// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A Big integer (signed version: `BigInt`, unsigned version: `BigUint`). //! //! A `BigUint` is represented as an array of `BigDigit`s. //! A `BigInt` is a combination of `BigUint` and `Sign`. //! //! Common numerical operations are overloaded, so we can treat them //! the same way we treat other numbers. //! //! ## Example //! //! ```rust //! use num::{BigUint, Zero, One}; //! use std::mem::replace; //! //! // Calculate large fibonacci numbers. //! fn fib(n: uint) -> BigUint { //! let mut f0: BigUint = Zero::zero(); //! let mut f1: BigUint = One::one(); //! for _ in range(0, n) { //! let f2 = f0 + f1; //! // This is a low cost way of swapping f0 with f1 and f1 with f2. //! f0 = replace(&mut f1, f2); //! } //! f0 //! } //! //! // This is a very large number. //! println!("fib(1000) = {}", fib(1000)); //! ``` //! //! It's easy to generate large random numbers: //! //! ```rust //! use num::bigint::{ToBigInt, RandBigInt}; //! use std::rand; //! //! let mut rng = rand::task_rng(); //! let a = rng.gen_bigint(1000u); //! //! let low = -10000i.to_bigint().unwrap(); //! let high = 10000i.to_bigint().unwrap(); //! let b = rng.gen_bigint_range(&low, &high); //! //! // Probably an even larger number. //! println!("{}", a * b); //! ``` use Integer; use rand::Rng; use std::{cmp, fmt, hash}; use std::default::Default; use std::from_str::FromStr; use std::iter::{AdditiveIterator, MultiplicativeIterator}; use std::num::{Int, ToPrimitive, FromPrimitive}; use std::num::FromStrRadix; use std::str; use std::string::String; use std::{i64, u64}; use {Num, Unsigned, CheckedAdd, CheckedSub, CheckedMul, CheckedDiv, Signed, Zero, One}; /// A `BigDigit` is a `BigUint`'s composing element. pub type BigDigit = u32; /// A `DoubleBigDigit` is the internal type used to do the computations. Its /// size is the double of the size of `BigDigit`. pub type DoubleBigDigit = u64; pub const ZERO_BIG_DIGIT: BigDigit = 0; static ZERO_VEC: [BigDigit, ..1] = [ZERO_BIG_DIGIT]; #[allow(non_snake_case)] pub mod BigDigit { use super::BigDigit; use super::DoubleBigDigit; // `DoubleBigDigit` size dependent pub const BITS: uint = 32; pub const BASE: DoubleBigDigit = 1 << BITS; const LO_MASK: DoubleBigDigit = (-1 as DoubleBigDigit) >> BITS; #[inline] fn get_hi(n: DoubleBigDigit) -> BigDigit { (n >> BITS) as BigDigit } #[inline] fn get_lo(n: DoubleBigDigit) -> BigDigit { (n & LO_MASK) as BigDigit } /// Split one `DoubleBigDigit` into two `BigDigit`s. #[inline] pub fn from_doublebigdigit(n: DoubleBigDigit) -> (BigDigit, BigDigit) { (get_hi(n), get_lo(n)) } /// Join two `BigDigit`s into one `DoubleBigDigit` #[inline] pub fn to_doublebigdigit(hi: BigDigit, lo: BigDigit) -> DoubleBigDigit { (lo as DoubleBigDigit) | ((hi as DoubleBigDigit) << BITS) } } /// A big unsigned integer type. /// /// A `BigUint`-typed value `BigUint { data: vec!(a, b, c) }` represents a number /// `(a + b * BigDigit::BASE + c * BigDigit::BASE^2)`. #[deriving(Clone, Encodable, Decodable)] pub struct BigUint { data: Vec } impl PartialEq for BigUint { #[inline] fn eq(&self, other: &BigUint) -> bool { match self.cmp(other) { Equal => true, _ => false } } } impl Eq for BigUint {} impl PartialOrd for BigUint { #[inline] fn partial_cmp(&self, other: &BigUint) -> Option { Some(self.cmp(other)) } } impl Ord for BigUint { #[inline] fn cmp(&self, other: &BigUint) -> Ordering { let (s_len, o_len) = (self.data.len(), other.data.len()); if s_len < o_len { return Less; } if s_len > o_len { return Greater; } for (&self_i, &other_i) in self.data.iter().rev().zip(other.data.iter().rev()) { if self_i < other_i { return Less; } if self_i > other_i { return Greater; } } return Equal; } } impl Default for BigUint { #[inline] fn default() -> BigUint { Zero::zero() } } impl hash::Hash for BigUint { fn hash(&self, state: &mut S) { // hash 0 in case it's all 0's 0u32.hash(state); let mut found_first_value = false; for elem in self.data.iter().rev() { // don't hash any leading 0's, they shouldn't affect the hash if found_first_value || *elem != 0 { found_first_value = true; elem.hash(state); } } } } impl fmt::Show for BigUint { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", to_str_radix(self, 10)) } } impl FromStr for BigUint { #[inline] fn from_str(s: &str) -> Option { FromStrRadix::from_str_radix(s, 10) } } impl Num for BigUint {} impl BitAnd for BigUint { fn bitand(&self, other: &BigUint) -> BigUint { BigUint::new(self.data.iter().zip(other.data.iter()).map(|(ai, bi)| *ai & *bi).collect()) } } impl BitOr for BigUint { fn bitor(&self, other: &BigUint) -> BigUint { let zeros = ZERO_VEC.iter().cycle(); let (a, b) = if self.data.len() > other.data.len() { (self, other) } else { (other, self) }; let ored = a.data.iter().zip(b.data.iter().chain(zeros)).map( |(ai, bi)| *ai | *bi ).collect(); return BigUint::new(ored); } } impl BitXor for BigUint { fn bitxor(&self, other: &BigUint) -> BigUint { let zeros = ZERO_VEC.iter().cycle(); let (a, b) = if self.data.len() > other.data.len() { (self, other) } else { (other, self) }; let xored = a.data.iter().zip(b.data.iter().chain(zeros)).map( |(ai, bi)| *ai ^ *bi ).collect(); return BigUint::new(xored); } } impl Shl for BigUint { #[inline] fn shl(&self, rhs: &uint) -> BigUint { let n_unit = *rhs / BigDigit::BITS; let n_bits = *rhs % BigDigit::BITS; return self.shl_unit(n_unit).shl_bits(n_bits); } } impl Shr for BigUint { #[inline] fn shr(&self, rhs: &uint) -> BigUint { let n_unit = *rhs / BigDigit::BITS; let n_bits = *rhs % BigDigit::BITS; return self.shr_unit(n_unit).shr_bits(n_bits); } } impl Zero for BigUint { #[inline] fn zero() -> BigUint { BigUint::new(Vec::new()) } #[inline] fn is_zero(&self) -> bool { self.data.is_empty() } } impl One for BigUint { #[inline] fn one() -> BigUint { BigUint::new(vec!(1)) } } impl Unsigned for BigUint {} impl Add for BigUint { fn add(&self, other: &BigUint) -> BigUint { let zeros = ZERO_VEC.iter().cycle(); let (a, b) = if self.data.len() > other.data.len() { (self, other) } else { (other, self) }; let mut carry = 0; let mut sum: Vec = a.data.iter().zip(b.data.iter().chain(zeros)).map(|(ai, bi)| { let (hi, lo) = BigDigit::from_doublebigdigit( (*ai as DoubleBigDigit) + (*bi as DoubleBigDigit) + (carry as DoubleBigDigit)); carry = hi; lo }).collect(); if carry != 0 { sum.push(carry); } return BigUint::new(sum); } } impl Sub for BigUint { fn sub(&self, other: &BigUint) -> BigUint { let new_len = cmp::max(self.data.len(), other.data.len()); let zeros = ZERO_VEC.iter().cycle(); let (a, b) = (self.data.iter().chain(zeros.clone()), other.data.iter().chain(zeros)); let mut borrow = 0i; let diff: Vec = a.take(new_len).zip(b).map(|(ai, bi)| { let (hi, lo) = BigDigit::from_doublebigdigit( BigDigit::BASE + (*ai as DoubleBigDigit) - (*bi as DoubleBigDigit) - (borrow as DoubleBigDigit) ); /* hi * (base) + lo == 1*(base) + ai - bi - borrow => ai - bi - borrow < 0 <=> hi == 0 */ borrow = if hi == 0 { 1 } else { 0 }; lo }).collect(); assert!(borrow == 0, "Cannot subtract other from self because other is larger than self."); return BigUint::new(diff); } } impl Mul for BigUint { fn mul(&self, other: &BigUint) -> BigUint { if self.is_zero() || other.is_zero() { return Zero::zero(); } let (s_len, o_len) = (self.data.len(), other.data.len()); if s_len == 1 { return mul_digit(other, self.data[0]); } if o_len == 1 { return mul_digit(self, other.data[0]); } // Using Karatsuba multiplication // (a1 * base + a0) * (b1 * base + b0) // = a1*b1 * base^2 + // (a1*b1 + a0*b0 - (a1-b0)*(b1-a0)) * base + // a0*b0 let half_len = cmp::max(s_len, o_len) / 2; let (s_hi, s_lo) = cut_at(self, half_len); let (o_hi, o_lo) = cut_at(other, half_len); let ll = s_lo * o_lo; let hh = s_hi * o_hi; let mm = { let (s1, n1) = sub_sign(s_hi, s_lo); let (s2, n2) = sub_sign(o_hi, o_lo); match (s1, s2) { (Equal, _) | (_, Equal) => hh + ll, (Less, Greater) | (Greater, Less) => hh + ll + (n1 * n2), (Less, Less) | (Greater, Greater) => hh + ll - (n1 * n2) } }; return ll + mm.shl_unit(half_len) + hh.shl_unit(half_len * 2); fn mul_digit(a: &BigUint, n: BigDigit) -> BigUint { if n == 0 { return Zero::zero(); } if n == 1 { return (*a).clone(); } let mut carry = 0; let mut prod: Vec = a.data.iter().map(|ai| { let (hi, lo) = BigDigit::from_doublebigdigit( (*ai as DoubleBigDigit) * (n as DoubleBigDigit) + (carry as DoubleBigDigit) ); carry = hi; lo }).collect(); if carry != 0 { prod.push(carry); } return BigUint::new(prod); } #[inline] fn cut_at(a: &BigUint, n: uint) -> (BigUint, BigUint) { let mid = cmp::min(a.data.len(), n); (BigUint::from_slice(a.data[mid ..]), BigUint::from_slice(a.data[.. mid])) } #[inline] fn sub_sign(a: BigUint, b: BigUint) -> (Ordering, BigUint) { match a.cmp(&b) { Less => (Less, b - a), Greater => (Greater, a - b), _ => (Equal, Zero::zero()) } } } } impl Div for BigUint { #[inline] fn div(&self, other: &BigUint) -> BigUint { let (q, _) = self.div_rem(other); return q; } } impl Rem for BigUint { #[inline] fn rem(&self, other: &BigUint) -> BigUint { let (_, r) = self.div_rem(other); return r; } } impl Neg for BigUint { #[inline] fn neg(&self) -> BigUint { panic!() } } impl CheckedAdd for BigUint { #[inline] fn checked_add(&self, v: &BigUint) -> Option { return Some(self.add(v)); } } impl CheckedSub for BigUint { #[inline] fn checked_sub(&self, v: &BigUint) -> Option { if *self < *v { return None; } return Some(self.sub(v)); } } impl CheckedMul for BigUint { #[inline] fn checked_mul(&self, v: &BigUint) -> Option { return Some(self.mul(v)); } } impl CheckedDiv for BigUint { #[inline] fn checked_div(&self, v: &BigUint) -> Option { if v.is_zero() { return None; } return Some(self.div(v)); } } impl Integer for BigUint { #[inline] fn div_rem(&self, other: &BigUint) -> (BigUint, BigUint) { self.div_mod_floor(other) } #[inline] fn div_floor(&self, other: &BigUint) -> BigUint { let (d, _) = self.div_mod_floor(other); return d; } #[inline] fn mod_floor(&self, other: &BigUint) -> BigUint { let (_, m) = self.div_mod_floor(other); return m; } fn div_mod_floor(&self, other: &BigUint) -> (BigUint, BigUint) { if other.is_zero() { panic!() } if self.is_zero() { return (Zero::zero(), Zero::zero()); } if *other == One::one() { return ((*self).clone(), Zero::zero()); } match self.cmp(other) { Less => return (Zero::zero(), (*self).clone()), Equal => return (One::one(), Zero::zero()), Greater => {} // Do nothing } let mut shift = 0; let mut n = *other.data.last().unwrap(); while n < (1 << BigDigit::BITS - 2) { n <<= 1; shift += 1; } assert!(shift < BigDigit::BITS); let (d, m) = div_mod_floor_inner(*self << shift, *other << shift); return (d, m >> shift); fn div_mod_floor_inner(a: BigUint, b: BigUint) -> (BigUint, BigUint) { let mut m = a; let mut d: BigUint = Zero::zero(); let mut n = 1; while m >= b { let (d0, d_unit, b_unit) = div_estimate(&m, &b, n); let mut d0 = d0; let mut prod = b * d0; while prod > m { // FIXME(#5992): assignment operator overloads // d0 -= d_unit d0 = d0 - d_unit; // FIXME(#5992): assignment operator overloads // prod -= b_unit; prod = prod - b_unit } if d0.is_zero() { n = 2; continue; } n = 1; // FIXME(#5992): assignment operator overloads // d += d0; d = d + d0; // FIXME(#5992): assignment operator overloads // m -= prod; m = m - prod; } return (d, m); } fn div_estimate(a: &BigUint, b: &BigUint, n: uint) -> (BigUint, BigUint, BigUint) { if a.data.len() < n { return (Zero::zero(), Zero::zero(), (*a).clone()); } let an = a.data[a.data.len() - n ..]; let bn = *b.data.last().unwrap(); let mut d = Vec::with_capacity(an.len()); let mut carry = 0; for elt in an.iter().rev() { let ai = BigDigit::to_doublebigdigit(carry, *elt); let di = ai / (bn as DoubleBigDigit); assert!(di < BigDigit::BASE); carry = (ai % (bn as DoubleBigDigit)) as BigDigit; d.push(di as BigDigit) } d.reverse(); let shift = (a.data.len() - an.len()) - (b.data.len() - 1); if shift == 0 { return (BigUint::new(d), One::one(), (*b).clone()); } let one: BigUint = One::one(); return (BigUint::new(d).shl_unit(shift), one.shl_unit(shift), b.shl_unit(shift)); } } /// Calculates the Greatest Common Divisor (GCD) of the number and `other`. /// /// The result is always positive. #[inline] fn gcd(&self, other: &BigUint) -> BigUint { // Use Euclid's algorithm let mut m = (*self).clone(); let mut n = (*other).clone(); while !m.is_zero() { let temp = m; m = n % temp; n = temp; } return n; } /// Calculates the Lowest Common Multiple (LCM) of the number and `other`. #[inline] fn lcm(&self, other: &BigUint) -> BigUint { ((*self * *other) / self.gcd(other)) } /// Deprecated, use `is_multiple_of` instead. #[deprecated = "function renamed to `is_multiple_of`"] #[inline] fn divides(&self, other: &BigUint) -> bool { return self.is_multiple_of(other); } /// Returns `true` if the number is a multiple of `other`. #[inline] fn is_multiple_of(&self, other: &BigUint) -> bool { (*self % *other).is_zero() } /// Returns `true` if the number is divisible by `2`. #[inline] fn is_even(&self) -> bool { // Considering only the last digit. match self.data.head() { Some(x) => x.is_even(), None => true } } /// Returns `true` if the number is not divisible by `2`. #[inline] fn is_odd(&self) -> bool { !self.is_even() } } impl ToPrimitive for BigUint { #[inline] fn to_i64(&self) -> Option { self.to_u64().and_then(|n| { // If top bit of u64 is set, it's too large to convert to i64. if n >> 63 == 0 { Some(n as i64) } else { None } }) } // `DoubleBigDigit` size dependent #[inline] fn to_u64(&self) -> Option { match self.data.len() { 0 => Some(0), 1 => Some(self.data[0] as u64), 2 => Some(BigDigit::to_doublebigdigit(self.data[1], self.data[0]) as u64), _ => None } } } impl FromPrimitive for BigUint { #[inline] fn from_i64(n: i64) -> Option { if n > 0 { FromPrimitive::from_u64(n as u64) } else if n == 0 { Some(Zero::zero()) } else { None } } // `DoubleBigDigit` size dependent #[inline] fn from_u64(n: u64) -> Option { let n = match BigDigit::from_doublebigdigit(n) { (0, 0) => Zero::zero(), (0, n0) => BigUint::new(vec!(n0)), (n1, n0) => BigUint::new(vec!(n0, n1)) }; Some(n) } } /// A generic trait for converting a value to a `BigUint`. pub trait ToBigUint { /// Converts the value of `self` to a `BigUint`. fn to_biguint(&self) -> Option; } impl ToBigUint for BigInt { #[inline] fn to_biguint(&self) -> Option { if self.sign == Plus { Some(self.data.clone()) } else if self.sign == NoSign { Some(Zero::zero()) } else { None } } } impl ToBigUint for BigUint { #[inline] fn to_biguint(&self) -> Option { Some(self.clone()) } } macro_rules! impl_to_biguint( ($T:ty, $from_ty:path) => { impl ToBigUint for $T { #[inline] fn to_biguint(&self) -> Option { $from_ty(*self) } } } ) impl_to_biguint!(int, FromPrimitive::from_int) impl_to_biguint!(i8, FromPrimitive::from_i8) impl_to_biguint!(i16, FromPrimitive::from_i16) impl_to_biguint!(i32, FromPrimitive::from_i32) impl_to_biguint!(i64, FromPrimitive::from_i64) impl_to_biguint!(uint, FromPrimitive::from_uint) impl_to_biguint!(u8, FromPrimitive::from_u8) impl_to_biguint!(u16, FromPrimitive::from_u16) impl_to_biguint!(u32, FromPrimitive::from_u32) impl_to_biguint!(u64, FromPrimitive::from_u64) fn to_str_radix(me: &BigUint, radix: uint) -> String { assert!(1 < radix && radix <= 16, "The radix must be within (1, 16]"); let (base, max_len) = get_radix_base(radix); if base == BigDigit::BASE { return fill_concat(me.data[], radix, max_len) } return fill_concat(convert_base(me, base)[], radix, max_len); fn convert_base(n: &BigUint, base: DoubleBigDigit) -> Vec { let divider = base.to_biguint().unwrap(); let mut result = Vec::new(); let mut m = n.clone(); while m >= divider { let (d, m0) = m.div_mod_floor(÷r); result.push(m0.to_uint().unwrap() as BigDigit); m = d; } if !m.is_zero() { result.push(m.to_uint().unwrap() as BigDigit); } return result; } fn fill_concat(v: &[BigDigit], radix: uint, l: uint) -> String { if v.is_empty() { return "0".to_string() } let mut s = String::with_capacity(v.len() * l); for n in v.iter().rev() { let ss = fmt::radix(*n as uint, radix as u8).to_string(); s.push_str("0".repeat(l - ss.len())[]); s.push_str(ss[]); } s.trim_left_chars('0').to_string() } } fn to_str_radix_signed(me: &BigInt, radix: uint) -> String { match me.sign { Plus => to_str_radix(&me.data, radix), NoSign => "0".to_string(), Minus => format!("-{}", to_str_radix(&me.data, radix)), } } impl FromStrRadix for BigUint { /// Creates and initializes a `BigUint`. #[inline] fn from_str_radix(s: &str, radix: uint) -> Option { let (base, unit_len) = get_radix_base(radix); let base_num = match base.to_biguint() { Some(base_num) => base_num, None => { return None; } }; let mut end = s.len(); let mut n: BigUint = Zero::zero(); let mut power: BigUint = One::one(); loop { let start = cmp::max(end, unit_len) - unit_len; match FromStrRadix::from_str_radix(s[start .. end], radix) { Some(d) => { let d: Option = FromPrimitive::from_uint(d); match d { Some(d) => { // FIXME(#5992): assignment operator overloads // n += d * power; n = n + d * power; } None => { return None; } } } None => { return None; } } if end <= unit_len { return Some(n); } end -= unit_len; // FIXME(#5992): assignment operator overloads // power *= base_num; power = power * base_num; } } } impl> AdditiveIterator for T { fn sum(&mut self) -> BigUint { let init: BigUint = Zero::zero(); self.fold(init, |acc, x| acc + x) } } impl> MultiplicativeIterator for T { fn product(&mut self) -> BigUint { let init: BigUint = One::one(); self.fold(init, |acc, x| acc * x) } } impl BigUint { /// Creates and initializes a `BigUint`. /// /// The digits are be in base 2^32. #[inline] pub fn new(mut digits: Vec) -> BigUint { // omit trailing zeros let new_len = digits.iter().rposition(|n| *n != 0).map_or(0, |p| p + 1); digits.truncate(new_len); BigUint { data: digits } } /// Creates and initializes a `BigUint`. /// /// The digits are be in base 2^32. #[inline] pub fn from_slice(slice: &[BigDigit]) -> BigUint { BigUint::new(slice.to_vec()) } /// Creates and initializes a `BigUint`. #[inline] pub fn parse_bytes(buf: &[u8], radix: uint) -> Option { str::from_utf8(buf).and_then(|s| FromStrRadix::from_str_radix(s, radix)) } #[inline] fn shl_unit(&self, n_unit: uint) -> BigUint { if n_unit == 0 || self.is_zero() { return (*self).clone(); } let mut v = Vec::from_elem(n_unit, ZERO_BIG_DIGIT); v.push_all(self.data[]); BigUint::new(v) } #[inline] fn shl_bits(&self, n_bits: uint) -> BigUint { if n_bits == 0 || self.is_zero() { return (*self).clone(); } let mut carry = 0; let mut shifted: Vec = self.data.iter().map(|elem| { let (hi, lo) = BigDigit::from_doublebigdigit( (*elem as DoubleBigDigit) << n_bits | (carry as DoubleBigDigit) ); carry = hi; lo }).collect(); if carry != 0 { shifted.push(carry); } return BigUint::new(shifted); } #[inline] fn shr_unit(&self, n_unit: uint) -> BigUint { if n_unit == 0 { return (*self).clone(); } if self.data.len() < n_unit { return Zero::zero(); } BigUint::from_slice(self.data[n_unit ..]) } #[inline] fn shr_bits(&self, n_bits: uint) -> BigUint { if n_bits == 0 || self.data.is_empty() { return (*self).clone(); } let mut borrow = 0; let mut shifted_rev = Vec::with_capacity(self.data.len()); for elem in self.data.iter().rev() { shifted_rev.push((*elem >> n_bits) | borrow); borrow = *elem << (BigDigit::BITS - n_bits); } let shifted = { shifted_rev.reverse(); shifted_rev }; return BigUint::new(shifted); } /// Determines the fewest bits necessary to express the `BigUint`. pub fn bits(&self) -> uint { if self.is_zero() { return 0; } let zeros = self.data.last().unwrap().leading_zeros(); return self.data.len()*BigDigit::BITS - zeros; } } // `DoubleBigDigit` size dependent #[inline] fn get_radix_base(radix: uint) -> (DoubleBigDigit, uint) { match radix { 2 => (4294967296, 32), 3 => (3486784401, 20), 4 => (4294967296, 16), 5 => (1220703125, 13), 6 => (2176782336, 12), 7 => (1977326743, 11), 8 => (1073741824, 10), 9 => (3486784401, 10), 10 => (1000000000, 9), 11 => (2357947691, 9), 12 => (429981696, 8), 13 => (815730721, 8), 14 => (1475789056, 8), 15 => (2562890625, 8), 16 => (4294967296, 8), _ => panic!("The radix must be within (1, 16]") } } /// A Sign is a `BigInt`'s composing element. #[deriving(PartialEq, PartialOrd, Eq, Ord, Clone, Show, Encodable, Decodable)] pub enum Sign { Minus, NoSign, Plus } impl Neg for Sign { /// Negate Sign value. #[inline] fn neg(&self) -> Sign { match *self { Minus => Plus, NoSign => NoSign, Plus => Minus } } } /// A big signed integer type. #[deriving(Clone, Encodable, Decodable)] pub struct BigInt { sign: Sign, data: BigUint } impl PartialEq for BigInt { #[inline] fn eq(&self, other: &BigInt) -> bool { self.cmp(other) == Equal } } impl Eq for BigInt {} impl PartialOrd for BigInt { #[inline] fn partial_cmp(&self, other: &BigInt) -> Option { Some(self.cmp(other)) } } impl Ord for BigInt { #[inline] fn cmp(&self, other: &BigInt) -> Ordering { let scmp = self.sign.cmp(&other.sign); if scmp != Equal { return scmp; } match self.sign { NoSign => Equal, Plus => self.data.cmp(&other.data), Minus => other.data.cmp(&self.data), } } } impl Default for BigInt { #[inline] fn default() -> BigInt { Zero::zero() } } impl fmt::Show for BigInt { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", to_str_radix_signed(self, 10)) } } impl hash::Hash for BigInt { fn hash(&self, state: &mut S) { (self.sign == Plus).hash(state); self.data.hash(state); } } impl FromStr for BigInt { #[inline] fn from_str(s: &str) -> Option { FromStrRadix::from_str_radix(s, 10) } } impl Num for BigInt {} impl Shl for BigInt { #[inline] fn shl(&self, rhs: &uint) -> BigInt { BigInt::from_biguint(self.sign, self.data << *rhs) } } impl Shr for BigInt { #[inline] fn shr(&self, rhs: &uint) -> BigInt { BigInt::from_biguint(self.sign, self.data >> *rhs) } } impl Zero for BigInt { #[inline] fn zero() -> BigInt { BigInt::from_biguint(NoSign, Zero::zero()) } #[inline] fn is_zero(&self) -> bool { self.sign == NoSign } } impl One for BigInt { #[inline] fn one() -> BigInt { BigInt::from_biguint(Plus, One::one()) } } impl Signed for BigInt { #[inline] fn abs(&self) -> BigInt { match self.sign { Plus | NoSign => self.clone(), Minus => BigInt::from_biguint(Plus, self.data.clone()) } } #[inline] fn abs_sub(&self, other: &BigInt) -> BigInt { if *self <= *other { Zero::zero() } else { *self - *other } } #[inline] fn signum(&self) -> BigInt { match self.sign { Plus => BigInt::from_biguint(Plus, One::one()), Minus => BigInt::from_biguint(Minus, One::one()), NoSign => Zero::zero(), } } #[inline] fn is_positive(&self) -> bool { self.sign == Plus } #[inline] fn is_negative(&self) -> bool { self.sign == Minus } } impl Add for BigInt { #[inline] fn add(&self, other: &BigInt) -> BigInt { match (self.sign, other.sign) { (NoSign, _) => other.clone(), (_, NoSign) => self.clone(), (Plus, Plus) => BigInt::from_biguint(Plus, self.data + other.data), (Plus, Minus) => *self - (-*other), (Minus, Plus) => *other - (-*self), (Minus, Minus) => -((-*self) + (-*other)) } } } impl Sub for BigInt { #[inline] fn sub(&self, other: &BigInt) -> BigInt { match (self.sign, other.sign) { (NoSign, _) => -*other, (_, NoSign) => self.clone(), (Plus, Plus) => match self.data.cmp(&other.data) { Less => BigInt::from_biguint(Minus, other.data - self.data), Greater => BigInt::from_biguint(Plus, self.data - other.data), Equal => Zero::zero() }, (Plus, Minus) => *self + (-*other), (Minus, Plus) => -((-*self) + *other), (Minus, Minus) => (-*other) - (-*self) } } } impl Mul for BigInt { #[inline] fn mul(&self, other: &BigInt) -> BigInt { match (self.sign, other.sign) { (NoSign, _) | (_, NoSign) => Zero::zero(), (Plus, Plus) | (Minus, Minus) => { BigInt::from_biguint(Plus, self.data * other.data) }, (Plus, Minus) | (Minus, Plus) => { BigInt::from_biguint(Minus, self.data * other.data) } } } } impl Div for BigInt { #[inline] fn div(&self, other: &BigInt) -> BigInt { let (q, _) = self.div_rem(other); q } } impl Rem for BigInt { #[inline] fn rem(&self, other: &BigInt) -> BigInt { let (_, r) = self.div_rem(other); r } } impl Neg for BigInt { #[inline] fn neg(&self) -> BigInt { BigInt::from_biguint(self.sign.neg(), self.data.clone()) } } impl CheckedAdd for BigInt { #[inline] fn checked_add(&self, v: &BigInt) -> Option { return Some(self.add(v)); } } impl CheckedSub for BigInt { #[inline] fn checked_sub(&self, v: &BigInt) -> Option { return Some(self.sub(v)); } } impl CheckedMul for BigInt { #[inline] fn checked_mul(&self, v: &BigInt) -> Option { return Some(self.mul(v)); } } impl CheckedDiv for BigInt { #[inline] fn checked_div(&self, v: &BigInt) -> Option { if v.is_zero() { return None; } return Some(self.div(v)); } } impl Integer for BigInt { #[inline] fn div_rem(&self, other: &BigInt) -> (BigInt, BigInt) { // r.sign == self.sign let (d_ui, r_ui) = self.data.div_mod_floor(&other.data); let d = BigInt::from_biguint(Plus, d_ui); let r = BigInt::from_biguint(Plus, r_ui); match (self.sign, other.sign) { (_, NoSign) => panic!(), (Plus, Plus) | (NoSign, Plus) => ( d, r), (Plus, Minus) | (NoSign, Minus) => (-d, r), (Minus, Plus) => (-d, -r), (Minus, Minus) => ( d, -r) } } #[inline] fn div_floor(&self, other: &BigInt) -> BigInt { let (d, _) = self.div_mod_floor(other); d } #[inline] fn mod_floor(&self, other: &BigInt) -> BigInt { let (_, m) = self.div_mod_floor(other); m } fn div_mod_floor(&self, other: &BigInt) -> (BigInt, BigInt) { // m.sign == other.sign let (d_ui, m_ui) = self.data.div_rem(&other.data); let d = BigInt::from_biguint(Plus, d_ui); let m = BigInt::from_biguint(Plus, m_ui); match (self.sign, other.sign) { (_, NoSign) => panic!(), (Plus, Plus) | (NoSign, Plus) => (d, m), (Plus, Minus) | (NoSign, Minus) => if m.is_zero() { (-d, Zero::zero()) } else { (-d - One::one(), m + *other) }, (Minus, Plus) => if m.is_zero() { (-d, Zero::zero()) } else { (-d - One::one(), *other - m) }, (Minus, Minus) => (d, -m) } } /// Calculates the Greatest Common Divisor (GCD) of the number and `other`. /// /// The result is always positive. #[inline] fn gcd(&self, other: &BigInt) -> BigInt { BigInt::from_biguint(Plus, self.data.gcd(&other.data)) } /// Calculates the Lowest Common Multiple (LCM) of the number and `other`. #[inline] fn lcm(&self, other: &BigInt) -> BigInt { BigInt::from_biguint(Plus, self.data.lcm(&other.data)) } /// Deprecated, use `is_multiple_of` instead. #[deprecated = "function renamed to `is_multiple_of`"] #[inline] fn divides(&self, other: &BigInt) -> bool { return self.is_multiple_of(other); } /// Returns `true` if the number is a multiple of `other`. #[inline] fn is_multiple_of(&self, other: &BigInt) -> bool { self.data.is_multiple_of(&other.data) } /// Returns `true` if the number is divisible by `2`. #[inline] fn is_even(&self) -> bool { self.data.is_even() } /// Returns `true` if the number is not divisible by `2`. #[inline] fn is_odd(&self) -> bool { self.data.is_odd() } } impl ToPrimitive for BigInt { #[inline] fn to_i64(&self) -> Option { match self.sign { Plus => self.data.to_i64(), NoSign => Some(0), Minus => { self.data.to_u64().and_then(|n| { let m: u64 = 1 << 63; if n < m { Some(-(n as i64)) } else if n == m { Some(i64::MIN) } else { None } }) } } } #[inline] fn to_u64(&self) -> Option { match self.sign { Plus => self.data.to_u64(), NoSign => Some(0), Minus => None } } } impl FromPrimitive for BigInt { #[inline] fn from_i64(n: i64) -> Option { if n > 0 { FromPrimitive::from_u64(n as u64).and_then(|n| { Some(BigInt::from_biguint(Plus, n)) }) } else if n < 0 { FromPrimitive::from_u64(u64::MAX - (n as u64) + 1).and_then( |n| { Some(BigInt::from_biguint(Minus, n)) }) } else { Some(Zero::zero()) } } #[inline] fn from_u64(n: u64) -> Option { if n == 0 { Some(Zero::zero()) } else { FromPrimitive::from_u64(n).and_then(|n| { Some(BigInt::from_biguint(Plus, n)) }) } } } /// A generic trait for converting a value to a `BigInt`. pub trait ToBigInt { /// Converts the value of `self` to a `BigInt`. fn to_bigint(&self) -> Option; } impl ToBigInt for BigInt { #[inline] fn to_bigint(&self) -> Option { Some(self.clone()) } } impl ToBigInt for BigUint { #[inline] fn to_bigint(&self) -> Option { if self.is_zero() { Some(Zero::zero()) } else { Some(BigInt { sign: Plus, data: self.clone() }) } } } macro_rules! impl_to_bigint( ($T:ty, $from_ty:path) => { impl ToBigInt for $T { #[inline] fn to_bigint(&self) -> Option { $from_ty(*self) } } } ) impl_to_bigint!(int, FromPrimitive::from_int) impl_to_bigint!(i8, FromPrimitive::from_i8) impl_to_bigint!(i16, FromPrimitive::from_i16) impl_to_bigint!(i32, FromPrimitive::from_i32) impl_to_bigint!(i64, FromPrimitive::from_i64) impl_to_bigint!(uint, FromPrimitive::from_uint) impl_to_bigint!(u8, FromPrimitive::from_u8) impl_to_bigint!(u16, FromPrimitive::from_u16) impl_to_bigint!(u32, FromPrimitive::from_u32) impl_to_bigint!(u64, FromPrimitive::from_u64) impl FromStrRadix for BigInt { /// Creates and initializes a BigInt. #[inline] fn from_str_radix(s: &str, radix: uint) -> Option { if s.is_empty() { return None; } let mut sign = Plus; let mut start = 0; if s.starts_with("-") { sign = Minus; start = 1; } FromStrRadix::from_str_radix(s[start ..], radix) .map(|bu| BigInt::from_biguint(sign, bu)) } } pub trait RandBigInt { /// Generate a random `BigUint` of the given bit size. fn gen_biguint(&mut self, bit_size: uint) -> BigUint; /// Generate a random BigInt of the given bit size. fn gen_bigint(&mut self, bit_size: uint) -> BigInt; /// Generate a random `BigUint` less than the given bound. Fails /// when the bound is zero. fn gen_biguint_below(&mut self, bound: &BigUint) -> BigUint; /// Generate a random `BigUint` within the given range. The lower /// bound is inclusive; the upper bound is exclusive. Fails when /// the upper bound is not greater than the lower bound. fn gen_biguint_range(&mut self, lbound: &BigUint, ubound: &BigUint) -> BigUint; /// Generate a random `BigInt` within the given range. The lower /// bound is inclusive; the upper bound is exclusive. Fails when /// the upper bound is not greater than the lower bound. fn gen_bigint_range(&mut self, lbound: &BigInt, ubound: &BigInt) -> BigInt; } impl RandBigInt for R { fn gen_biguint(&mut self, bit_size: uint) -> BigUint { let (digits, rem) = bit_size.div_rem(&BigDigit::BITS); let mut data = Vec::with_capacity(digits+1); for _ in range(0, digits) { data.push(self.gen()); } if rem > 0 { let final_digit: BigDigit = self.gen(); data.push(final_digit >> (BigDigit::BITS - rem)); } BigUint::new(data) } fn gen_bigint(&mut self, bit_size: uint) -> BigInt { // Generate a random BigUint... let biguint = self.gen_biguint(bit_size); // ...and then randomly assign it a Sign... let sign = if biguint.is_zero() { // ...except that if the BigUint is zero, we need to try // again with probability 0.5. This is because otherwise, // the probability of generating a zero BigInt would be // double that of any other number. if self.gen() { return self.gen_bigint(bit_size); } else { NoSign } } else if self.gen() { Plus } else { Minus }; BigInt::from_biguint(sign, biguint) } fn gen_biguint_below(&mut self, bound: &BigUint) -> BigUint { assert!(!bound.is_zero()); let bits = bound.bits(); loop { let n = self.gen_biguint(bits); if n < *bound { return n; } } } fn gen_biguint_range(&mut self, lbound: &BigUint, ubound: &BigUint) -> BigUint { assert!(*lbound < *ubound); return *lbound + self.gen_biguint_below(&(*ubound - *lbound)); } fn gen_bigint_range(&mut self, lbound: &BigInt, ubound: &BigInt) -> BigInt { assert!(*lbound < *ubound); let delta = (*ubound - *lbound).to_biguint().unwrap(); return *lbound + self.gen_biguint_below(&delta).to_bigint().unwrap(); } } impl> AdditiveIterator for T { fn sum(&mut self) -> BigInt { let init: BigInt = Zero::zero(); self.fold(init, |acc, x| acc + x) } } impl> MultiplicativeIterator for T { fn product(&mut self) -> BigInt { let init: BigInt = One::one(); self.fold(init, |acc, x| acc * x) } } impl BigInt { /// Creates and initializes a BigInt. /// /// The digits are be in base 2^32. #[inline] pub fn new(sign: Sign, digits: Vec) -> BigInt { BigInt::from_biguint(sign, BigUint::new(digits)) } /// Creates and initializes a `BigInt`. /// /// The digits are be in base 2^32. #[inline] pub fn from_biguint(sign: Sign, data: BigUint) -> BigInt { if sign == NoSign || data.is_zero() { return BigInt { sign: NoSign, data: Zero::zero() }; } BigInt { sign: sign, data: data } } /// Creates and initializes a `BigInt`. #[inline] pub fn from_slice(sign: Sign, slice: &[BigDigit]) -> BigInt { BigInt::from_biguint(sign, BigUint::from_slice(slice)) } /// Creates and initializes a `BigInt`. #[inline] pub fn parse_bytes(buf: &[u8], radix: uint) -> Option { str::from_utf8(buf).and_then(|s| FromStrRadix::from_str_radix(s, radix)) } /// Converts this `BigInt` into a `BigUint`, if it's not negative. #[inline] pub fn to_biguint(&self) -> Option { match self.sign { Plus => Some(self.data.clone()), NoSign => Some(Zero::zero()), Minus => None } } #[inline] pub fn checked_add(&self, v: &BigInt) -> Option { return Some(self.add(v)); } #[inline] pub fn checked_sub(&self, v: &BigInt) -> Option { return Some(self.sub(v)); } #[inline] pub fn checked_mul(&self, v: &BigInt) -> Option { return Some(self.mul(v)); } #[inline] pub fn checked_div(&self, v: &BigInt) -> Option { if v.is_zero() { return None; } return Some(self.div(v)); } } #[cfg(test)] mod biguint_tests { use Integer; use super::{BigDigit, BigUint, ToBigUint, to_str_radix}; use super::{Plus, BigInt, RandBigInt, ToBigInt}; use std::cmp::{Less, Equal, Greater}; use std::from_str::FromStr; use std::i64; use std::num::FromStrRadix; use std::num::{ToPrimitive, FromPrimitive}; use std::rand::task_rng; use std::u64; use std::hash::hash; use {Zero, One, CheckedAdd, CheckedSub, CheckedMul, CheckedDiv}; #[test] fn test_from_slice() { fn check(slice: &[BigDigit], data: &[BigDigit]) { assert!(data == BigUint::from_slice(slice).data.as_slice()); } check([1], [1]); check([0, 0, 0], []); check([1, 2, 0, 0], [1, 2]); check([0, 0, 1, 2], [0, 0, 1, 2]); check([0, 0, 1, 2, 0, 0], [0, 0, 1, 2]); check([-1], [-1]); } #[test] fn test_cmp() { let data: [&[_], ..7] = [ &[], &[1], &[2], &[-1], &[0, 1], &[2, 1], &[1, 1, 1] ]; let data: Vec = data.iter().map(|v| BigUint::from_slice(*v)).collect(); for (i, ni) in data.iter().enumerate() { for (j0, nj) in data.slice(i, data.len()).iter().enumerate() { let j = j0 + i; if i == j { assert_eq!(ni.cmp(nj), Equal); assert_eq!(nj.cmp(ni), Equal); assert_eq!(ni, nj); assert!(!(ni != nj)); assert!(ni <= nj); assert!(ni >= nj); assert!(!(ni < nj)); assert!(!(ni > nj)); } else { assert_eq!(ni.cmp(nj), Less); assert_eq!(nj.cmp(ni), Greater); assert!(!(ni == nj)); assert!(ni != nj); assert!(ni <= nj); assert!(!(ni >= nj)); assert!(ni < nj); assert!(!(ni > nj)); assert!(!(nj <= ni)); assert!(nj >= ni); assert!(!(nj < ni)); assert!(nj > ni); } } } } #[test] fn test_hash() { let a = BigUint::new(vec!()); let b = BigUint::new(vec!(0)); let c = BigUint::new(vec!(1)); let d = BigUint::new(vec!(1,0,0,0,0,0)); let e = BigUint::new(vec!(0,0,0,0,0,1)); assert!(hash(&a) == hash(&b)); assert!(hash(&b) != hash(&c)); assert!(hash(&c) == hash(&d)); assert!(hash(&d) != hash(&e)); } #[test] fn test_bitand() { fn check(left: &[BigDigit], right: &[BigDigit], expected: &[BigDigit]) { assert_eq!(BigUint::from_slice(left) & BigUint::from_slice(right), BigUint::from_slice(expected)); } check([], [], []); check([268, 482, 17], [964, 54], [260, 34]); } #[test] fn test_bitor() { fn check(left: &[BigDigit], right: &[BigDigit], expected: &[BigDigit]) { assert_eq!(BigUint::from_slice(left) | BigUint::from_slice(right), BigUint::from_slice(expected)); } check([], [], []); check([268, 482, 17], [964, 54], [972, 502, 17]); } #[test] fn test_bitxor() { fn check(left: &[BigDigit], right: &[BigDigit], expected: &[BigDigit]) { assert_eq!(BigUint::from_slice(left) ^ BigUint::from_slice(right), BigUint::from_slice(expected)); } check([], [], []); check([268, 482, 17], [964, 54], [712, 468, 17]); } #[test] fn test_shl() { fn check(s: &str, shift: uint, ans: &str) { let opt_biguint: Option = FromStrRadix::from_str_radix(s, 16); let bu = to_str_radix(&(opt_biguint.unwrap() << shift), 16); assert_eq!(bu.as_slice(), ans); } check("0", 3, "0"); check("1", 3, "8"); check("1\ 0000\ 0000\ 0000\ 0001\ 0000\ 0000\ 0000\ 0001", 3, "8\ 0000\ 0000\ 0000\ 0008\ 0000\ 0000\ 0000\ 0008"); check("1\ 0000\ 0001\ 0000\ 0001", 2, "4\ 0000\ 0004\ 0000\ 0004"); check("1\ 0001\ 0001", 1, "2\ 0002\ 0002"); check("\ 4000\ 0000\ 0000\ 0000", 3, "2\ 0000\ 0000\ 0000\ 0000"); check("4000\ 0000", 2, "1\ 0000\ 0000"); check("4000", 2, "1\ 0000"); check("4000\ 0000\ 0000\ 0000", 67, "2\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000"); check("4000\ 0000", 35, "2\ 0000\ 0000\ 0000\ 0000"); check("4000", 19, "2\ 0000\ 0000"); check("fedc\ ba98\ 7654\ 3210\ fedc\ ba98\ 7654\ 3210", 4, "f\ edcb\ a987\ 6543\ 210f\ edcb\ a987\ 6543\ 2100"); check("88887777666655554444333322221111", 16, "888877776666555544443333222211110000"); } #[test] fn test_shr() { fn check(s: &str, shift: uint, ans: &str) { let opt_biguint: Option = FromStrRadix::from_str_radix(s, 16); let bu = to_str_radix(&(opt_biguint.unwrap() >> shift), 16); assert_eq!(bu.as_slice(), ans); } check("0", 3, "0"); check("f", 3, "1"); check("1\ 0000\ 0000\ 0000\ 0001\ 0000\ 0000\ 0000\ 0001", 3, "2000\ 0000\ 0000\ 0000\ 2000\ 0000\ 0000\ 0000"); check("1\ 0000\ 0001\ 0000\ 0001", 2, "4000\ 0000\ 4000\ 0000"); check("1\ 0001\ 0001", 1, "8000\ 8000"); check("2\ 0000\ 0000\ 0000\ 0001\ 0000\ 0000\ 0000\ 0001", 67, "4000\ 0000\ 0000\ 0000"); check("2\ 0000\ 0001\ 0000\ 0001", 35, "4000\ 0000"); check("2\ 0001\ 0001", 19, "4000"); check("1\ 0000\ 0000\ 0000\ 0000", 1, "8000\ 0000\ 0000\ 0000"); check("1\ 0000\ 0000", 1, "8000\ 0000"); check("1\ 0000", 1, "8000"); check("f\ edcb\ a987\ 6543\ 210f\ edcb\ a987\ 6543\ 2100", 4, "fedc\ ba98\ 7654\ 3210\ fedc\ ba98\ 7654\ 3210"); check("888877776666555544443333222211110000", 16, "88887777666655554444333322221111"); } // `DoubleBigDigit` size dependent #[test] fn test_convert_i64() { fn check(b1: BigUint, i: i64) { let b2: BigUint = FromPrimitive::from_i64(i).unwrap(); assert!(b1 == b2); assert!(b1.to_i64().unwrap() == i); } check(Zero::zero(), 0); check(One::one(), 1); check(i64::MAX.to_biguint().unwrap(), i64::MAX); check(BigUint::new(vec!( )), 0); check(BigUint::new(vec!( 1 )), (1 << (0*BigDigit::BITS))); check(BigUint::new(vec!(-1 )), (1 << (1*BigDigit::BITS)) - 1); check(BigUint::new(vec!( 0, 1 )), (1 << (1*BigDigit::BITS))); check(BigUint::new(vec!(-1, -1 >> 1)), i64::MAX); assert_eq!(i64::MIN.to_biguint(), None); assert_eq!(BigUint::new(vec!(-1, -1 )).to_i64(), None); assert_eq!(BigUint::new(vec!( 0, 0, 1)).to_i64(), None); assert_eq!(BigUint::new(vec!(-1, -1, -1)).to_i64(), None); } // `DoubleBigDigit` size dependent #[test] fn test_convert_u64() { fn check(b1: BigUint, u: u64) { let b2: BigUint = FromPrimitive::from_u64(u).unwrap(); assert!(b1 == b2); assert!(b1.to_u64().unwrap() == u); } check(Zero::zero(), 0); check(One::one(), 1); check(u64::MIN.to_biguint().unwrap(), u64::MIN); check(u64::MAX.to_biguint().unwrap(), u64::MAX); check(BigUint::new(vec!( )), 0); check(BigUint::new(vec!( 1 )), (1 << (0*BigDigit::BITS))); check(BigUint::new(vec!(-1 )), (1 << (1*BigDigit::BITS)) - 1); check(BigUint::new(vec!( 0, 1)), (1 << (1*BigDigit::BITS))); check(BigUint::new(vec!(-1, -1)), u64::MAX); assert_eq!(BigUint::new(vec!( 0, 0, 1)).to_u64(), None); assert_eq!(BigUint::new(vec!(-1, -1, -1)).to_u64(), None); } #[test] fn test_convert_to_bigint() { fn check(n: BigUint, ans: BigInt) { assert_eq!(n.to_bigint().unwrap(), ans); assert_eq!(n.to_bigint().unwrap().to_biguint().unwrap(), n); } check(Zero::zero(), Zero::zero()); check(BigUint::new(vec!(1,2,3)), BigInt::from_biguint(Plus, BigUint::new(vec!(1,2,3)))); } const SUM_TRIPLES: &'static [(&'static [BigDigit], &'static [BigDigit], &'static [BigDigit])] = &[ (&[], &[], &[]), (&[], &[ 1], &[ 1]), (&[ 1], &[ 1], &[ 2]), (&[ 1], &[ 1, 1], &[ 2, 1]), (&[ 1], &[-1], &[ 0, 1]), (&[ 1], &[-1, -1], &[ 0, 0, 1]), (&[-1, -1], &[-1, -1], &[-2, -1, 1]), (&[ 1, 1, 1], &[-1, -1], &[ 0, 1, 2]), (&[ 2, 2, 1], &[-1, -2], &[ 1, 1, 2]) ]; #[test] fn test_add() { for elm in SUM_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigUint::from_slice(a_vec); let b = BigUint::from_slice(b_vec); let c = BigUint::from_slice(c_vec); assert!(a + b == c); assert!(b + a == c); } } #[test] fn test_sub() { for elm in SUM_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigUint::from_slice(a_vec); let b = BigUint::from_slice(b_vec); let c = BigUint::from_slice(c_vec); assert!(c - a == b); assert!(c - b == a); } } #[test] #[should_fail] fn test_sub_fail_on_underflow() { let (a, b) : (BigUint, BigUint) = (Zero::zero(), One::one()); a - b; } const MUL_TRIPLES: &'static [(&'static [BigDigit], &'static [BigDigit], &'static [BigDigit])] = &[ (&[], &[], &[]), (&[], &[ 1], &[]), (&[ 2], &[], &[]), (&[ 1], &[ 1], &[1]), (&[ 2], &[ 3], &[ 6]), (&[ 1], &[ 1, 1, 1], &[1, 1, 1]), (&[ 1, 2, 3], &[ 3], &[ 3, 6, 9]), (&[ 1, 1, 1], &[-1], &[-1, -1, -1]), (&[ 1, 2, 3], &[-1], &[-1, -2, -2, 2]), (&[ 1, 2, 3, 4], &[-1], &[-1, -2, -2, -2, 3]), (&[-1], &[-1], &[ 1, -2]), (&[-1, -1], &[-1], &[ 1, -1, -2]), (&[-1, -1, -1], &[-1], &[ 1, -1, -1, -2]), (&[-1, -1, -1, -1], &[-1], &[ 1, -1, -1, -1, -2]), (&[-1/2 + 1], &[ 2], &[ 0, 1]), (&[0, -1/2 + 1], &[ 2], &[ 0, 0, 1]), (&[ 1, 2], &[ 1, 2, 3], &[1, 4, 7, 6]), (&[-1, -1], &[-1, -1, -1], &[1, 0, -1, -2, -1]), (&[-1, -1, -1], &[-1, -1, -1, -1], &[1, 0, 0, -1, -2, -1, -1]), (&[ 0, 0, 1], &[ 1, 2, 3], &[0, 0, 1, 2, 3]), (&[ 0, 0, 1], &[ 0, 0, 0, 1], &[0, 0, 0, 0, 0, 1]) ]; const DIV_REM_QUADRUPLES: &'static [(&'static [BigDigit], &'static [BigDigit], &'static [BigDigit], &'static [BigDigit])] = &[ (&[ 1], &[ 2], &[], &[1]), (&[ 1, 1], &[ 2], &[-1/2+1], &[1]), (&[ 1, 1, 1], &[ 2], &[-1/2+1, -1/2+1], &[1]), (&[ 0, 1], &[-1], &[1], &[1]), (&[-1, -1], &[-2], &[2, 1], &[3]) ]; #[test] fn test_mul() { for elm in MUL_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigUint::from_slice(a_vec); let b = BigUint::from_slice(b_vec); let c = BigUint::from_slice(c_vec); assert!(a * b == c); assert!(b * a == c); } for elm in DIV_REM_QUADRUPLES.iter() { let (a_vec, b_vec, c_vec, d_vec) = *elm; let a = BigUint::from_slice(a_vec); let b = BigUint::from_slice(b_vec); let c = BigUint::from_slice(c_vec); let d = BigUint::from_slice(d_vec); assert!(a == b * c + d); assert!(a == c * b + d); } } #[test] fn test_div_rem() { for elm in MUL_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigUint::from_slice(a_vec); let b = BigUint::from_slice(b_vec); let c = BigUint::from_slice(c_vec); if !a.is_zero() { assert_eq!(c.div_rem(&a), (b.clone(), Zero::zero())); } if !b.is_zero() { assert_eq!(c.div_rem(&b), (a.clone(), Zero::zero())); } } for elm in DIV_REM_QUADRUPLES.iter() { let (a_vec, b_vec, c_vec, d_vec) = *elm; let a = BigUint::from_slice(a_vec); let b = BigUint::from_slice(b_vec); let c = BigUint::from_slice(c_vec); let d = BigUint::from_slice(d_vec); if !b.is_zero() { assert!(a.div_rem(&b) == (c, d)); } } } #[test] fn test_checked_add() { for elm in SUM_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigUint::from_slice(a_vec); let b = BigUint::from_slice(b_vec); let c = BigUint::from_slice(c_vec); assert!(a.checked_add(&b).unwrap() == c); assert!(b.checked_add(&a).unwrap() == c); } } #[test] fn test_checked_sub() { for elm in SUM_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigUint::from_slice(a_vec); let b = BigUint::from_slice(b_vec); let c = BigUint::from_slice(c_vec); assert!(c.checked_sub(&a).unwrap() == b); assert!(c.checked_sub(&b).unwrap() == a); if a > c { assert!(a.checked_sub(&c).is_none()); } if b > c { assert!(b.checked_sub(&c).is_none()); } } } #[test] fn test_checked_mul() { for elm in MUL_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigUint::from_slice(a_vec); let b = BigUint::from_slice(b_vec); let c = BigUint::from_slice(c_vec); assert!(a.checked_mul(&b).unwrap() == c); assert!(b.checked_mul(&a).unwrap() == c); } for elm in DIV_REM_QUADRUPLES.iter() { let (a_vec, b_vec, c_vec, d_vec) = *elm; let a = BigUint::from_slice(a_vec); let b = BigUint::from_slice(b_vec); let c = BigUint::from_slice(c_vec); let d = BigUint::from_slice(d_vec); assert!(a == b.checked_mul(&c).unwrap() + d); assert!(a == c.checked_mul(&b).unwrap() + d); } } #[test] fn test_checked_div() { for elm in MUL_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigUint::from_slice(a_vec); let b = BigUint::from_slice(b_vec); let c = BigUint::from_slice(c_vec); if !a.is_zero() { assert!(c.checked_div(&a).unwrap() == b); } if !b.is_zero() { assert!(c.checked_div(&b).unwrap() == a); } assert!(c.checked_div(&Zero::zero()).is_none()); } } #[test] fn test_gcd() { fn check(a: uint, b: uint, c: uint) { let big_a: BigUint = FromPrimitive::from_uint(a).unwrap(); let big_b: BigUint = FromPrimitive::from_uint(b).unwrap(); let big_c: BigUint = FromPrimitive::from_uint(c).unwrap(); assert_eq!(big_a.gcd(&big_b), big_c); } check(10, 2, 2); check(10, 3, 1); check(0, 3, 3); check(3, 3, 3); check(56, 42, 14); } #[test] fn test_lcm() { fn check(a: uint, b: uint, c: uint) { let big_a: BigUint = FromPrimitive::from_uint(a).unwrap(); let big_b: BigUint = FromPrimitive::from_uint(b).unwrap(); let big_c: BigUint = FromPrimitive::from_uint(c).unwrap(); assert_eq!(big_a.lcm(&big_b), big_c); } check(1, 0, 0); check(0, 1, 0); check(1, 1, 1); check(8, 9, 72); check(11, 5, 55); check(99, 17, 1683); } #[test] fn test_is_even() { let one: BigUint = FromStr::from_str("1").unwrap(); let two: BigUint = FromStr::from_str("2").unwrap(); let thousand: BigUint = FromStr::from_str("1000").unwrap(); let big: BigUint = FromStr::from_str("1000000000000000000000").unwrap(); let bigger: BigUint = FromStr::from_str("1000000000000000000001").unwrap(); assert!(one.is_odd()); assert!(two.is_even()); assert!(thousand.is_even()); assert!(big.is_even()); assert!(bigger.is_odd()); assert!((one << 64).is_even()); assert!(((one << 64) + one).is_odd()); } fn to_str_pairs() -> Vec<(BigUint, Vec<(uint, String)>)> { let bits = BigDigit::BITS; vec!(( Zero::zero(), vec!( (2, "0".to_string()), (3, "0".to_string()) )), ( BigUint::from_slice([ 0xff ]), vec!( (2, "11111111".to_string()), (3, "100110".to_string()), (4, "3333".to_string()), (5, "2010".to_string()), (6, "1103".to_string()), (7, "513".to_string()), (8, "377".to_string()), (9, "313".to_string()), (10, "255".to_string()), (11, "212".to_string()), (12, "193".to_string()), (13, "168".to_string()), (14, "143".to_string()), (15, "120".to_string()), (16, "ff".to_string()) )), ( BigUint::from_slice([ 0xfff ]), vec!( (2, "111111111111".to_string()), (4, "333333".to_string()), (16, "fff".to_string()) )), ( BigUint::from_slice([ 1, 2 ]), vec!( (2, format!("10{}1", "0".repeat(bits - 1))), (4, format!("2{}1", "0".repeat(bits / 2 - 1))), (10, match bits { 32 => "8589934593".to_string(), 16 => "131073".to_string(), _ => panic!() }), (16, format!("2{}1", "0".repeat(bits / 4 - 1))) )), ( BigUint::from_slice([ 1, 2, 3 ]), vec!( (2, format!("11{}10{}1", "0".repeat(bits - 2), "0".repeat(bits - 1))), (4, format!("3{}2{}1", "0".repeat(bits / 2 - 1), "0".repeat(bits / 2 - 1))), (10, match bits { 32 => "55340232229718589441".to_string(), 16 => "12885032961".to_string(), _ => panic!() }), (16, format!("3{}2{}1", "0".repeat(bits / 4 - 1), "0".repeat(bits / 4 - 1))) )) ) } #[test] fn test_to_str_radix() { let r = to_str_pairs(); for num_pair in r.iter() { let &(ref n, ref rs) = num_pair; for str_pair in rs.iter() { let &(ref radix, ref str) = str_pair; assert_eq!(to_str_radix(n, *radix).as_slice(), str.as_slice()); } } } #[test] fn test_from_str_radix() { let r = to_str_pairs(); for num_pair in r.iter() { let &(ref n, ref rs) = num_pair; for str_pair in rs.iter() { let &(ref radix, ref str) = str_pair; assert_eq!(n, &FromStrRadix::from_str_radix(str.as_slice(), *radix).unwrap()); } } let zed: Option = FromStrRadix::from_str_radix("Z", 10); assert_eq!(zed, None); let blank: Option = FromStrRadix::from_str_radix("_", 2); assert_eq!(blank, None); let minus_one: Option = FromStrRadix::from_str_radix("-1", 10); assert_eq!(minus_one, None); } #[test] fn test_factor() { fn factor(n: uint) -> BigUint { let mut f: BigUint = One::one(); for i in range(2, n + 1) { // FIXME(#5992): assignment operator overloads // f *= FromPrimitive::from_uint(i); f = f * FromPrimitive::from_uint(i).unwrap(); } return f; } fn check(n: uint, s: &str) { let n = factor(n); let ans = match FromStrRadix::from_str_radix(s, 10) { Some(x) => x, None => panic!() }; assert_eq!(n, ans); } check(3, "6"); check(10, "3628800"); check(20, "2432902008176640000"); check(30, "265252859812191058636308480000000"); } #[test] fn test_bits() { assert_eq!(BigUint::new(vec!(0,0,0,0)).bits(), 0); let n: BigUint = FromPrimitive::from_uint(0).unwrap(); assert_eq!(n.bits(), 0); let n: BigUint = FromPrimitive::from_uint(1).unwrap(); assert_eq!(n.bits(), 1); let n: BigUint = FromPrimitive::from_uint(3).unwrap(); assert_eq!(n.bits(), 2); let n: BigUint = FromStrRadix::from_str_radix("4000000000", 16).unwrap(); assert_eq!(n.bits(), 39); let one: BigUint = One::one(); assert_eq!((one << 426).bits(), 427); } #[test] fn test_rand() { let mut rng = task_rng(); let _n: BigUint = rng.gen_biguint(137); assert!(rng.gen_biguint(0).is_zero()); } #[test] fn test_rand_range() { let mut rng = task_rng(); for _ in range(0u, 10) { assert_eq!(rng.gen_bigint_range(&FromPrimitive::from_uint(236).unwrap(), &FromPrimitive::from_uint(237).unwrap()), FromPrimitive::from_uint(236).unwrap()); } let l = FromPrimitive::from_uint(403469000 + 2352).unwrap(); let u = FromPrimitive::from_uint(403469000 + 3513).unwrap(); for _ in range(0u, 1000) { let n: BigUint = rng.gen_biguint_below(&u); assert!(n < u); let n: BigUint = rng.gen_biguint_range(&l, &u); assert!(n >= l); assert!(n < u); } } #[test] #[should_fail] fn test_zero_rand_range() { task_rng().gen_biguint_range(&FromPrimitive::from_uint(54).unwrap(), &FromPrimitive::from_uint(54).unwrap()); } #[test] #[should_fail] fn test_negative_rand_range() { let mut rng = task_rng(); let l = FromPrimitive::from_uint(2352).unwrap(); let u = FromPrimitive::from_uint(3513).unwrap(); // Switching u and l should fail: let _n: BigUint = rng.gen_biguint_range(&u, &l); } } #[cfg(test)] mod bigint_tests { use Integer; use super::{BigDigit, BigUint, ToBigUint}; use super::{Sign, Minus, NoSign, Plus, BigInt, RandBigInt, ToBigInt}; use std::cmp::{Less, Equal, Greater}; use std::i64; use std::num::FromStrRadix; use std::num::{ToPrimitive, FromPrimitive}; use std::rand::task_rng; use std::u64; use std::hash::hash; use {Zero, One, Signed}; #[test] fn test_from_biguint() { fn check(inp_s: Sign, inp_n: uint, ans_s: Sign, ans_n: uint) { let inp = BigInt::from_biguint(inp_s, FromPrimitive::from_uint(inp_n).unwrap()); let ans = BigInt { sign: ans_s, data: FromPrimitive::from_uint(ans_n).unwrap()}; assert_eq!(inp, ans); } check(Plus, 1, Plus, 1); check(Plus, 0, NoSign, 0); check(Minus, 1, Minus, 1); check(NoSign, 1, NoSign, 0); } #[test] fn test_cmp() { let vs: [&[BigDigit], ..4] = [ &[2 as BigDigit], &[1, 1], &[2, 1], &[1, 1, 1] ]; let mut nums = Vec::new(); for s in vs.iter().rev() { nums.push(BigInt::from_slice(Minus, *s)); } nums.push(Zero::zero()); nums.extend(vs.iter().map(|s| BigInt::from_slice(Plus, *s))); for (i, ni) in nums.iter().enumerate() { for (j0, nj) in nums.slice(i, nums.len()).iter().enumerate() { let j = i + j0; if i == j { assert_eq!(ni.cmp(nj), Equal); assert_eq!(nj.cmp(ni), Equal); assert_eq!(ni, nj); assert!(!(ni != nj)); assert!(ni <= nj); assert!(ni >= nj); assert!(!(ni < nj)); assert!(!(ni > nj)); } else { assert_eq!(ni.cmp(nj), Less); assert_eq!(nj.cmp(ni), Greater); assert!(!(ni == nj)); assert!(ni != nj); assert!(ni <= nj); assert!(!(ni >= nj)); assert!(ni < nj); assert!(!(ni > nj)); assert!(!(nj <= ni)); assert!(nj >= ni); assert!(!(nj < ni)); assert!(nj > ni); } } } } #[test] fn test_hash() { let a = BigInt::new(NoSign, vec!()); let b = BigInt::new(NoSign, vec!(0)); let c = BigInt::new(Plus, vec!(1)); let d = BigInt::new(Plus, vec!(1,0,0,0,0,0)); let e = BigInt::new(Plus, vec!(0,0,0,0,0,1)); let f = BigInt::new(Minus, vec!(1)); assert!(hash(&a) == hash(&b)); assert!(hash(&b) != hash(&c)); assert!(hash(&c) == hash(&d)); assert!(hash(&d) != hash(&e)); assert!(hash(&c) != hash(&f)); } #[test] fn test_convert_i64() { fn check(b1: BigInt, i: i64) { let b2: BigInt = FromPrimitive::from_i64(i).unwrap(); assert!(b1 == b2); assert!(b1.to_i64().unwrap() == i); } check(Zero::zero(), 0); check(One::one(), 1); check(i64::MIN.to_bigint().unwrap(), i64::MIN); check(i64::MAX.to_bigint().unwrap(), i64::MAX); assert_eq!( (i64::MAX as u64 + 1).to_bigint().unwrap().to_i64(), None); assert_eq!( BigInt::from_biguint(Plus, BigUint::new(vec!(1, 2, 3, 4, 5))).to_i64(), None); assert_eq!( BigInt::from_biguint(Minus, BigUint::new(vec!(1,0,0,1<<(BigDigit::BITS-1)))).to_i64(), None); assert_eq!( BigInt::from_biguint(Minus, BigUint::new(vec!(1, 2, 3, 4, 5))).to_i64(), None); } #[test] fn test_convert_u64() { fn check(b1: BigInt, u: u64) { let b2: BigInt = FromPrimitive::from_u64(u).unwrap(); assert!(b1 == b2); assert!(b1.to_u64().unwrap() == u); } check(Zero::zero(), 0); check(One::one(), 1); check(u64::MIN.to_bigint().unwrap(), u64::MIN); check(u64::MAX.to_bigint().unwrap(), u64::MAX); assert_eq!( BigInt::from_biguint(Plus, BigUint::new(vec!(1, 2, 3, 4, 5))).to_u64(), None); let max_value: BigUint = FromPrimitive::from_u64(u64::MAX).unwrap(); assert_eq!(BigInt::from_biguint(Minus, max_value).to_u64(), None); assert_eq!(BigInt::from_biguint(Minus, BigUint::new(vec!(1, 2, 3, 4, 5))).to_u64(), None); } #[test] fn test_convert_to_biguint() { fn check(n: BigInt, ans_1: BigUint) { assert_eq!(n.to_biguint().unwrap(), ans_1); assert_eq!(n.to_biguint().unwrap().to_bigint().unwrap(), n); } let zero: BigInt = Zero::zero(); let unsigned_zero: BigUint = Zero::zero(); let positive = BigInt::from_biguint( Plus, BigUint::new(vec!(1,2,3))); let negative = -positive; check(zero, unsigned_zero); check(positive, BigUint::new(vec!(1,2,3))); assert_eq!(negative.to_biguint(), None); } const SUM_TRIPLES: &'static [(&'static [BigDigit], &'static [BigDigit], &'static [BigDigit])] = &[ (&[], &[], &[]), (&[], &[ 1], &[ 1]), (&[ 1], &[ 1], &[ 2]), (&[ 1], &[ 1, 1], &[ 2, 1]), (&[ 1], &[-1], &[ 0, 1]), (&[ 1], &[-1, -1], &[ 0, 0, 1]), (&[-1, -1], &[-1, -1], &[-2, -1, 1]), (&[ 1, 1, 1], &[-1, -1], &[ 0, 1, 2]), (&[ 2, 2, 1], &[-1, -2], &[ 1, 1, 2]) ]; #[test] fn test_add() { for elm in SUM_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigInt::from_slice(Plus, a_vec); let b = BigInt::from_slice(Plus, b_vec); let c = BigInt::from_slice(Plus, c_vec); assert!(a + b == c); assert!(b + a == c); assert!(c + (-a) == b); assert!(c + (-b) == a); assert!(a + (-c) == (-b)); assert!(b + (-c) == (-a)); assert!((-a) + (-b) == (-c)) assert!(a + (-a) == Zero::zero()); } } #[test] fn test_sub() { for elm in SUM_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigInt::from_slice(Plus, a_vec); let b = BigInt::from_slice(Plus, b_vec); let c = BigInt::from_slice(Plus, c_vec); assert!(c - a == b); assert!(c - b == a); assert!((-b) - a == (-c)) assert!((-a) - b == (-c)) assert!(b - (-a) == c); assert!(a - (-b) == c); assert!((-c) - (-a) == (-b)); assert!(a - a == Zero::zero()); } } static MUL_TRIPLES: &'static [(&'static [BigDigit], &'static [BigDigit], &'static [BigDigit])] = &[ (&[], &[], &[]), (&[], &[ 1], &[]), (&[ 2], &[], &[]), (&[ 1], &[ 1], &[1]), (&[ 2], &[ 3], &[ 6]), (&[ 1], &[ 1, 1, 1], &[1, 1, 1]), (&[ 1, 2, 3], &[ 3], &[ 3, 6, 9]), (&[ 1, 1, 1], &[-1], &[-1, -1, -1]), (&[ 1, 2, 3], &[-1], &[-1, -2, -2, 2]), (&[ 1, 2, 3, 4], &[-1], &[-1, -2, -2, -2, 3]), (&[-1], &[-1], &[ 1, -2]), (&[-1, -1], &[-1], &[ 1, -1, -2]), (&[-1, -1, -1], &[-1], &[ 1, -1, -1, -2]), (&[-1, -1, -1, -1], &[-1], &[ 1, -1, -1, -1, -2]), (&[-1/2 + 1], &[ 2], &[ 0, 1]), (&[0, -1/2 + 1], &[ 2], &[ 0, 0, 1]), (&[ 1, 2], &[ 1, 2, 3], &[1, 4, 7, 6]), (&[-1, -1], &[-1, -1, -1], &[1, 0, -1, -2, -1]), (&[-1, -1, -1], &[-1, -1, -1, -1], &[1, 0, 0, -1, -2, -1, -1]), (&[ 0, 0, 1], &[ 1, 2, 3], &[0, 0, 1, 2, 3]), (&[ 0, 0, 1], &[ 0, 0, 0, 1], &[0, 0, 0, 0, 0, 1]) ]; static DIV_REM_QUADRUPLES: &'static [(&'static [BigDigit], &'static [BigDigit], &'static [BigDigit], &'static [BigDigit])] = &[ (&[ 1], &[ 2], &[], &[1]), (&[ 1, 1], &[ 2], &[-1/2+1], &[1]), (&[ 1, 1, 1], &[ 2], &[-1/2+1, -1/2+1], &[1]), (&[ 0, 1], &[-1], &[1], &[1]), (&[-1, -1], &[-2], &[2, 1], &[3]) ]; #[test] fn test_mul() { for elm in MUL_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigInt::from_slice(Plus, a_vec); let b = BigInt::from_slice(Plus, b_vec); let c = BigInt::from_slice(Plus, c_vec); assert!(a * b == c); assert!(b * a == c); assert!((-a) * b == -c); assert!((-b) * a == -c); } for elm in DIV_REM_QUADRUPLES.iter() { let (a_vec, b_vec, c_vec, d_vec) = *elm; let a = BigInt::from_slice(Plus, a_vec); let b = BigInt::from_slice(Plus, b_vec); let c = BigInt::from_slice(Plus, c_vec); let d = BigInt::from_slice(Plus, d_vec); assert!(a == b * c + d); assert!(a == c * b + d); } } #[test] fn test_div_mod_floor() { fn check_sub(a: &BigInt, b: &BigInt, ans_d: &BigInt, ans_m: &BigInt) { let (d, m) = a.div_mod_floor(b); if !m.is_zero() { assert_eq!(m.sign, b.sign); } assert!(m.abs() <= b.abs()); assert!(*a == (*b) * d + m); assert!(d == *ans_d); assert!(m == *ans_m); } fn check(a: &BigInt, b: &BigInt, d: &BigInt, m: &BigInt) { if m.is_zero() { check_sub(a, b, d, m); check_sub(a, &b.neg(), &d.neg(), m); check_sub(&a.neg(), b, &d.neg(), m); check_sub(&a.neg(), &b.neg(), d, m); } else { check_sub(a, b, d, m); check_sub(a, &b.neg(), &(d.neg() - One::one()), &(*m - *b)); check_sub(&a.neg(), b, &(d.neg() - One::one()), &(*b - *m)); check_sub(&a.neg(), &b.neg(), d, &m.neg()); } } for elm in MUL_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigInt::from_slice(Plus, a_vec); let b = BigInt::from_slice(Plus, b_vec); let c = BigInt::from_slice(Plus, c_vec); if !a.is_zero() { check(&c, &a, &b, &Zero::zero()); } if !b.is_zero() { check(&c, &b, &a, &Zero::zero()); } } for elm in DIV_REM_QUADRUPLES.iter() { let (a_vec, b_vec, c_vec, d_vec) = *elm; let a = BigInt::from_slice(Plus, a_vec); let b = BigInt::from_slice(Plus, b_vec); let c = BigInt::from_slice(Plus, c_vec); let d = BigInt::from_slice(Plus, d_vec); if !b.is_zero() { check(&a, &b, &c, &d); } } } #[test] fn test_div_rem() { fn check_sub(a: &BigInt, b: &BigInt, ans_q: &BigInt, ans_r: &BigInt) { let (q, r) = a.div_rem(b); if !r.is_zero() { assert_eq!(r.sign, a.sign); } assert!(r.abs() <= b.abs()); assert!(*a == (*b) * q + r); assert!(q == *ans_q); assert!(r == *ans_r); } fn check(a: &BigInt, b: &BigInt, q: &BigInt, r: &BigInt) { check_sub(a, b, q, r); check_sub(a, &b.neg(), &q.neg(), r); check_sub(&a.neg(), b, &q.neg(), &r.neg()); check_sub(&a.neg(), &b.neg(), q, &r.neg()); } for elm in MUL_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigInt::from_slice(Plus, a_vec); let b = BigInt::from_slice(Plus, b_vec); let c = BigInt::from_slice(Plus, c_vec); if !a.is_zero() { check(&c, &a, &b, &Zero::zero()); } if !b.is_zero() { check(&c, &b, &a, &Zero::zero()); } } for elm in DIV_REM_QUADRUPLES.iter() { let (a_vec, b_vec, c_vec, d_vec) = *elm; let a = BigInt::from_slice(Plus, a_vec); let b = BigInt::from_slice(Plus, b_vec); let c = BigInt::from_slice(Plus, c_vec); let d = BigInt::from_slice(Plus, d_vec); if !b.is_zero() { check(&a, &b, &c, &d); } } } #[test] fn test_checked_add() { for elm in SUM_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigInt::from_slice(Plus, a_vec); let b = BigInt::from_slice(Plus, b_vec); let c = BigInt::from_slice(Plus, c_vec); assert!(a.checked_add(&b).unwrap() == c); assert!(b.checked_add(&a).unwrap() == c); assert!(c.checked_add(&(-a)).unwrap() == b); assert!(c.checked_add(&(-b)).unwrap() == a); assert!(a.checked_add(&(-c)).unwrap() == (-b)); assert!(b.checked_add(&(-c)).unwrap() == (-a)); assert!((-a).checked_add(&(-b)).unwrap() == (-c)) assert!(a.checked_add(&(-a)).unwrap() == Zero::zero()); } } #[test] fn test_checked_sub() { for elm in SUM_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigInt::from_slice(Plus, a_vec); let b = BigInt::from_slice(Plus, b_vec); let c = BigInt::from_slice(Plus, c_vec); assert!(c.checked_sub(&a).unwrap() == b); assert!(c.checked_sub(&b).unwrap() == a); assert!((-b).checked_sub(&a).unwrap() == (-c)) assert!((-a).checked_sub(&b).unwrap() == (-c)) assert!(b.checked_sub(&(-a)).unwrap() == c); assert!(a.checked_sub(&(-b)).unwrap() == c); assert!((-c).checked_sub(&(-a)).unwrap() == (-b)); assert!(a.checked_sub(&a).unwrap() == Zero::zero()); } } #[test] fn test_checked_mul() { for elm in MUL_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigInt::from_slice(Plus, a_vec); let b = BigInt::from_slice(Plus, b_vec); let c = BigInt::from_slice(Plus, c_vec); assert!(a.checked_mul(&b).unwrap() == c); assert!(b.checked_mul(&a).unwrap() == c); assert!((-a).checked_mul(&b).unwrap() == -c); assert!((-b).checked_mul(&a).unwrap() == -c); } for elm in DIV_REM_QUADRUPLES.iter() { let (a_vec, b_vec, c_vec, d_vec) = *elm; let a = BigInt::from_slice(Plus, a_vec); let b = BigInt::from_slice(Plus, b_vec); let c = BigInt::from_slice(Plus, c_vec); let d = BigInt::from_slice(Plus, d_vec); assert!(a == b.checked_mul(&c).unwrap() + d); assert!(a == c.checked_mul(&b).unwrap() + d); } } #[test] fn test_checked_div() { for elm in MUL_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigInt::from_slice(Plus, a_vec); let b = BigInt::from_slice(Plus, b_vec); let c = BigInt::from_slice(Plus, c_vec); if !a.is_zero() { assert!(c.checked_div(&a).unwrap() == b); assert!((-c).checked_div(&(-a)).unwrap() == b); assert!((-c).checked_div(&a).unwrap() == -b); } if !b.is_zero() { assert!(c.checked_div(&b).unwrap() == a); assert!((-c).checked_div(&(-b)).unwrap() == a); assert!((-c).checked_div(&b).unwrap() == -a); } assert!(c.checked_div(&Zero::zero()).is_none()); assert!((-c).checked_div(&Zero::zero()).is_none()); } } #[test] fn test_gcd() { fn check(a: int, b: int, c: int) { let big_a: BigInt = FromPrimitive::from_int(a).unwrap(); let big_b: BigInt = FromPrimitive::from_int(b).unwrap(); let big_c: BigInt = FromPrimitive::from_int(c).unwrap(); assert_eq!(big_a.gcd(&big_b), big_c); } check(10, 2, 2); check(10, 3, 1); check(0, 3, 3); check(3, 3, 3); check(56, 42, 14); check(3, -3, 3); check(-6, 3, 3); check(-4, -2, 2); } #[test] fn test_lcm() { fn check(a: int, b: int, c: int) { let big_a: BigInt = FromPrimitive::from_int(a).unwrap(); let big_b: BigInt = FromPrimitive::from_int(b).unwrap(); let big_c: BigInt = FromPrimitive::from_int(c).unwrap(); assert_eq!(big_a.lcm(&big_b), big_c); } check(1, 0, 0); check(0, 1, 0); check(1, 1, 1); check(-1, 1, 1); check(1, -1, 1); check(-1, -1, 1); check(8, 9, 72); check(11, 5, 55); } #[test] fn test_abs_sub() { let zero: BigInt = Zero::zero(); let one: BigInt = One::one(); assert_eq!((-one).abs_sub(&one), zero); let one: BigInt = One::one(); let zero: BigInt = Zero::zero(); assert_eq!(one.abs_sub(&one), zero); let one: BigInt = One::one(); let zero: BigInt = Zero::zero(); assert_eq!(one.abs_sub(&zero), one); let one: BigInt = One::one(); let two: BigInt = FromPrimitive::from_int(2).unwrap(); assert_eq!(one.abs_sub(&-one), two); } #[test] fn test_from_str_radix() { fn check(s: &str, ans: Option) { let ans = ans.map(|n| { let x: BigInt = FromPrimitive::from_int(n).unwrap(); x }); assert_eq!(FromStrRadix::from_str_radix(s, 10), ans); } check("10", Some(10)); check("1", Some(1)); check("0", Some(0)); check("-1", Some(-1)); check("-10", Some(-10)); check("Z", None); check("_", None); // issue 10522, this hit an edge case that caused it to // attempt to allocate a vector of size (-1u) == huge. let x: BigInt = from_str(format!("1{}", "0".repeat(36)).as_slice()).unwrap(); let _y = x.to_string(); } #[test] fn test_neg() { assert!(-BigInt::new(Plus, vec!(1, 1, 1)) == BigInt::new(Minus, vec!(1, 1, 1))); assert!(-BigInt::new(Minus, vec!(1, 1, 1)) == BigInt::new(Plus, vec!(1, 1, 1))); let zero: BigInt = Zero::zero(); assert_eq!(-zero, zero); } #[test] fn test_rand() { let mut rng = task_rng(); let _n: BigInt = rng.gen_bigint(137); assert!(rng.gen_bigint(0).is_zero()); } #[test] fn test_rand_range() { let mut rng = task_rng(); for _ in range(0u, 10) { assert_eq!(rng.gen_bigint_range(&FromPrimitive::from_uint(236).unwrap(), &FromPrimitive::from_uint(237).unwrap()), FromPrimitive::from_uint(236).unwrap()); } fn check(l: BigInt, u: BigInt) { let mut rng = task_rng(); for _ in range(0u, 1000) { let n: BigInt = rng.gen_bigint_range(&l, &u); assert!(n >= l); assert!(n < u); } } let l: BigInt = FromPrimitive::from_uint(403469000 + 2352).unwrap(); let u: BigInt = FromPrimitive::from_uint(403469000 + 3513).unwrap(); check( l.clone(), u.clone()); check(-l.clone(), u.clone()); check(-u.clone(), -l.clone()); } #[test] #[should_fail] fn test_zero_rand_range() { task_rng().gen_bigint_range(&FromPrimitive::from_int(54).unwrap(), &FromPrimitive::from_int(54).unwrap()); } #[test] #[should_fail] fn test_negative_rand_range() { let mut rng = task_rng(); let l = FromPrimitive::from_uint(2352).unwrap(); let u = FromPrimitive::from_uint(3513).unwrap(); // Switching u and l should fail: let _n: BigInt = rng.gen_bigint_range(&u, &l); } } #[cfg(test)] mod bench { extern crate test; use self::test::Bencher; use super::BigUint; use std::iter; use std::mem::replace; use std::num::FromPrimitive; use {Zero, One}; fn factorial(n: uint) -> BigUint { let mut f: BigUint = One::one(); for i in iter::range_inclusive(1, n) { f = f * FromPrimitive::from_uint(i).unwrap(); } f } fn fib(n: uint) -> BigUint { let mut f0: BigUint = Zero::zero(); let mut f1: BigUint = One::one(); for _ in range(0, n) { let f2 = f0 + f1; f0 = replace(&mut f1, f2); } f0 } #[bench] fn factorial_100(b: &mut Bencher) { b.iter(|| { factorial(100); }); } #[bench] fn fib_100(b: &mut Bencher) { b.iter(|| { fib(100); }); } #[bench] fn to_string(b: &mut Bencher) { let fac = factorial(100); let fib = fib(100); b.iter(|| { fac.to_string(); }); b.iter(|| { fib.to_string(); }); } #[bench] fn shr(b: &mut Bencher) { let n = { let one : BigUint = One::one(); one << 1000 }; b.iter(|| { let mut m = n.clone(); for _ in range(0u, 10) { m = m >> 1; } }) } }