gcd can be // calculated by bitshifting in that case // Assuming two's complement, the number created by the shift // is positive for all numbers except gcd = abs(min value) // The call to .abs() causes a panic in debug mode if m == Self::min_value() || n == Self::min_value() { return (1 << shift).abs() } // guaranteed to be positive now, rest like unsigned algorithm m = m.abs(); n = n.abs(); // divide n and m by 2 until odd // m inside loop n >>= n.trailing_zeros(); while m != 0 { m >>= m.trailing_zeros(); if n > m { ::std::mem::swap(&mut n, &mut m) } m -= n; } n << shift } /// Calculates the Lowest Common Multiple (LCM) of the number and /// `other`. #[inline] fn lcm(&self, other: &Self) -> Self { // should not have to recalculate abs (*self * (*other / self.gcd(other))).abs() } /// Deprecated, use `is_multiple_of` instead. #[inline] fn divides(&self, other: &Self) -> bool { self.is_multiple_of(other) } /// Returns `true` if the number is a multiple of `other`. #[inline] fn is_multiple_of(&self, other: &Self) -> bool { *self % *other == 0 } /// Returns `true` if the number is divisible by `2` #[inline] fn is_even(&self) -> bool { (*self) & 1 == 0 } /// Returns `true` if the number is not divisible by `2` #[inline] fn is_odd(&self) -> bool { !self.is_even() } /// Simultaneous truncated integer division and modulus. #[inline] fn div_rem(&self, other: &Self) -> (Self, Self) { (*self / *other, *self % *other) } } #[cfg(test)] mod $test_mod { use Integer; /// Checks that the division rule holds for: /// /// - `n`: numerator (dividend) /// - `d`: denominator (divisor) /// - `qr`: quotient and remainder #[cfg(test)] fn test_division_rule((n,d): ($T, $T), (q,r): ($T, $T)) { assert_eq!(d * q + r, n); } #[test] fn test_div_rem() { fn test_nd_dr(nd: ($T,$T), qr: ($T,$T)) { let (n,d) = nd; let separate_div_rem = (n / d, n % d); let combined_div_rem = n.div_rem(&d); assert_eq!(separate_div_rem, qr); assert_eq!(combined_div_rem, qr); test_division_rule(nd, separate_div_rem); test_division_rule(nd, combined_div_rem); } test_nd_dr(( 8, 3), ( 2, 2)); test_nd_dr(( 8, -3), (-2, 2)); test_nd_dr((-8, 3), (-2, -2)); test_nd_dr((-8, -3), ( 2, -2)); test_nd_dr(( 1, 2), ( 0, 1)); test_nd_dr(( 1, -2), ( 0, 1)); test_nd_dr((-1, 2), ( 0, -1)); test_nd_dr((-1, -2), ( 0, -1)); } #[test] fn test_div_mod_floor() { fn test_nd_dm(nd: ($T,$T), dm: ($T,$T)) { let (n,d) = nd; let separate_div_mod_floor = (n.div_floor(&d), n.mod_floor(&d)); let combined_div_mod_floor = n.div_mod_floor(&d); assert_eq!(separate_div_mod_floor, dm); assert_eq!(combined_div_mod_floor, dm); test_division_rule(nd, separate_div_mod_floor); test_division_rule(nd, combined_div_mod_floor); } test_nd_dm(( 8, 3), ( 2, 2)); test_nd_dm(( 8, -3), (-3, -1)); test_nd_dm((-8, 3), (-3, 1)); test_nd_dm((-8, -3), ( 2, -2)); test_nd_dm(( 1, 2), ( 0, 1)); test_nd_dm(( 1, -2), (-1, -1)); test_nd_dm((-1, 2), (-1, 1)); test_nd_dm((-1, -2), ( 0, -1)); } #[test] fn test_gcd() { assert_eq!((10 as $T).gcd(&2), 2 as $T); assert_eq!((10 as $T).gcd(&3), 1 as $T); assert_eq!((0 as $T).gcd(&3), 3 as $T); assert_eq!((3 as $T).gcd(&3), 3 as $T); assert_eq!((56 as $T).gcd(&42), 14 as $T); assert_eq!((3 as $T).gcd(&-3), 3 as $T); assert_eq!((-6 as $T).gcd(&3), 3 as $T); assert_eq!((-4 as $T).gcd(&-2), 2 as $T); } #[test] fn test_gcd_cmp_with_euclidean() { fn euclidean_gcd(mut m: $T, mut n: $T) -> $T { while m != 0 { ::std::mem::swap(&mut m, &mut n); m %= n; } n.abs() } // gcd(-128, b) = 128 is not representable as positive value // for i8 for i in -127..127 { for j in -127..127 { assert_eq!(euclidean_gcd(i,j), i.gcd(&j)); } } // last value // FIXME: Use inclusive ranges for above loop when implemented let i = 127; for j in -127..127 { assert_eq!(euclidean_gcd(i,j), i.gcd(&j)); } assert_eq!(127.gcd(&127), 127); } #[test] fn test_gcd_min_val() { let min = <$T>::min_value(); let max = <$T>::max_value(); let max_pow2 = max / 2 + 1; assert_eq!(min.gcd(&max), 1 as $T); assert_eq!(max.gcd(&min), 1 as $T); assert_eq!(min.gcd(&max_pow2), max_pow2); assert_eq!(max_pow2.gcd(&min), max_pow2); assert_eq!(min.gcd(&42), 2 as $T); assert_eq!((42 as $T).gcd(&min), 2 as $T); } #[test] #[should_panic] fn test_gcd_min_val_min_val() { let min = <$T>::min_value(); assert!(min.gcd(&min) >= 0); } #[test] #[should_panic] fn test_gcd_min_val_0() { let min = <$T>::min_value(); assert!(min.gcd(&0) >= 0); } #[test] #[should_panic] fn test_gcd_0_min_val() { let min = <$T>::min_value(); assert!((0 as $T).gcd(&min) >= 0); } #[test] fn test_lcm() { assert_eq!((1 as $T).lcm(&0), 0 as $T); assert_eq!((0 as $T).lcm(&1), 0 as $T); assert_eq!((1 as $T).lcm(&1), 1 as $T); assert_eq!((-1 as $T).lcm(&1), 1 as $T); assert_eq!((1 as $T).lcm(&-1), 1 as $T); assert_eq!((-1 as $T).lcm(&-1), 1 as $T); assert_eq!((8 as $T).lcm(&9), 72 as $T); assert_eq!((11 as $T).lcm(&5), 55 as $T); } #[test] fn test_even() { assert_eq!((-4 as $T).is_even(), true); assert_eq!((-3 as $T).is_even(), false); assert_eq!((-2 as $T).is_even(), true); assert_eq!((-1 as $T).is_even(), false); assert_eq!((0 as $T).is_even(), true); assert_eq!((1 as $T).is_even(), false); assert_eq!((2 as $T).is_even(), true); assert_eq!((3 as $T).is_even(), false); assert_eq!((4 as $T).is_even(), true); } #[test] fn test_odd() { assert_eq!((-4 as $T).is_odd(), false); assert_eq!((-3 as $T).is_odd(), true); assert_eq!((-2 as $T).is_odd(), false); assert_eq!((-1 as $T).is_odd(), true); assert_eq!((0 as $T).is_odd(), false); assert_eq!((1 as $T).is_odd(), true); assert_eq!((2 as $T).is_odd(), false); assert_eq!((3 as $T).is_odd(), true); assert_eq!((4 as $T).is_odd(), false); } } ) } impl_integer_for_isize!(i8, test_integer_i8); impl_integer_for_isize!(i16, test_integer_i16); impl_integer_for_isize!(i32, test_integer_i32); impl_integer_for_isize!(i64, test_integer_i64); impl_integer_for_isize!(isize, test_integer_isize); macro_rules! impl_integer_for_usize { ($T:ty, $test_mod:ident) => ( impl Integer for $T { /// Unsigned integer division. Returns the same result as `div` (`/`). #[inline] fn div_floor(&self, other: &Self) -> Self { *self / *other } /// Unsigned integer modulo operation. Returns the same result as `rem` (`%`). #[inline] fn mod_floor(&self, other: &Self) -> Self { *self % *other } /// Calculates the Greatest Common Divisor (GCD) of the number and `other` #[inline] fn gcd(&self, other: &Self) -> Self { // Use Stein's algorithm let mut m = *self; let mut n = *other; if m == 0 || n == 0 { return m | n } // find common factors of 2 let shift = (m | n).trailing_zeros(); // divide n and m by 2 until odd // m inside loop n >>= n.trailing_zeros(); while m != 0 { m >>= m.trailing_zeros(); if n > m { ::std::mem::swap(&mut n, &mut m) } m -= n; } n << shift } /// Calculates the Lowest Common Multiple (LCM) of the number and `other`. #[inline] fn lcm(&self, other: &Self) -> Self { *self * (*other / self.gcd(other)) } /// Deprecated, use `is_multiple_of` instead. #[inline] fn divides(&self, other: &Self) -> bool { self.is_multiple_of(other) } /// Returns `true` if the number is a multiple of `other`. #[inline] fn is_multiple_of(&self, other: &Self) -> bool { *self % *other == 0 } /// Returns `true` if the number is divisible by `2`. #[inline] fn is_even(&self) -> bool { *self % 2 == 0 } /// Returns `true` if the number is not divisible by `2`. #[inline] fn is_odd(&self) -> bool { !self.is_even() } /// Simultaneous truncated integer division and modulus. #[inline] fn div_rem(&self, other: &Self) -> (Self, Self) { (*self / *other, *self % *other) } } #[cfg(test)] mod $test_mod { use Integer; #[test] fn test_div_mod_floor() { assert_eq!((10 as $T).div_floor(&(3 as $T)), 3 as $T); assert_eq!((10 as $T).mod_floor(&(3 as $T)), 1 as $T); assert_eq!((10 as $T).div_mod_floor(&(3 as $T)), (3 as $T, 1 as $T)); assert_eq!((5 as $T).div_floor(&(5 as $T)), 1 as $T); assert_eq!((5 as $T).mod_floor(&(5 as $T)), 0 as $T); assert_eq!((5 as $T).div_mod_floor(&(5 as $T)), (1 as $T, 0 as $T)); assert_eq!((3 as $T).div_floor(&(7 as $T)), 0 as $T); assert_eq!((3 as $T).mod_floor(&(7 as $T)), 3 as $T); assert_eq!((3 as $T).div_mod_floor(&(7 as $T)), (0 as $T, 3 as $T)); } #[test] fn test_gcd() { assert_eq!((10 as $T).gcd(&2), 2 as $T); assert_eq!((10 as $T).gcd(&3), 1 as $T); assert_eq!((0 as $T).gcd(&3), 3 as $T); assert_eq!((3 as $T).gcd(&3), 3 as $T); assert_eq!((56 as $T).gcd(&42), 14 as $T); } #[test] fn test_gcd_cmp_with_euclidean() { fn euclidean_gcd(mut m: $T, mut n: $T) -> $T { while m != 0 { ::std::mem::swap(&mut m, &mut n); m %= n; } n } for i in 0..255 { for j in 0..255 { assert_eq!(euclidean_gcd(i,j), i.gcd(&j)); } } // last value // FIXME: Use inclusive ranges for above loop when implemented let i = 255; for j in 0..255 { assert_eq!(euclidean_gcd(i,j), i.gcd(&j)); } assert_eq!(255.gcd(&255), 255); } #[test] fn test_lcm() { assert_eq!((1 as $T).lcm(&0), 0 as $T); assert_eq!((0 as $T).lcm(&1), 0 as $T); assert_eq!((1 as $T).lcm(&1), 1 as $T); assert_eq!((8 as $T).lcm(&9), 72 as $T); assert_eq!((11 as $T).lcm(&5), 55 as $T); assert_eq!((15 as $T).lcm(&17), 255 as $T); } #[test] fn test_is_multiple_of() { assert!((6 as $T).is_multiple_of(&(6 as $T))); assert!((6 as $T).is_multiple_of(&(3 as $T))); assert!((6 as $T).is_multiple_of(&(1 as $T))); } #[test] fn test_even() { assert_eq!((0 as $T).is_even(), true); assert_eq!((1 as $T).is_even(), false); assert_eq!((2 as $T).is_even(), true); assert_eq!((3 as $T).is_even(), false); assert_eq!((4 as $T).is_even(), true); } #[test] fn test_odd() { assert_eq!((0 as $T).is_odd(), false); assert_eq!((1 as $T).is_odd(), true); assert_eq!((2 as $T).is_odd(), false); assert_eq!((3 as $T).is_odd(), true); assert_eq!((4 as $T).is_odd(), false); } } ) } impl_integer_for_usize!(u8, test_integer_u8); impl_integer_for_usize!(u16, test_integer_u16); impl_integer_for_usize!(u32, test_integer_u32); impl_integer_for_usize!(u64, test_integer_u64); impl_integer_for_usize!(usize, test_integer_usize); /// An iterator over binomial coefficients. pub struct IterBinomial { a: T, n: T, k: T, } impl IterBinomial where T: Integer, { /// For a given n, iterate over all binomial coefficients binomial(n, k), for k=0...n. /// /// Note that this might overflow, depending on `T`. For the primitive /// integer types, the following n are the largest ones for which there will /// be no overflow: /// /// type | n /// -----|--- /// u8 | 10 /// i8 | 9 /// u16 | 18 /// i16 | 17 /// u32 | 34 /// i32 | 33 /// u64 | 67 /// i64 | 66 /// /// For larger n, `T` should be a bigint type. pub fn new(n: T) -> IterBinomial { IterBinomial { k: T::zero(), a: T::one(), n: n } } } impl Iterator for IterBinomial where T: Integer + Clone { type Item = T; fn next(&mut self) -> Option { if self.k > self.n { return None; } self.a = if !self.k.is_zero() { multiply_and_divide( self.a.clone(), self.n.clone() - self.k.clone() + T::one(), self.k.clone() ) } else { T::one() }; self.k = self.k.clone() + T::one(); Some(self.a.clone()) } } /// Calculate r * a / b, avoiding overflows and fractions. /// /// Assumes that b divides r * a evenly. fn multiply_and_divide(r: T, a: T, b: T) -> T { // See http://blog.plover.com/math/choose-2.html for the idea. let g = gcd(r.clone(), b.clone()); r/g.clone() * (a / (b/g)) } /// Calculate the binomial coefficient. /// /// Note that this might overflow, depending on `T`. For the primitive integer /// types, the following n are the largest ones possible such that there will /// be no overflow for any k: /// /// type | n /// -----|--- /// u8 | 10 /// i8 | 9 /// u16 | 18 /// i16 | 17 /// u32 | 34 /// i32 | 33 /// u64 | 67 /// i64 | 66 /// /// For larger n, consider using a bigint type for `T`. pub fn binomial(mut n: T, k: T) -> T { // See http://blog.plover.com/math/choose.html for the idea. if k > n { return T::zero(); } if k > n.clone() - k.clone() { return binomial(n.clone(), n - k); } let mut r = T::one(); let mut d = T::one(); loop { if d > k { break; } r = multiply_and_divide(r, n.clone(), d.clone()); n = n - T::one(); d = d + T::one(); } r } /// Calculate the multinomial coefficient. pub fn multinomial(k: &[T]) -> T where for<'a> T: Add<&'a T, Output = T> { let mut r = T::one(); let mut p = T::zero(); for i in k { p = p + i; r = r * binomial(p.clone(), i.clone()); } r } #[test] fn test_lcm_overflow() { macro_rules! check { ($t:ty, $x:expr, $y:expr, $r:expr) => { { let x: $t = $x; let y: $t = $y; let o = x.checked_mul(y); assert!(o.is_none(), "sanity checking that {} input {} * {} overflows", stringify!($t), x, y); assert_eq!(x.lcm(&y), $r); assert_eq!(y.lcm(&x), $r); } } } // Original bug (Issue #166) check!(i64, 46656000000000000, 600, 46656000000000000); check!(i8, 0x40, 0x04, 0x40); check!(u8, 0x80, 0x02, 0x80); check!(i16, 0x40_00, 0x04, 0x40_00); check!(u16, 0x80_00, 0x02, 0x80_00); check!(i32, 0x4000_0000, 0x04, 0x4000_0000); check!(u32, 0x8000_0000, 0x02, 0x8000_0000); check!(i64, 0x4000_0000_0000_0000, 0x04, 0x4000_0000_0000_0000); check!(u64, 0x8000_0000_0000_0000, 0x02, 0x8000_0000_0000_0000); } #[test] fn test_iter_binomial() { macro_rules! check_simple { ($t:ty) => { { let n: $t = 3; let c: Vec<_> = IterBinomial::new(n).collect(); let expected = vec![1, 3, 3, 1]; assert_eq!(c, expected); } } } check_simple!(u8); check_simple!(i8); check_simple!(u16); check_simple!(i16); check_simple!(u32); check_simple!(i32); check_simple!(u64); check_simple!(i64); macro_rules! check_binomial { ($t:ty, $n:expr) => { { let n: $t = $n; let c: Vec<_> = IterBinomial::new(n).collect(); let mut k: $t = 0; for b in c { assert_eq!(b, binomial(n, k)); k += 1; } } } } // Check the largest n for which there is no overflow. check_binomial!(u8, 10); check_binomial!(i8, 9); check_binomial!(u16, 18); check_binomial!(i16, 17); check_binomial!(u32, 34); check_binomial!(i32, 33); check_binomial!(u64, 67); check_binomial!(i64, 66); } #[test] fn test_binomial() { macro_rules! check { ($t:ty, $x:expr, $y:expr, $r:expr) => { { let x: $t = $x; let y: $t = $y; let expected: $t = $r; assert_eq!(binomial(x, y), expected); if y <= x { assert_eq!(binomial(x, x - y), expected); } } } } check!(u8, 9, 4, 126); check!(u8, 0, 0, 1); check!(u8, 2, 3, 0); check!(i8, 9, 4, 126); check!(i8, 0, 0, 1); check!(i8, 2, 3, 0); check!(u16, 100, 2, 4950); check!(u16, 14, 4, 1001); check!(u16, 0, 0, 1); check!(u16, 2, 3, 0); check!(i16, 100, 2, 4950); check!(i16, 14, 4, 1001); check!(i16, 0, 0, 1); check!(i16, 2, 3, 0); check!(u32, 100, 2, 4950); check!(u32, 35, 11, 417225900); check!(u32, 14, 4, 1001); check!(u32, 0, 0, 1); check!(u32, 2, 3, 0); check!(i32, 100, 2, 4950); check!(i32, 35, 11, 417225900); check!(i32, 14, 4, 1001); check!(i32, 0, 0, 1); check!(i32, 2, 3, 0); check!(u64, 100, 2, 4950); check!(u64, 35, 11, 417225900); check!(u64, 14, 4, 1001); check!(u64, 0, 0, 1); check!(u64, 2, 3, 0); check!(i64, 100, 2, 4950); check!(i64, 35, 11, 417225900); check!(i64, 14, 4, 1001); check!(i64, 0, 0, 1); check!(i64, 2, 3, 0); } #[test] fn test_multinomial() { macro_rules! check_binomial { ($t:ty, $k:expr) => { { let n: $t = $k.iter().fold(0, |acc, &x| acc + x); let k: &[$t] = $k; assert_eq!(k.len(), 2); assert_eq!(multinomial(k), binomial(n, k[0])); } } } check_binomial!(u8, &[4, 5]); check_binomial!(i8, &[4, 5]); check_binomial!(u16, &[2, 98]); check_binomial!(u16, &[4, 10]); check_binomial!(i16, &[2, 98]); check_binomial!(i16, &[4, 10]); check_binomial!(u32, &[2, 98]); check_binomial!(u32, &[11, 24]); check_binomial!(u32, &[4, 10]); check_binomial!(i32, &[2, 98]); check_binomial!(i32, &[11, 24]); check_binomial!(i32, &[4, 10]); check_binomial!(u64, &[2, 98]); check_binomial!(u64, &[11, 24]); check_binomial!(u64, &[4, 10]); check_binomial!(i64, &[2, 98]); check_binomial!(i64, &[11, 24]); check_binomial!(i64, &[4, 10]); macro_rules! check_multinomial { ($t:ty, $k:expr, $r:expr) => { { let k: &[$t] = $k; let expected: $t = $r; assert_eq!(multinomial(k), expected); } } } check_multinomial!(u8, &[2, 1, 2], 30); check_multinomial!(u8, &[2, 3, 0], 10); check_multinomial!(i8, &[2, 1, 2], 30); check_multinomial!(i8, &[2, 3, 0], 10); check_multinomial!(u16, &[2, 1, 2], 30); check_multinomial!(u16, &[2, 3, 0], 10); check_multinomial!(i16, &[2, 1, 2], 30); check_multinomial!(i16, &[2, 3, 0], 10); check_multinomial!(u32, &[2, 1, 2], 30); check_multinomial!(u32, &[2, 3, 0], 10); check_multinomial!(i32, &[2, 1, 2], 30); check_multinomial!(i32, &[2, 3, 0], 10); check_multinomial!(u64, &[2, 1, 2], 30); check_multinomial!(u64, &[2, 3, 0], 10); check_multinomial!(i64, &[2, 1, 2], 30); check_multinomial!(i64, &[2, 3, 0], 10); check_multinomial!(u64, &[], 1); check_multinomial!(u64, &[0], 1); check_multinomial!(u64, &[12345], 1); }