// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A Big integer (signed version: `BigInt`, unsigned version: `BigUint`). //! //! A `BigUint` is represented as a vector of `BigDigit`s. //! A `BigInt` is a combination of `BigUint` and `Sign`. //! //! Common numerical operations are overloaded, so we can treat them //! the same way we treat other numbers. //! //! ## Example //! //! ```rust //! use num::{BigUint, Zero, One}; //! use std::mem::replace; //! //! // Calculate large fibonacci numbers. //! fn fib(n: usize) -> BigUint { //! let mut f0: BigUint = Zero::zero(); //! let mut f1: BigUint = One::one(); //! for _ in 0..n { //! let f2 = f0 + &f1; //! // This is a low cost way of swapping f0 with f1 and f1 with f2. //! f0 = replace(&mut f1, f2); //! } //! f0 //! } //! //! // This is a very large number. //! println!("fib(1000) = {}", fib(1000)); //! ``` //! //! It's easy to generate large random numbers: //! //! ```rust //! extern crate rand; //! extern crate num; //! # fn main() { //! use num::bigint::{ToBigInt, RandBigInt}; //! //! let mut rng = rand::thread_rng(); //! let a = rng.gen_bigint(1000); //! //! let low = -10000.to_bigint().unwrap(); //! let high = 10000.to_bigint().unwrap(); //! let b = rng.gen_bigint_range(&low, &high); //! //! // Probably an even larger number. //! println!("{}", a * b); //! # } //! ``` use Integer; use std::default::Default; use std::error::Error; use std::iter::repeat; use std::num::ParseIntError; use std::ops::{Add, BitAnd, BitOr, BitXor, Div, Mul, Neg, Rem, Shl, Shr, Sub}; use std::str::{self, FromStr}; use std::{cmp, fmt, hash}; use std::cmp::Ordering::{self, Less, Greater, Equal}; use std::{i64, u64}; use rand::Rng; use rustc_serialize::hex::ToHex; use traits::{ToPrimitive, FromPrimitive}; use {Num, Unsigned, CheckedAdd, CheckedSub, CheckedMul, CheckedDiv, Signed, Zero, One}; use self::Sign::{Minus, NoSign, Plus}; /// A `BigDigit` is a `BigUint`'s composing element. pub type BigDigit = u32; /// A `DoubleBigDigit` is the internal type used to do the computations. Its /// size is the double of the size of `BigDigit`. pub type DoubleBigDigit = u64; pub const ZERO_BIG_DIGIT: BigDigit = 0; #[allow(non_snake_case)] pub mod big_digit { use super::BigDigit; use super::DoubleBigDigit; // `DoubleBigDigit` size dependent pub const BITS: usize = 32; pub const BASE: DoubleBigDigit = 1 << BITS; const LO_MASK: DoubleBigDigit = (-1i32 as DoubleBigDigit) >> BITS; #[inline] fn get_hi(n: DoubleBigDigit) -> BigDigit { (n >> BITS) as BigDigit } #[inline] fn get_lo(n: DoubleBigDigit) -> BigDigit { (n & LO_MASK) as BigDigit } /// Split one `DoubleBigDigit` into two `BigDigit`s. #[inline] pub fn from_doublebigdigit(n: DoubleBigDigit) -> (BigDigit, BigDigit) { (get_hi(n), get_lo(n)) } /// Join two `BigDigit`s into one `DoubleBigDigit` #[inline] pub fn to_doublebigdigit(hi: BigDigit, lo: BigDigit) -> DoubleBigDigit { (lo as DoubleBigDigit) | ((hi as DoubleBigDigit) << BITS) } } /* * Generic functions for add/subtract/multiply with carry/borrow: */ // Add with carry: #[inline] fn adc(a: BigDigit, b: BigDigit, carry: &mut BigDigit) -> BigDigit { let (hi, lo) = big_digit::from_doublebigdigit( (a as DoubleBigDigit) + (b as DoubleBigDigit) + (*carry as DoubleBigDigit)); *carry = hi; lo } // Subtract with borrow: #[inline] fn sbb(a: BigDigit, b: BigDigit, borrow: &mut BigDigit) -> BigDigit { let (hi, lo) = big_digit::from_doublebigdigit( big_digit::BASE + (a as DoubleBigDigit) - (b as DoubleBigDigit) - (*borrow as DoubleBigDigit)); /* hi * (base) + lo == 1*(base) + ai - bi - borrow => ai - bi - borrow < 0 <=> hi == 0 */ *borrow = if hi == 0 { 1 } else { 0 }; lo } #[inline] fn mac_with_carry(a: BigDigit, b: BigDigit, c: BigDigit, carry: &mut BigDigit) -> BigDigit { let (hi, lo) = big_digit::from_doublebigdigit( (a as DoubleBigDigit) + (b as DoubleBigDigit) * (c as DoubleBigDigit) + (*carry as DoubleBigDigit)); *carry = hi; lo } /// Divide a two digit numerator by a one digit divisor, returns quotient and remainder: /// /// Note: the caller must ensure that both the quotient and remainder will fit into a single digit. /// This is _not_ true for an arbitrary numerator/denominator. /// /// (This function also matches what the x86 divide instruction does). #[inline] fn div_wide(hi: BigDigit, lo: BigDigit, divisor: BigDigit) -> (BigDigit, BigDigit) { debug_assert!(hi < divisor); let lhs = big_digit::to_doublebigdigit(hi, lo); let rhs = divisor as DoubleBigDigit; ((lhs / rhs) as BigDigit, (lhs % rhs) as BigDigit) } /// A big unsigned integer type. /// /// A `BigUint`-typed value `BigUint { data: vec!(a, b, c) }` represents a number /// `(a + b * big_digit::BASE + c * big_digit::BASE^2)`. #[derive(Clone, RustcEncodable, RustcDecodable, Debug)] pub struct BigUint { data: Vec } impl PartialEq for BigUint { #[inline] fn eq(&self, other: &BigUint) -> bool { match self.cmp(other) { Equal => true, _ => false } } } impl Eq for BigUint {} impl PartialOrd for BigUint { #[inline] fn partial_cmp(&self, other: &BigUint) -> Option { Some(self.cmp(other)) } } fn cmp_slice(a: &[BigDigit], b: &[BigDigit]) -> Ordering { debug_assert!(a.last() != Some(&0)); debug_assert!(b.last() != Some(&0)); let (a_len, b_len) = (a.len(), b.len()); if a_len < b_len { return Less; } if a_len > b_len { return Greater; } for (&ai, &bi) in a.iter().rev().zip(b.iter().rev()) { if ai < bi { return Less; } if ai > bi { return Greater; } } return Equal; } impl Ord for BigUint { #[inline] fn cmp(&self, other: &BigUint) -> Ordering { cmp_slice(&self.data[..], &other.data[..]) } } impl Default for BigUint { #[inline] fn default() -> BigUint { Zero::zero() } } impl hash::Hash for BigUint { fn hash(&self, state: &mut H) where H: hash::Hasher { // hash 0 in case it's all 0's 0u32.hash(state); let mut found_first_value = false; for elem in self.data.iter().rev() { // don't hash any leading 0's, they shouldn't affect the hash if found_first_value || *elem != 0 { found_first_value = true; elem.hash(state); } } } } impl fmt::Display for BigUint { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.to_str_radix(10)) } } impl FromStr for BigUint { type Err = ParseBigIntError; #[inline] fn from_str(s: &str) -> Result { BigUint::from_str_radix(s, 10) } } impl Num for BigUint { type FromStrRadixErr = ParseBigIntError; /// Creates and initializes a `BigUint`. #[inline] fn from_str_radix(s: &str, radix: u32) -> Result { let (base, unit_len) = get_radix_base(radix); let base_num = match base.to_biguint() { Some(base_num) => base_num, None => { return Err(ParseBigIntError::Other); } }; let mut end = s.len(); let mut n: BigUint = Zero::zero(); let mut power: BigUint = One::one(); loop { let start = cmp::max(end, unit_len) - unit_len; let d = try!(usize::from_str_radix(&s[start .. end], radix)); let d: Option = FromPrimitive::from_usize(d); match d { Some(d) => { // FIXME(#5992): assignment operator overloads // n += d * &power; n = n + d * &power; } None => { return Err(ParseBigIntError::Other); } } if end <= unit_len { return Ok(n); } end -= unit_len; // FIXME(#5992): assignment operator overloads // power *= &base_num; power = power * &base_num; } } } macro_rules! forward_val_val_binop { (impl $imp:ident for $res:ty, $method:ident) => { impl $imp<$res> for $res { type Output = $res; #[inline] fn $method(self, other: $res) -> $res { // forward to val-ref $imp::$method(self, &other) } } } } macro_rules! forward_val_val_binop_commutative { (impl $imp:ident for $res:ty, $method:ident) => { impl $imp<$res> for $res { type Output = $res; #[inline] fn $method(self, other: $res) -> $res { // forward to val-ref, with the larger capacity as val if self.data.capacity() >= other.data.capacity() { $imp::$method(self, &other) } else { $imp::$method(other, &self) } } } } } macro_rules! forward_ref_val_binop { (impl $imp:ident for $res:ty, $method:ident) => { impl<'a> $imp<$res> for &'a $res { type Output = $res; #[inline] fn $method(self, other: $res) -> $res { // forward to ref-ref $imp::$method(self, &other) } } } } macro_rules! forward_ref_val_binop_commutative { (impl $imp:ident for $res:ty, $method:ident) => { impl<'a> $imp<$res> for &'a $res { type Output = $res; #[inline] fn $method(self, other: $res) -> $res { // reverse, forward to val-ref $imp::$method(other, self) } } } } macro_rules! forward_val_ref_binop { (impl $imp:ident for $res:ty, $method:ident) => { impl<'a> $imp<&'a $res> for $res { type Output = $res; #[inline] fn $method(self, other: &$res) -> $res { // forward to ref-ref $imp::$method(&self, other) } } } } macro_rules! forward_ref_ref_binop { (impl $imp:ident for $res:ty, $method:ident) => { impl<'a, 'b> $imp<&'b $res> for &'a $res { type Output = $res; #[inline] fn $method(self, other: &$res) -> $res { // forward to val-ref $imp::$method(self.clone(), other) } } } } macro_rules! forward_ref_ref_binop_commutative { (impl $imp:ident for $res:ty, $method:ident) => { impl<'a, 'b> $imp<&'b $res> for &'a $res { type Output = $res; #[inline] fn $method(self, other: &$res) -> $res { // forward to val-ref, choosing the larger to clone if self.data.len() >= other.data.len() { $imp::$method(self.clone(), other) } else { $imp::$method(other.clone(), self) } } } } } // Forward everything to ref-ref, when reusing storage is not helpful macro_rules! forward_all_binop_to_ref_ref { (impl $imp:ident for $res:ty, $method:ident) => { forward_val_val_binop!(impl $imp for $res, $method); forward_val_ref_binop!(impl $imp for $res, $method); forward_ref_val_binop!(impl $imp for $res, $method); }; } // Forward everything to val-ref, so LHS storage can be reused macro_rules! forward_all_binop_to_val_ref { (impl $imp:ident for $res:ty, $method:ident) => { forward_val_val_binop!(impl $imp for $res, $method); forward_ref_val_binop!(impl $imp for $res, $method); forward_ref_ref_binop!(impl $imp for $res, $method); }; } // Forward everything to val-ref, commutatively, so either LHS or RHS storage can be reused macro_rules! forward_all_binop_to_val_ref_commutative { (impl $imp:ident for $res:ty, $method:ident) => { forward_val_val_binop_commutative!(impl $imp for $res, $method); forward_ref_val_binop_commutative!(impl $imp for $res, $method); forward_ref_ref_binop_commutative!(impl $imp for $res, $method); }; } forward_all_binop_to_val_ref_commutative!(impl BitAnd for BigUint, bitand); impl<'a> BitAnd<&'a BigUint> for BigUint { type Output = BigUint; #[inline] fn bitand(self, other: &BigUint) -> BigUint { let mut data = self.data; for (ai, &bi) in data.iter_mut().zip(other.data.iter()) { *ai &= bi; } data.truncate(other.data.len()); BigUint::new(data) } } forward_all_binop_to_val_ref_commutative!(impl BitOr for BigUint, bitor); impl<'a> BitOr<&'a BigUint> for BigUint { type Output = BigUint; fn bitor(self, other: &BigUint) -> BigUint { let mut data = self.data; for (ai, &bi) in data.iter_mut().zip(other.data.iter()) { *ai |= bi; } if other.data.len() > data.len() { let extra = &other.data[data.len()..]; data.extend(extra.iter().cloned()); } BigUint::new(data) } } forward_all_binop_to_val_ref_commutative!(impl BitXor for BigUint, bitxor); impl<'a> BitXor<&'a BigUint> for BigUint { type Output = BigUint; fn bitxor(self, other: &BigUint) -> BigUint { let mut data = self.data; for (ai, &bi) in data.iter_mut().zip(other.data.iter()) { *ai ^= bi; } if other.data.len() > data.len() { let extra = &other.data[data.len()..]; data.extend(extra.iter().cloned()); } BigUint::new(data) } } impl Shl for BigUint { type Output = BigUint; #[inline] fn shl(self, rhs: usize) -> BigUint { (&self) << rhs } } impl<'a> Shl for &'a BigUint { type Output = BigUint; #[inline] fn shl(self, rhs: usize) -> BigUint { let n_unit = rhs / big_digit::BITS; let n_bits = rhs % big_digit::BITS; self.shl_unit(n_unit).shl_bits(n_bits) } } impl Shr for BigUint { type Output = BigUint; #[inline] fn shr(self, rhs: usize) -> BigUint { (&self) >> rhs } } impl<'a> Shr for &'a BigUint { type Output = BigUint; #[inline] fn shr(self, rhs: usize) -> BigUint { let n_unit = rhs / big_digit::BITS; let n_bits = rhs % big_digit::BITS; self.shr_unit(n_unit).shr_bits(n_bits) } } impl Zero for BigUint { #[inline] fn zero() -> BigUint { BigUint::new(Vec::new()) } #[inline] fn is_zero(&self) -> bool { self.data.is_empty() } } impl One for BigUint { #[inline] fn one() -> BigUint { BigUint::new(vec!(1)) } } impl Unsigned for BigUint {} forward_all_binop_to_val_ref_commutative!(impl Add for BigUint, add); // Only for the Add impl: #[must_use] #[inline] fn __add2(a: &mut [BigDigit], b: &[BigDigit]) -> BigDigit { let mut b_iter = b.iter(); let mut carry = 0; for ai in a.iter_mut() { if let Some(bi) = b_iter.next() { *ai = adc(*ai, *bi, &mut carry); } else if carry != 0 { *ai = adc(*ai, 0, &mut carry); } else { break; } } debug_assert!(b_iter.next() == None); carry } /// /Two argument addition of raw slices: /// a += b /// /// The caller _must_ ensure that a is big enough to store the result - typically this means /// resizing a to max(a.len(), b.len()) + 1, to fit a possible carry. fn add2(a: &mut [BigDigit], b: &[BigDigit]) { let carry = __add2(a, b); debug_assert!(carry == 0); } /* * We'd really prefer to avoid using add2/sub2 directly as much as possible - since they make the * caller entirely responsible for ensuring a's vector is big enough, and that the result is * normalized, they're rather error prone and verbose: * * We could implement the Add and Sub traits for BigUint + BigDigit slices, like below - this works * great, except that then it becomes the module's public interface, which we probably don't want: * * I'm keeping the code commented out, because I think this is worth revisiting: impl<'a> Add<&'a [BigDigit]> for BigUint { type Output = BigUint; fn add(mut self, other: &[BigDigit]) -> BigUint { if self.data.len() < other.len() { let extra = other.len() - self.data.len(); self.data.extend(repeat(0).take(extra)); } let carry = __add2(&mut self.data[..], other); if carry != 0 { self.data.push(carry); } self } } */ impl<'a> Add<&'a BigUint> for BigUint { type Output = BigUint; fn add(mut self, other: &BigUint) -> BigUint { if self.data.len() < other.data.len() { let extra = other.data.len() - self.data.len(); self.data.extend(repeat(0).take(extra)); } let carry = __add2(&mut self.data[..], &other.data[..]); if carry != 0 { self.data.push(carry); } self } } forward_all_binop_to_val_ref!(impl Sub for BigUint, sub); fn sub2(a: &mut [BigDigit], b: &[BigDigit]) { let mut b_iter = b.iter(); let mut borrow = 0; for ai in a.iter_mut() { if let Some(bi) = b_iter.next() { *ai = sbb(*ai, *bi, &mut borrow); } else if borrow != 0 { *ai = sbb(*ai, 0, &mut borrow); } else { break; } } /* note: we're _required_ to fail on underflow */ assert!(borrow == 0 && b_iter.all(|x| *x == 0), "Cannot subtract b from a because b is larger than a."); } impl<'a> Sub<&'a BigUint> for BigUint { type Output = BigUint; fn sub(mut self, other: &BigUint) -> BigUint { sub2(&mut self.data[..], &other.data[..]); self.normalize() } } fn sub_sign(a: &[BigDigit], b: &[BigDigit]) -> BigInt { // Normalize: let a = &a[..a.iter().rposition(|&x| x != 0).map_or(0, |i| i + 1)]; let b = &b[..b.iter().rposition(|&x| x != 0).map_or(0, |i| i + 1)]; match cmp_slice(a, b) { Greater => { let mut ret = BigUint::from_slice(a); sub2(&mut ret.data[..], b); BigInt::from_biguint(Plus, ret.normalize()) }, Less => { let mut ret = BigUint::from_slice(b); sub2(&mut ret.data[..], a); BigInt::from_biguint(Minus, ret.normalize()) }, _ => Zero::zero(), } } forward_all_binop_to_ref_ref!(impl Mul for BigUint, mul); /// Three argument multiply accumulate: /// acc += b * c fn mac_digit(acc: &mut [BigDigit], b: &[BigDigit], c: BigDigit) { if c == 0 { return; } let mut b_iter = b.iter(); let mut carry = 0; for ai in acc.iter_mut() { if let Some(bi) = b_iter.next() { *ai = mac_with_carry(*ai, *bi, c, &mut carry); } else if carry != 0 { *ai = mac_with_carry(*ai, 0, c, &mut carry); } else { break; } } assert!(carry == 0); } /// Three argument multiply accumulate: /// acc += b * c fn mac3(acc: &mut [BigDigit], b: &[BigDigit], c: &[BigDigit]) { let (x, y) = if b.len() < c.len() { (b, c) } else { (c, b) }; /* * Karatsuba multiplication is slower than long multiplication for small x and y: */ if x.len() <= 4 { for (i, xi) in x.iter().enumerate() { mac_digit(&mut acc[i..], y, *xi); } } else { /* * Karatsuba multiplication: * * The idea is that we break x and y up into two smaller numbers that each have about half * as many digits, like so (note that multiplying by b is just a shift): * * x = x0 + x1 * b * y = y0 + y1 * b * * With some algebra, we can compute x * y with three smaller products, where the inputs to * each of the smaller products have only about half as many digits as x and y: * * x * y = (x0 + x1 * b) * (y0 + y1 * b) * * x * y = x0 * y0 * + x0 * y1 * b * + x1 * y0 * b * + x1 * y1 * b^2 * * Let p0 = x0 * y0 and p2 = x1 * y1: * * x * y = p0 * + (x0 * y1 + x1 * p0) * b * + p2 * b^2 * * The real trick is that middle term: * * x0 * y1 + x1 * y0 * * = x0 * y1 + x1 * y0 - p0 + p0 - p2 + p2 * * = x0 * y1 + x1 * y0 - x0 * y0 - x1 * y1 + p0 + p2 * * Now we complete the square: * * = -(x0 * y0 - x0 * y1 - x1 * y0 + x1 * y1) + p0 + p2 * * = -((x1 - x0) * (y1 - y0)) + p0 + p2 * * Let p1 = (x1 - x0) * (y1 - y0), and substitute back into our original formula: * * x * y = p0 * + (p0 + p2 - p1) * b * + p2 * b^2 * * Where the three intermediate products are: * * p0 = x0 * y0 * p1 = (x1 - x0) * (y1 - y0) * p2 = x1 * y1 * * In doing the computation, we take great care to avoid unnecessary temporary variables * (since creating a BigUint requires a heap allocation): thus, we rearrange the formula a * bit so we can use the same temporary variable for all the intermediate products: * * x * y = p2 * b^2 + p2 * b * + p0 * b + p0 * - p1 * b * * The other trick we use is instead of doing explicit shifts, we slice acc at the * appropriate offset when doing the add. */ /* * When x is smaller than y, it's significantly faster to pick b such that x is split in * half, not y: */ let b = x.len() / 2; let (x0, x1) = x.split_at(b); let (y0, y1) = y.split_at(b); /* We reuse the same BigUint for all the intermediate multiplies: */ let len = y.len() + 1; let mut p: BigUint = BigUint { data: Vec::with_capacity(len) }; p.data.extend(repeat(0).take(len)); // p2 = x1 * y1 mac3(&mut p.data[..], x1, y1); // Not required, but the adds go faster if we drop any unneeded 0s from the end: p = p.normalize(); add2(&mut acc[b..], &p.data[..]); add2(&mut acc[b * 2..], &p.data[..]); // Zero out p before the next multiply: p.data.truncate(0); p.data.extend(repeat(0).take(len)); // p0 = x0 * y0 mac3(&mut p.data[..], x0, y0); p = p.normalize(); add2(&mut acc[..], &p.data[..]); add2(&mut acc[b..], &p.data[..]); // p1 = (x1 - x0) * (y1 - y0) // We do this one last, since it may be negative and acc can't ever be negative: let j0 = sub_sign(x1, x0); let j1 = sub_sign(y1, y0); match j0.sign * j1.sign { Plus => { p.data.truncate(0); p.data.extend(repeat(0).take(len)); mac3(&mut p.data[..], &j0.data.data[..], &j1.data.data[..]); p = p.normalize(); sub2(&mut acc[b..], &p.data[..]); }, Minus => { mac3(&mut acc[b..], &j0.data.data[..], &j1.data.data[..]); }, NoSign => (), } } } fn mul3(x: &[BigDigit], y: &[BigDigit]) -> BigUint { let len = x.len() + y.len() + 1; let mut prod: BigUint = BigUint { data: Vec::with_capacity(len) }; // resize isn't stable yet: //prod.data.resize(len, 0); prod.data.extend(repeat(0).take(len)); mac3(&mut prod.data[..], x, y); prod.normalize() } impl<'a, 'b> Mul<&'b BigUint> for &'a BigUint { type Output = BigUint; #[inline] fn mul(self, other: &BigUint) -> BigUint { mul3(&self.data[..], &other.data[..]) } } fn div_rem_digit(mut a: BigUint, b: BigDigit) -> (BigUint, BigDigit) { let mut rem = 0; for d in a.data.iter_mut().rev() { let (q, r) = div_wide(rem, *d, b); *d = q; rem = r; } (a.normalize(), rem) } forward_all_binop_to_ref_ref!(impl Div for BigUint, div); impl<'a, 'b> Div<&'b BigUint> for &'a BigUint { type Output = BigUint; #[inline] fn div(self, other: &BigUint) -> BigUint { let (q, _) = self.div_rem(other); return q; } } forward_all_binop_to_ref_ref!(impl Rem for BigUint, rem); impl<'a, 'b> Rem<&'b BigUint> for &'a BigUint { type Output = BigUint; #[inline] fn rem(self, other: &BigUint) -> BigUint { let (_, r) = self.div_rem(other); return r; } } impl Neg for BigUint { type Output = BigUint; #[inline] fn neg(self) -> BigUint { panic!() } } impl<'a> Neg for &'a BigUint { type Output = BigUint; #[inline] fn neg(self) -> BigUint { panic!() } } impl CheckedAdd for BigUint { #[inline] fn checked_add(&self, v: &BigUint) -> Option { return Some(self.add(v)); } } impl CheckedSub for BigUint { #[inline] fn checked_sub(&self, v: &BigUint) -> Option { if *self < *v { return None; } return Some(self.sub(v)); } } impl CheckedMul for BigUint { #[inline] fn checked_mul(&self, v: &BigUint) -> Option { return Some(self.mul(v)); } } impl CheckedDiv for BigUint { #[inline] fn checked_div(&self, v: &BigUint) -> Option { if v.is_zero() { return None; } return Some(self.div(v)); } } impl Integer for BigUint { #[inline] fn div_rem(&self, other: &BigUint) -> (BigUint, BigUint) { self.div_mod_floor(other) } #[inline] fn div_floor(&self, other: &BigUint) -> BigUint { let (d, _) = self.div_mod_floor(other); return d; } #[inline] fn mod_floor(&self, other: &BigUint) -> BigUint { let (_, m) = self.div_mod_floor(other); return m; } fn div_mod_floor(&self, other: &BigUint) -> (BigUint, BigUint) { if other.is_zero() { panic!() } if self.is_zero() { return (Zero::zero(), Zero::zero()); } if *other == One::one() { return (self.clone(), Zero::zero()); } /* Required or the q_len calculation below can underflow: */ match self.cmp(other) { Less => return (Zero::zero(), self.clone()), Equal => return (One::one(), Zero::zero()), Greater => {} // Do nothing } /* * This algorithm is from Knuth, TAOCP vol 2 section 4.3, algorithm D: * * First, normalize the arguments so the highest bit in the highest digit of the divisor is * set: the main loop uses the highest digit of the divisor for generating guesses, so we * want it to be the largest number we can efficiently divide by. */ let shift = other.data.last().unwrap().leading_zeros() as usize; let mut a = self << shift; let b = other << shift; /* * The algorithm works by incrementally calculating "guesses", q0, for part of the * remainder. Once we have any number q0 such that q0 * b <= a, we can set * * q += q0 * a -= q0 * b * * and then iterate until a < b. Then, (q, a) will be our desired quotient and remainder. * * q0, our guess, is calculated by dividing the last few digits of a by the last digit of b * - this should give us a guess that is "close" to the actual quotient, but is possibly * greater than the actual quotient. If q0 * b > a, we simply use iterated subtraction * until we have a guess such that q0 & b <= a. */ let bn = *b.data.last().unwrap(); let q_len = a.data.len() - b.data.len() + 1; let mut q: BigUint = BigUint { data: Vec::with_capacity(q_len) }; q.data.extend(repeat(0).take(q_len)); /* * We reuse the same temporary to avoid hitting the allocator in our inner loop - this is * sized to hold a0 (in the common case; if a particular digit of the quotient is zero a0 * can be bigger). */ let mut tmp: BigUint = BigUint { data: Vec::with_capacity(2) }; for j in (0..q_len).rev() { /* * When calculating our next guess q0, we don't need to consider the digits below j * + b.data.len() - 1: we're guessing digit j of the quotient (i.e. q0 << j) from * digit bn of the divisor (i.e. bn << (b.data.len() - 1) - so the product of those * two numbers will be zero in all digits up to (j + b.data.len() - 1). */ let offset = j + b.data.len() - 1; if offset >= a.data.len() { continue; } /* just avoiding a heap allocation: */ let mut a0 = tmp; a0.data.truncate(0); a0.data.extend(a.data[offset..].iter().cloned()); /* * q0 << j * big_digit::BITS is our actual quotient estimate - we do the shifts * implicitly at the end, when adding and subtracting to a and q. Not only do we * save the cost of the shifts, the rest of the arithmetic gets to work with * smaller numbers. */ let (mut q0, _) = div_rem_digit(a0, bn); let mut prod = &b * &q0; while cmp_slice(&prod.data[..], &a.data[j..]) == Greater { let one: BigUint = One::one(); q0 = q0 - one; prod = prod - &b; } add2(&mut q.data[j..], &q0.data[..]); sub2(&mut a.data[j..], &prod.data[..]); a = a.normalize(); tmp = q0; } debug_assert!(a < b); (q.normalize(), a >> shift) } /// Calculates the Greatest Common Divisor (GCD) of the number and `other`. /// /// The result is always positive. #[inline] fn gcd(&self, other: &BigUint) -> BigUint { // Use Euclid's algorithm let mut m = (*self).clone(); let mut n = (*other).clone(); while !m.is_zero() { let temp = m; m = n % &temp; n = temp; } return n; } /// Calculates the Lowest Common Multiple (LCM) of the number and `other`. #[inline] fn lcm(&self, other: &BigUint) -> BigUint { ((self * other) / self.gcd(other)) } /// Deprecated, use `is_multiple_of` instead. #[inline] fn divides(&self, other: &BigUint) -> bool { self.is_multiple_of(other) } /// Returns `true` if the number is a multiple of `other`. #[inline] fn is_multiple_of(&self, other: &BigUint) -> bool { (self % other).is_zero() } /// Returns `true` if the number is divisible by `2`. #[inline] fn is_even(&self) -> bool { // Considering only the last digit. match self.data.first() { Some(x) => x.is_even(), None => true } } /// Returns `true` if the number is not divisible by `2`. #[inline] fn is_odd(&self) -> bool { !self.is_even() } } impl ToPrimitive for BigUint { #[inline] fn to_i64(&self) -> Option { self.to_u64().and_then(|n| { // If top bit of u64 is set, it's too large to convert to i64. if n >> 63 == 0 { Some(n as i64) } else { None } }) } // `DoubleBigDigit` size dependent #[inline] fn to_u64(&self) -> Option { match self.data.len() { 0 => Some(0), 1 => Some(self.data[0] as u64), 2 => Some(big_digit::to_doublebigdigit(self.data[1], self.data[0]) as u64), _ => None } } } impl FromPrimitive for BigUint { #[inline] fn from_i64(n: i64) -> Option { if n >= 0 { Some(BigUint::from(n as u64)) } else { None } } #[inline] fn from_u64(n: u64) -> Option { Some(BigUint::from(n)) } } impl From for BigUint { // `DoubleBigDigit` size dependent #[inline] fn from(n: u64) -> Self { match big_digit::from_doublebigdigit(n) { (0, 0) => BigUint::zero(), (0, n0) => BigUint { data: vec![n0] }, (n1, n0) => BigUint { data: vec![n0, n1] }, } } } macro_rules! impl_biguint_from_uint { ($T:ty) => { impl From<$T> for BigUint { #[inline] fn from(n: $T) -> Self { BigUint::from(n as u64) } } } } impl_biguint_from_uint!(u8); impl_biguint_from_uint!(u16); impl_biguint_from_uint!(u32); impl_biguint_from_uint!(usize); /// A generic trait for converting a value to a `BigUint`. pub trait ToBigUint { /// Converts the value of `self` to a `BigUint`. fn to_biguint(&self) -> Option; } impl ToBigUint for BigInt { #[inline] fn to_biguint(&self) -> Option { if self.sign == Plus { Some(self.data.clone()) } else if self.sign == NoSign { Some(Zero::zero()) } else { None } } } impl ToBigUint for BigUint { #[inline] fn to_biguint(&self) -> Option { Some(self.clone()) } } macro_rules! impl_to_biguint { ($T:ty, $from_ty:path) => { impl ToBigUint for $T { #[inline] fn to_biguint(&self) -> Option { $from_ty(*self) } } } } impl_to_biguint!(isize, FromPrimitive::from_isize); impl_to_biguint!(i8, FromPrimitive::from_i8); impl_to_biguint!(i16, FromPrimitive::from_i16); impl_to_biguint!(i32, FromPrimitive::from_i32); impl_to_biguint!(i64, FromPrimitive::from_i64); impl_to_biguint!(usize, FromPrimitive::from_usize); impl_to_biguint!(u8, FromPrimitive::from_u8); impl_to_biguint!(u16, FromPrimitive::from_u16); impl_to_biguint!(u32, FromPrimitive::from_u32); impl_to_biguint!(u64, FromPrimitive::from_u64); // Extract bitwise digits that evenly divide BigDigit fn to_bitwise_digits_le(u: &BigUint, bits: usize) -> Vec { debug_assert!(!u.is_zero() && bits <= 8 && big_digit::BITS % bits == 0); let last_i = u.data.len() - 1; let mask: BigDigit = (1 << bits) - 1; let digits_per_big_digit = big_digit::BITS / bits; let digits = (u.bits() + bits - 1) / bits; let mut res = Vec::with_capacity(digits); for mut r in u.data[..last_i].iter().cloned() { for _ in 0..digits_per_big_digit { res.push((r & mask) as u8); r >>= bits; } } let mut r = u.data[last_i]; while r != 0 { res.push((r & mask) as u8); r >>= bits; } res } // Extract bitwise digits that don't evenly divide BigDigit fn to_inexact_bitwise_digits_le(u: &BigUint, bits: usize) -> Vec { debug_assert!(!u.is_zero() && bits <= 8 && big_digit::BITS % bits != 0); let last_i = u.data.len() - 1; let mask: DoubleBigDigit = (1 << bits) - 1; let digits = (u.bits() + bits - 1) / bits; let mut res = Vec::with_capacity(digits); let mut r = 0; let mut rbits = 0; for hi in u.data[..last_i].iter().cloned() { r |= (hi as DoubleBigDigit) << rbits; rbits += big_digit::BITS; while rbits >= bits { res.push((r & mask) as u8); r >>= bits; rbits -= bits; } } r |= (u.data[last_i] as DoubleBigDigit) << rbits; while r != 0 { res.push((r & mask) as u8); r >>= bits; } res } // Extract little-endian radix digits #[inline(always)] // forced inline to get const-prop for radix=10 fn to_radix_digits_le(u: &BigUint, radix: u32) -> Vec { debug_assert!(!u.is_zero() && !radix.is_power_of_two()); let mut res = Vec::new(); let mut digits = u.clone(); let (base, power) = get_radix_base(radix); debug_assert!(base < (1 << 32)); let base = base as BigDigit; while digits.data.len() > 1 { let (q, mut r) = div_rem_digit(digits, base); for _ in 0..power { res.push((r % radix) as u8); r /= radix; } digits = q; } let mut r = digits.data[0]; while r != 0 { res.push((r % radix) as u8); r /= radix; } res } fn to_str_radix_reversed(u: &BigUint, radix: u32) -> Vec { assert!(2 <= radix && radix <= 36, "The radix must be within 2...36"); if u.is_zero() { return vec![b'0'] } let mut res = if radix.is_power_of_two() { // Powers of two can use bitwise masks and shifting instead of division let bits = radix.trailing_zeros() as usize; if big_digit::BITS % bits == 0 { to_bitwise_digits_le(u, bits) } else { to_inexact_bitwise_digits_le(u, bits) } } else if radix == 10 { // 10 is so common that it's worth separating out for const-propagation. // Optimizers can often turn constant division into a faster multiplication. to_radix_digits_le(u, 10) } else { to_radix_digits_le(u, radix) }; // Now convert everything to ASCII digits. for r in &mut res { const DIGITS: &'static [u8; 36] = b"0123456789abcdefghijklmnopqrstuvwxyz"; *r = DIGITS[*r as usize]; } res } impl BigUint { /// Creates and initializes a `BigUint`. /// /// The digits are in little-endian base 2^32. #[inline] pub fn new(digits: Vec) -> BigUint { BigUint { data: digits }.normalize() } /// Creates and initializes a `BigUint`. /// /// The digits are in little-endian base 2^32. #[inline] pub fn from_slice(slice: &[BigDigit]) -> BigUint { BigUint::new(slice.to_vec()) } /// Creates and initializes a `BigUint`. /// /// The bytes are in big-endian byte order. /// /// # Examples /// /// ``` /// use num::bigint::BigUint; /// /// assert_eq!(BigUint::from_bytes_be(b"A"), /// BigUint::parse_bytes(b"65", 10).unwrap()); /// assert_eq!(BigUint::from_bytes_be(b"AA"), /// BigUint::parse_bytes(b"16705", 10).unwrap()); /// assert_eq!(BigUint::from_bytes_be(b"AB"), /// BigUint::parse_bytes(b"16706", 10).unwrap()); /// assert_eq!(BigUint::from_bytes_be(b"Hello world!"), /// BigUint::parse_bytes(b"22405534230753963835153736737", 10).unwrap()); /// ``` #[inline] pub fn from_bytes_be(bytes: &[u8]) -> BigUint { if bytes.is_empty() { Zero::zero() } else { BigUint::parse_bytes(bytes.to_hex().as_bytes(), 16).unwrap() } } /// Creates and initializes a `BigUint`. /// /// The bytes are in little-endian byte order. #[inline] pub fn from_bytes_le(bytes: &[u8]) -> BigUint { let mut v = bytes.to_vec(); v.reverse(); BigUint::from_bytes_be(&*v) } /// Returns the byte representation of the `BigUint` in little-endian byte order. /// /// # Examples /// /// ``` /// use num::bigint::BigUint; /// /// let i = BigUint::parse_bytes(b"1125", 10).unwrap(); /// assert_eq!(i.to_bytes_le(), vec![101, 4]); /// ``` #[inline] pub fn to_bytes_le(&self) -> Vec { if self.is_zero() { vec![0] } else { to_bitwise_digits_le(self, 8) } } /// Returns the byte representation of the `BigUint` in big-endian byte order. /// /// # Examples /// /// ``` /// use num::bigint::BigUint; /// /// let i = BigUint::parse_bytes(b"1125", 10).unwrap(); /// assert_eq!(i.to_bytes_be(), vec![4, 101]); /// ``` #[inline] pub fn to_bytes_be(&self) -> Vec { let mut v = self.to_bytes_le(); v.reverse(); v } /// Returns the integer formatted as a string in the given radix. /// `radix` must be in the range `[2, 36]`. /// /// # Examples /// /// ``` /// use num::bigint::BigUint; /// /// let i = BigUint::parse_bytes(b"ff", 16).unwrap(); /// assert_eq!(i.to_str_radix(16), "ff"); /// ``` #[inline] pub fn to_str_radix(&self, radix: u32) -> String { let mut v = to_str_radix_reversed(self, radix); v.reverse(); unsafe { String::from_utf8_unchecked(v) } } /// Creates and initializes a `BigUint`. /// /// # Examples /// /// ``` /// use num::bigint::{BigUint, ToBigUint}; /// /// assert_eq!(BigUint::parse_bytes(b"1234", 10), ToBigUint::to_biguint(&1234)); /// assert_eq!(BigUint::parse_bytes(b"ABCD", 16), ToBigUint::to_biguint(&0xABCD)); /// assert_eq!(BigUint::parse_bytes(b"G", 16), None); /// ``` #[inline] pub fn parse_bytes(buf: &[u8], radix: u32) -> Option { str::from_utf8(buf).ok().and_then(|s| BigUint::from_str_radix(s, radix).ok()) } #[inline] fn shl_unit(&self, n_unit: usize) -> BigUint { if n_unit == 0 || self.is_zero() { return self.clone(); } let mut v = vec![0; n_unit]; v.extend(self.data.iter().cloned()); BigUint::new(v) } #[inline] fn shl_bits(self, n_bits: usize) -> BigUint { if n_bits == 0 || self.is_zero() { return self; } assert!(n_bits < big_digit::BITS); let mut carry = 0; let mut shifted = self.data; for elem in shifted.iter_mut() { let new_carry = *elem >> (big_digit::BITS - n_bits); *elem = (*elem << n_bits) | carry; carry = new_carry; } if carry != 0 { shifted.push(carry); } BigUint::new(shifted) } #[inline] fn shr_unit(&self, n_unit: usize) -> BigUint { if n_unit == 0 { return self.clone(); } if self.data.len() < n_unit { return Zero::zero(); } BigUint::from_slice(&self.data[n_unit ..]) } #[inline] fn shr_bits(self, n_bits: usize) -> BigUint { if n_bits == 0 || self.data.is_empty() { return self; } assert!(n_bits < big_digit::BITS); let mut borrow = 0; let mut shifted = self.data; for elem in shifted.iter_mut().rev() { let new_borrow = *elem << (big_digit::BITS - n_bits); *elem = (*elem >> n_bits) | borrow; borrow = new_borrow; } BigUint::new(shifted) } /// Determines the fewest bits necessary to express the `BigUint`. pub fn bits(&self) -> usize { if self.is_zero() { return 0; } let zeros = self.data.last().unwrap().leading_zeros(); return self.data.len()*big_digit::BITS - zeros as usize; } /// Strips off trailing zero bigdigits - comparisons require the last element in the vector to /// be nonzero. #[inline] fn normalize(mut self) -> BigUint { while let Some(&0) = self.data.last() { self.data.pop(); } self } } // `DoubleBigDigit` size dependent /// Returns the greatest power of the radix <= BigDigit::MAX + 1 #[inline] fn get_radix_base(radix: u32) -> (DoubleBigDigit, usize) { // To generate this table: // let target = std::u32::max as u64 + 1; // for radix in 2u64..37 { // let power = (target as f64).log(radix as f64) as u32; // let base = radix.pow(power); // println!("({:10}, {:2}), // {:2}", base, power, radix); // } const BASES: [(DoubleBigDigit, usize); 37] = [ (0, 0), (0, 0), (4294967296, 32), // 2 (3486784401, 20), // 3 (4294967296, 16), // 4 (1220703125, 13), // 5 (2176782336, 12), // 6 (1977326743, 11), // 7 (1073741824, 10), // 8 (3486784401, 10), // 9 (1000000000, 9), // 10 (2357947691, 9), // 11 ( 429981696, 8), // 12 ( 815730721, 8), // 13 (1475789056, 8), // 14 (2562890625, 8), // 15 (4294967296, 8), // 16 ( 410338673, 7), // 17 ( 612220032, 7), // 18 ( 893871739, 7), // 19 (1280000000, 7), // 20 (1801088541, 7), // 21 (2494357888, 7), // 22 (3404825447, 7), // 23 ( 191102976, 6), // 24 ( 244140625, 6), // 25 ( 308915776, 6), // 26 ( 387420489, 6), // 27 ( 481890304, 6), // 28 ( 594823321, 6), // 29 ( 729000000, 6), // 30 ( 887503681, 6), // 31 (1073741824, 6), // 32 (1291467969, 6), // 33 (1544804416, 6), // 34 (1838265625, 6), // 35 (2176782336, 6), // 36 ]; assert!(2 <= radix && radix <= 36, "The radix must be within 2...36"); BASES[radix as usize] } /// A Sign is a `BigInt`'s composing element. #[derive(PartialEq, PartialOrd, Eq, Ord, Copy, Clone, Debug, RustcEncodable, RustcDecodable)] pub enum Sign { Minus, NoSign, Plus } impl Neg for Sign { type Output = Sign; /// Negate Sign value. #[inline] fn neg(self) -> Sign { match self { Minus => Plus, NoSign => NoSign, Plus => Minus } } } impl Mul for Sign { type Output = Sign; #[inline] fn mul(self, other: Sign) -> Sign { match (self, other) { (NoSign, _) | (_, NoSign) => NoSign, (Plus, Plus) | (Minus, Minus) => Plus, (Plus, Minus) | (Minus, Plus) => Minus, } } } /// A big signed integer type. #[derive(Clone, RustcEncodable, RustcDecodable, Debug)] pub struct BigInt { sign: Sign, data: BigUint } impl PartialEq for BigInt { #[inline] fn eq(&self, other: &BigInt) -> bool { self.cmp(other) == Equal } } impl Eq for BigInt {} impl PartialOrd for BigInt { #[inline] fn partial_cmp(&self, other: &BigInt) -> Option { Some(self.cmp(other)) } } impl Ord for BigInt { #[inline] fn cmp(&self, other: &BigInt) -> Ordering { let scmp = self.sign.cmp(&other.sign); if scmp != Equal { return scmp; } match self.sign { NoSign => Equal, Plus => self.data.cmp(&other.data), Minus => other.data.cmp(&self.data), } } } impl Default for BigInt { #[inline] fn default() -> BigInt { Zero::zero() } } impl fmt::Display for BigInt { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.to_str_radix(10)) } } impl hash::Hash for BigInt { fn hash(&self, state: &mut H) where H: hash::Hasher { (self.sign == Plus).hash(state); self.data.hash(state); } } impl FromStr for BigInt { type Err = ParseBigIntError; #[inline] fn from_str(s: &str) -> Result { BigInt::from_str_radix(s, 10) } } impl Num for BigInt { type FromStrRadixErr = ParseBigIntError; /// Creates and initializes a BigInt. #[inline] fn from_str_radix(s: &str, radix: u32) -> Result { if s.is_empty() { return Err(ParseBigIntError::Other); } let mut sign = Plus; let mut start = 0; if s.starts_with("-") { sign = Minus; start = 1; } BigUint::from_str_radix(&s[start ..], radix) .map(|bu| BigInt::from_biguint(sign, bu)) } } impl Shl for BigInt { type Output = BigInt; #[inline] fn shl(self, rhs: usize) -> BigInt { (&self) << rhs } } impl<'a> Shl for &'a BigInt { type Output = BigInt; #[inline] fn shl(self, rhs: usize) -> BigInt { BigInt::from_biguint(self.sign, &self.data << rhs) } } impl Shr for BigInt { type Output = BigInt; #[inline] fn shr(self, rhs: usize) -> BigInt { (&self) >> rhs } } impl<'a> Shr for &'a BigInt { type Output = BigInt; #[inline] fn shr(self, rhs: usize) -> BigInt { BigInt::from_biguint(self.sign, &self.data >> rhs) } } impl Zero for BigInt { #[inline] fn zero() -> BigInt { BigInt::from_biguint(NoSign, Zero::zero()) } #[inline] fn is_zero(&self) -> bool { self.sign == NoSign } } impl One for BigInt { #[inline] fn one() -> BigInt { BigInt::from_biguint(Plus, One::one()) } } impl Signed for BigInt { #[inline] fn abs(&self) -> BigInt { match self.sign { Plus | NoSign => self.clone(), Minus => BigInt::from_biguint(Plus, self.data.clone()) } } #[inline] fn abs_sub(&self, other: &BigInt) -> BigInt { if *self <= *other { Zero::zero() } else { self - other } } #[inline] fn signum(&self) -> BigInt { match self.sign { Plus => BigInt::from_biguint(Plus, One::one()), Minus => BigInt::from_biguint(Minus, One::one()), NoSign => Zero::zero(), } } #[inline] fn is_positive(&self) -> bool { self.sign == Plus } #[inline] fn is_negative(&self) -> bool { self.sign == Minus } } // We want to forward to BigUint::add, but it's not clear how that will go until // we compare both sign and magnitude. So we duplicate this body for every // val/ref combination, deferring that decision to BigUint's own forwarding. macro_rules! bigint_add { ($a:expr, $a_owned:expr, $a_data:expr, $b:expr, $b_owned:expr, $b_data:expr) => { match ($a.sign, $b.sign) { (_, NoSign) => $a_owned, (NoSign, _) => $b_owned, // same sign => keep the sign with the sum of magnitudes (Plus, Plus) | (Minus, Minus) => BigInt::from_biguint($a.sign, $a_data + $b_data), // opposite signs => keep the sign of the larger with the difference of magnitudes (Plus, Minus) | (Minus, Plus) => match $a.data.cmp(&$b.data) { Less => BigInt::from_biguint($b.sign, $b_data - $a_data), Greater => BigInt::from_biguint($a.sign, $a_data - $b_data), Equal => Zero::zero(), }, } }; } impl<'a, 'b> Add<&'b BigInt> for &'a BigInt { type Output = BigInt; #[inline] fn add(self, other: &BigInt) -> BigInt { bigint_add!(self, self.clone(), &self.data, other, other.clone(), &other.data) } } impl<'a> Add for &'a BigInt { type Output = BigInt; #[inline] fn add(self, other: BigInt) -> BigInt { bigint_add!(self, self.clone(), &self.data, other, other, other.data) } } impl<'a> Add<&'a BigInt> for BigInt { type Output = BigInt; #[inline] fn add(self, other: &BigInt) -> BigInt { bigint_add!(self, self, self.data, other, other.clone(), &other.data) } } impl Add for BigInt { type Output = BigInt; #[inline] fn add(self, other: BigInt) -> BigInt { bigint_add!(self, self, self.data, other, other, other.data) } } // We want to forward to BigUint::sub, but it's not clear how that will go until // we compare both sign and magnitude. So we duplicate this body for every // val/ref combination, deferring that decision to BigUint's own forwarding. macro_rules! bigint_sub { ($a:expr, $a_owned:expr, $a_data:expr, $b:expr, $b_owned:expr, $b_data:expr) => { match ($a.sign, $b.sign) { (_, NoSign) => $a_owned, (NoSign, _) => -$b_owned, // opposite signs => keep the sign of the left with the sum of magnitudes (Plus, Minus) | (Minus, Plus) => BigInt::from_biguint($a.sign, $a_data + $b_data), // same sign => keep or toggle the sign of the left with the difference of magnitudes (Plus, Plus) | (Minus, Minus) => match $a.data.cmp(&$b.data) { Less => BigInt::from_biguint(-$a.sign, $b_data - $a_data), Greater => BigInt::from_biguint($a.sign, $a_data - $b_data), Equal => Zero::zero(), }, } }; } impl<'a, 'b> Sub<&'b BigInt> for &'a BigInt { type Output = BigInt; #[inline] fn sub(self, other: &BigInt) -> BigInt { bigint_sub!(self, self.clone(), &self.data, other, other.clone(), &other.data) } } impl<'a> Sub for &'a BigInt { type Output = BigInt; #[inline] fn sub(self, other: BigInt) -> BigInt { bigint_sub!(self, self.clone(), &self.data, other, other, other.data) } } impl<'a> Sub<&'a BigInt> for BigInt { type Output = BigInt; #[inline] fn sub(self, other: &BigInt) -> BigInt { bigint_sub!(self, self, self.data, other, other.clone(), &other.data) } } impl Sub for BigInt { type Output = BigInt; #[inline] fn sub(self, other: BigInt) -> BigInt { bigint_sub!(self, self, self.data, other, other, other.data) } } // We want to forward to BigUint::mul, and defer the val/ref decision to // BigUint, so we duplicate this body for every val/ref combination. macro_rules! bigint_mul { ($a:expr, $a_data:expr, $b:expr, $b_data:expr) => { BigInt::from_biguint($a.sign * $b.sign, $a_data * $b_data) }; } impl<'a, 'b> Mul<&'b BigInt> for &'a BigInt { type Output = BigInt; #[inline] fn mul(self, other: &BigInt) -> BigInt { bigint_mul!(self, &self.data, other, &other.data) } } impl<'a> Mul for &'a BigInt { type Output = BigInt; #[inline] fn mul(self, other: BigInt) -> BigInt { bigint_mul!(self, &self.data, other, other.data) } } impl<'a> Mul<&'a BigInt> for BigInt { type Output = BigInt; #[inline] fn mul(self, other: &BigInt) -> BigInt { bigint_mul!(self, self.data, other, &other.data) } } impl Mul for BigInt { type Output = BigInt; #[inline] fn mul(self, other: BigInt) -> BigInt { bigint_mul!(self, self.data, other, other.data) } } forward_all_binop_to_ref_ref!(impl Div for BigInt, div); impl<'a, 'b> Div<&'b BigInt> for &'a BigInt { type Output = BigInt; #[inline] fn div(self, other: &BigInt) -> BigInt { let (q, _) = self.div_rem(other); q } } forward_all_binop_to_ref_ref!(impl Rem for BigInt, rem); impl<'a, 'b> Rem<&'b BigInt> for &'a BigInt { type Output = BigInt; #[inline] fn rem(self, other: &BigInt) -> BigInt { let (_, r) = self.div_rem(other); r } } impl Neg for BigInt { type Output = BigInt; #[inline] fn neg(mut self) -> BigInt { self.sign = -self.sign; self } } impl<'a> Neg for &'a BigInt { type Output = BigInt; #[inline] fn neg(self) -> BigInt { -self.clone() } } impl CheckedAdd for BigInt { #[inline] fn checked_add(&self, v: &BigInt) -> Option { return Some(self.add(v)); } } impl CheckedSub for BigInt { #[inline] fn checked_sub(&self, v: &BigInt) -> Option { return Some(self.sub(v)); } } impl CheckedMul for BigInt { #[inline] fn checked_mul(&self, v: &BigInt) -> Option { return Some(self.mul(v)); } } impl CheckedDiv for BigInt { #[inline] fn checked_div(&self, v: &BigInt) -> Option { if v.is_zero() { return None; } return Some(self.div(v)); } } impl Integer for BigInt { #[inline] fn div_rem(&self, other: &BigInt) -> (BigInt, BigInt) { // r.sign == self.sign let (d_ui, r_ui) = self.data.div_mod_floor(&other.data); let d = BigInt::from_biguint(self.sign, d_ui); let r = BigInt::from_biguint(self.sign, r_ui); if other.is_negative() { (-d, r) } else { (d, r) } } #[inline] fn div_floor(&self, other: &BigInt) -> BigInt { let (d, _) = self.div_mod_floor(other); d } #[inline] fn mod_floor(&self, other: &BigInt) -> BigInt { let (_, m) = self.div_mod_floor(other); m } fn div_mod_floor(&self, other: &BigInt) -> (BigInt, BigInt) { // m.sign == other.sign let (d_ui, m_ui) = self.data.div_rem(&other.data); let d = BigInt::from_biguint(Plus, d_ui); let m = BigInt::from_biguint(Plus, m_ui); let one: BigInt = One::one(); match (self.sign, other.sign) { (_, NoSign) => panic!(), (Plus, Plus) | (NoSign, Plus) => (d, m), (Plus, Minus) | (NoSign, Minus) => { if m.is_zero() { (-d, Zero::zero()) } else { (-d - one, m + other) } }, (Minus, Plus) => { if m.is_zero() { (-d, Zero::zero()) } else { (-d - one, other - m) } } (Minus, Minus) => (d, -m) } } /// Calculates the Greatest Common Divisor (GCD) of the number and `other`. /// /// The result is always positive. #[inline] fn gcd(&self, other: &BigInt) -> BigInt { BigInt::from_biguint(Plus, self.data.gcd(&other.data)) } /// Calculates the Lowest Common Multiple (LCM) of the number and `other`. #[inline] fn lcm(&self, other: &BigInt) -> BigInt { BigInt::from_biguint(Plus, self.data.lcm(&other.data)) } /// Deprecated, use `is_multiple_of` instead. #[inline] fn divides(&self, other: &BigInt) -> bool { return self.is_multiple_of(other); } /// Returns `true` if the number is a multiple of `other`. #[inline] fn is_multiple_of(&self, other: &BigInt) -> bool { self.data.is_multiple_of(&other.data) } /// Returns `true` if the number is divisible by `2`. #[inline] fn is_even(&self) -> bool { self.data.is_even() } /// Returns `true` if the number is not divisible by `2`. #[inline] fn is_odd(&self) -> bool { self.data.is_odd() } } impl ToPrimitive for BigInt { #[inline] fn to_i64(&self) -> Option { match self.sign { Plus => self.data.to_i64(), NoSign => Some(0), Minus => { self.data.to_u64().and_then(|n| { let m: u64 = 1 << 63; if n < m { Some(-(n as i64)) } else if n == m { Some(i64::MIN) } else { None } }) } } } #[inline] fn to_u64(&self) -> Option { match self.sign { Plus => self.data.to_u64(), NoSign => Some(0), Minus => None } } } impl FromPrimitive for BigInt { #[inline] fn from_i64(n: i64) -> Option { Some(BigInt::from(n)) } #[inline] fn from_u64(n: u64) -> Option { Some(BigInt::from(n)) } } impl From for BigInt { #[inline] fn from(n: i64) -> Self { if n >= 0 { BigInt::from(n as u64) } else { let u = u64::MAX - (n as u64) + 1; BigInt { sign: Minus, data: BigUint::from(u) } } } } macro_rules! impl_bigint_from_int { ($T:ty) => { impl From<$T> for BigInt { #[inline] fn from(n: $T) -> Self { BigInt::from(n as i64) } } } } impl_bigint_from_int!(i8); impl_bigint_from_int!(i16); impl_bigint_from_int!(i32); impl_bigint_from_int!(isize); impl From for BigInt { #[inline] fn from(n: u64) -> Self { if n > 0 { BigInt { sign: Plus, data: BigUint::from(n) } } else { BigInt::zero() } } } macro_rules! impl_bigint_from_uint { ($T:ty) => { impl From<$T> for BigInt { #[inline] fn from(n: $T) -> Self { BigInt::from(n as u64) } } } } impl_bigint_from_uint!(u8); impl_bigint_from_uint!(u16); impl_bigint_from_uint!(u32); impl_bigint_from_uint!(usize); impl From for BigInt { #[inline] fn from(n: BigUint) -> Self { if n.is_zero() { BigInt::zero() } else { BigInt { sign: Plus, data: n } } } } /// A generic trait for converting a value to a `BigInt`. pub trait ToBigInt { /// Converts the value of `self` to a `BigInt`. fn to_bigint(&self) -> Option; } impl ToBigInt for BigInt { #[inline] fn to_bigint(&self) -> Option { Some(self.clone()) } } impl ToBigInt for BigUint { #[inline] fn to_bigint(&self) -> Option { if self.is_zero() { Some(Zero::zero()) } else { Some(BigInt { sign: Plus, data: self.clone() }) } } } macro_rules! impl_to_bigint { ($T:ty, $from_ty:path) => { impl ToBigInt for $T { #[inline] fn to_bigint(&self) -> Option { $from_ty(*self) } } } } impl_to_bigint!(isize, FromPrimitive::from_isize); impl_to_bigint!(i8, FromPrimitive::from_i8); impl_to_bigint!(i16, FromPrimitive::from_i16); impl_to_bigint!(i32, FromPrimitive::from_i32); impl_to_bigint!(i64, FromPrimitive::from_i64); impl_to_bigint!(usize, FromPrimitive::from_usize); impl_to_bigint!(u8, FromPrimitive::from_u8); impl_to_bigint!(u16, FromPrimitive::from_u16); impl_to_bigint!(u32, FromPrimitive::from_u32); impl_to_bigint!(u64, FromPrimitive::from_u64); pub trait RandBigInt { /// Generate a random `BigUint` of the given bit size. fn gen_biguint(&mut self, bit_size: usize) -> BigUint; /// Generate a random BigInt of the given bit size. fn gen_bigint(&mut self, bit_size: usize) -> BigInt; /// Generate a random `BigUint` less than the given bound. Fails /// when the bound is zero. fn gen_biguint_below(&mut self, bound: &BigUint) -> BigUint; /// Generate a random `BigUint` within the given range. The lower /// bound is inclusive; the upper bound is exclusive. Fails when /// the upper bound is not greater than the lower bound. fn gen_biguint_range(&mut self, lbound: &BigUint, ubound: &BigUint) -> BigUint; /// Generate a random `BigInt` within the given range. The lower /// bound is inclusive; the upper bound is exclusive. Fails when /// the upper bound is not greater than the lower bound. fn gen_bigint_range(&mut self, lbound: &BigInt, ubound: &BigInt) -> BigInt; } impl RandBigInt for R { fn gen_biguint(&mut self, bit_size: usize) -> BigUint { let (digits, rem) = bit_size.div_rem(&big_digit::BITS); let mut data = Vec::with_capacity(digits+1); for _ in 0 .. digits { data.push(self.gen()); } if rem > 0 { let final_digit: BigDigit = self.gen(); data.push(final_digit >> (big_digit::BITS - rem)); } BigUint::new(data) } fn gen_bigint(&mut self, bit_size: usize) -> BigInt { // Generate a random BigUint... let biguint = self.gen_biguint(bit_size); // ...and then randomly assign it a Sign... let sign = if biguint.is_zero() { // ...except that if the BigUint is zero, we need to try // again with probability 0.5. This is because otherwise, // the probability of generating a zero BigInt would be // double that of any other number. if self.gen() { return self.gen_bigint(bit_size); } else { NoSign } } else if self.gen() { Plus } else { Minus }; BigInt::from_biguint(sign, biguint) } fn gen_biguint_below(&mut self, bound: &BigUint) -> BigUint { assert!(!bound.is_zero()); let bits = bound.bits(); loop { let n = self.gen_biguint(bits); if n < *bound { return n; } } } fn gen_biguint_range(&mut self, lbound: &BigUint, ubound: &BigUint) -> BigUint { assert!(*lbound < *ubound); return lbound + self.gen_biguint_below(&(ubound - lbound)); } fn gen_bigint_range(&mut self, lbound: &BigInt, ubound: &BigInt) -> BigInt { assert!(*lbound < *ubound); let delta = (ubound - lbound).to_biguint().unwrap(); return lbound + self.gen_biguint_below(&delta).to_bigint().unwrap(); } } impl BigInt { /// Creates and initializes a BigInt. /// /// The digits are in little-endian base 2^32. #[inline] pub fn new(sign: Sign, digits: Vec) -> BigInt { BigInt::from_biguint(sign, BigUint::new(digits)) } /// Creates and initializes a `BigInt`. /// /// The digits are in little-endian base 2^32. #[inline] pub fn from_biguint(sign: Sign, data: BigUint) -> BigInt { if sign == NoSign || data.is_zero() { return BigInt { sign: NoSign, data: Zero::zero() }; } BigInt { sign: sign, data: data } } /// Creates and initializes a `BigInt`. #[inline] pub fn from_slice(sign: Sign, slice: &[BigDigit]) -> BigInt { BigInt::from_biguint(sign, BigUint::from_slice(slice)) } /// Creates and initializes a `BigInt`. /// /// The bytes are in big-endian byte order. /// /// # Examples /// /// ``` /// use num::bigint::{BigInt, Sign}; /// /// assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"A"), /// BigInt::parse_bytes(b"65", 10).unwrap()); /// assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"AA"), /// BigInt::parse_bytes(b"16705", 10).unwrap()); /// assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"AB"), /// BigInt::parse_bytes(b"16706", 10).unwrap()); /// assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"Hello world!"), /// BigInt::parse_bytes(b"22405534230753963835153736737", 10).unwrap()); /// ``` #[inline] pub fn from_bytes_be(sign: Sign, bytes: &[u8]) -> BigInt { BigInt::from_biguint(sign, BigUint::from_bytes_be(bytes)) } /// Creates and initializes a `BigInt`. /// /// The bytes are in little-endian byte order. #[inline] pub fn from_bytes_le(sign: Sign, bytes: &[u8]) -> BigInt { BigInt::from_biguint(sign, BigUint::from_bytes_le(bytes)) } /// Returns the sign and the byte representation of the `BigInt` in little-endian byte order. /// /// # Examples /// /// ``` /// use num::bigint::{ToBigInt, Sign}; /// /// let i = -1125.to_bigint().unwrap(); /// assert_eq!(i.to_bytes_le(), (Sign::Minus, vec![101, 4])); /// ``` #[inline] pub fn to_bytes_le(&self) -> (Sign, Vec) { (self.sign, self.data.to_bytes_le()) } /// Returns the sign and the byte representation of the `BigInt` in big-endian byte order. /// /// # Examples /// /// ``` /// use num::bigint::{ToBigInt, Sign}; /// /// let i = -1125.to_bigint().unwrap(); /// assert_eq!(i.to_bytes_be(), (Sign::Minus, vec![4, 101])); /// ``` #[inline] pub fn to_bytes_be(&self) -> (Sign, Vec) { (self.sign, self.data.to_bytes_be()) } /// Returns the integer formatted as a string in the given radix. /// `radix` must be in the range `[2, 36]`. /// /// # Examples /// /// ``` /// use num::bigint::BigInt; /// /// let i = BigInt::parse_bytes(b"ff", 16).unwrap(); /// assert_eq!(i.to_str_radix(16), "ff"); /// ``` #[inline] pub fn to_str_radix(&self, radix: u32) -> String { let mut v = to_str_radix_reversed(&self.data, radix); if self.is_negative() { v.push(b'-'); } v.reverse(); unsafe { String::from_utf8_unchecked(v) } } /// Returns the sign of the `BigInt` as a `Sign`. /// /// # Examples /// /// ``` /// use num::bigint::{ToBigInt, Sign}; /// /// assert_eq!(ToBigInt::to_bigint(&1234).unwrap().sign(), Sign::Plus); /// assert_eq!(ToBigInt::to_bigint(&-4321).unwrap().sign(), Sign::Minus); /// assert_eq!(ToBigInt::to_bigint(&0).unwrap().sign(), Sign::NoSign); /// ``` #[inline] pub fn sign(&self) -> Sign { self.sign } /// Creates and initializes a `BigInt`. /// /// # Examples /// /// ``` /// use num::bigint::{BigInt, ToBigInt}; /// /// assert_eq!(BigInt::parse_bytes(b"1234", 10), ToBigInt::to_bigint(&1234)); /// assert_eq!(BigInt::parse_bytes(b"ABCD", 16), ToBigInt::to_bigint(&0xABCD)); /// assert_eq!(BigInt::parse_bytes(b"G", 16), None); /// ``` #[inline] pub fn parse_bytes(buf: &[u8], radix: u32) -> Option { str::from_utf8(buf).ok().and_then(|s| BigInt::from_str_radix(s, radix).ok()) } /// Converts this `BigInt` into a `BigUint`, if it's not negative. #[inline] pub fn to_biguint(&self) -> Option { match self.sign { Plus => Some(self.data.clone()), NoSign => Some(Zero::zero()), Minus => None } } #[inline] pub fn checked_add(&self, v: &BigInt) -> Option { return Some(self.add(v)); } #[inline] pub fn checked_sub(&self, v: &BigInt) -> Option { return Some(self.sub(v)); } #[inline] pub fn checked_mul(&self, v: &BigInt) -> Option { return Some(self.mul(v)); } #[inline] pub fn checked_div(&self, v: &BigInt) -> Option { if v.is_zero() { return None; } return Some(self.div(v)); } } #[derive(Debug, PartialEq)] pub enum ParseBigIntError { ParseInt(ParseIntError), Other, } impl fmt::Display for ParseBigIntError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match self { &ParseBigIntError::ParseInt(ref e) => e.fmt(f), &ParseBigIntError::Other => "failed to parse provided string".fmt(f) } } } impl Error for ParseBigIntError { fn description(&self) -> &str { "failed to parse bigint/biguint" } } impl From for ParseBigIntError { fn from(err: ParseIntError) -> ParseBigIntError { ParseBigIntError::ParseInt(err) } } #[cfg(test)] mod biguint_tests { use Integer; use super::{BigDigit, BigUint, ToBigUint, big_digit}; use super::{BigInt, RandBigInt, ToBigInt}; use super::Sign::Plus; use std::cmp::Ordering::{Less, Equal, Greater}; use std::i64; use std::iter::repeat; use std::str::FromStr; use std::{u8, u16, u32, u64, usize}; use rand::thread_rng; use {Num, Zero, One, CheckedAdd, CheckedSub, CheckedMul, CheckedDiv}; use {ToPrimitive, FromPrimitive}; /// Assert that an op works for all val/ref combinations macro_rules! assert_op { ($left:ident $op:tt $right:ident == $expected:expr) => { assert_eq!((&$left) $op (&$right), $expected); assert_eq!((&$left) $op $right.clone(), $expected); assert_eq!($left.clone() $op (&$right), $expected); assert_eq!($left.clone() $op $right.clone(), $expected); }; } #[test] fn test_from_slice() { fn check(slice: &[BigDigit], data: &[BigDigit]) { assert!(BigUint::from_slice(slice).data == data); } check(&[1], &[1]); check(&[0, 0, 0], &[]); check(&[1, 2, 0, 0], &[1, 2]); check(&[0, 0, 1, 2], &[0, 0, 1, 2]); check(&[0, 0, 1, 2, 0, 0], &[0, 0, 1, 2]); check(&[-1i32 as BigDigit], &[-1i32 as BigDigit]); } #[test] fn test_from_bytes_be() { fn check(s: &str, result: &str) { assert_eq!(BigUint::from_bytes_be(s.as_bytes()), BigUint::parse_bytes(result.as_bytes(), 10).unwrap()); } check("A", "65"); check("AA", "16705"); check("AB", "16706"); check("Hello world!", "22405534230753963835153736737"); assert_eq!(BigUint::from_bytes_be(&[]), Zero::zero()); } #[test] fn test_to_bytes_be() { fn check(s: &str, result: &str) { let b = BigUint::parse_bytes(result.as_bytes(), 10).unwrap(); assert_eq!(b.to_bytes_be(), s.as_bytes()); } check("A", "65"); check("AA", "16705"); check("AB", "16706"); check("Hello world!", "22405534230753963835153736737"); let b: BigUint = Zero::zero(); assert_eq!(b.to_bytes_be(), [0]); // Test with leading/trailing zero bytes and a full BigDigit of value 0 let b = BigUint::from_str_radix("00010000000000000200", 16).unwrap(); assert_eq!(b.to_bytes_be(), [1, 0, 0, 0, 0, 0, 0, 2, 0]); } #[test] fn test_from_bytes_le() { fn check(s: &str, result: &str) { assert_eq!(BigUint::from_bytes_le(s.as_bytes()), BigUint::parse_bytes(result.as_bytes(), 10).unwrap()); } check("A", "65"); check("AA", "16705"); check("BA", "16706"); check("!dlrow olleH", "22405534230753963835153736737"); assert_eq!(BigUint::from_bytes_le(&[]), Zero::zero()); } #[test] fn test_to_bytes_le() { fn check(s: &str, result: &str) { let b = BigUint::parse_bytes(result.as_bytes(), 10).unwrap(); assert_eq!(b.to_bytes_le(), s.as_bytes()); } check("A", "65"); check("AA", "16705"); check("BA", "16706"); check("!dlrow olleH", "22405534230753963835153736737"); let b: BigUint = Zero::zero(); assert_eq!(b.to_bytes_le(), [0]); // Test with leading/trailing zero bytes and a full BigDigit of value 0 let b = BigUint::from_str_radix("00010000000000000200", 16).unwrap(); assert_eq!(b.to_bytes_le(), [0, 2, 0, 0, 0, 0, 0, 0, 1]); } #[test] fn test_cmp() { let data: [&[_]; 7] = [ &[], &[1], &[2], &[!0], &[0, 1], &[2, 1], &[1, 1, 1] ]; let data: Vec = data.iter().map(|v| BigUint::from_slice(*v)).collect(); for (i, ni) in data.iter().enumerate() { for (j0, nj) in data[i..].iter().enumerate() { let j = j0 + i; if i == j { assert_eq!(ni.cmp(nj), Equal); assert_eq!(nj.cmp(ni), Equal); assert_eq!(ni, nj); assert!(!(ni != nj)); assert!(ni <= nj); assert!(ni >= nj); assert!(!(ni < nj)); assert!(!(ni > nj)); } else { assert_eq!(ni.cmp(nj), Less); assert_eq!(nj.cmp(ni), Greater); assert!(!(ni == nj)); assert!(ni != nj); assert!(ni <= nj); assert!(!(ni >= nj)); assert!(ni < nj); assert!(!(ni > nj)); assert!(!(nj <= ni)); assert!(nj >= ni); assert!(!(nj < ni)); assert!(nj > ni); } } } } #[test] fn test_hash() { let a = BigUint::new(vec!()); let b = BigUint::new(vec!(0)); let c = BigUint::new(vec!(1)); let d = BigUint::new(vec!(1,0,0,0,0,0)); let e = BigUint::new(vec!(0,0,0,0,0,1)); assert!(::hash(&a) == ::hash(&b)); assert!(::hash(&b) != ::hash(&c)); assert!(::hash(&c) == ::hash(&d)); assert!(::hash(&d) != ::hash(&e)); } const BIT_TESTS: &'static [(&'static [BigDigit], &'static [BigDigit], &'static [BigDigit], &'static [BigDigit], &'static [BigDigit])] = &[ // LEFT RIGHT AND OR XOR ( &[], &[], &[], &[], &[] ), ( &[268, 482, 17], &[964, 54], &[260, 34], &[972, 502, 17], &[712, 468, 17] ), ]; #[test] fn test_bitand() { for elm in BIT_TESTS { let (a_vec, b_vec, c_vec, _, _) = *elm; let a = BigUint::from_slice(a_vec); let b = BigUint::from_slice(b_vec); let c = BigUint::from_slice(c_vec); assert_op!(a & b == c); assert_op!(b & a == c); } } #[test] fn test_bitor() { for elm in BIT_TESTS { let (a_vec, b_vec, _, c_vec, _) = *elm; let a = BigUint::from_slice(a_vec); let b = BigUint::from_slice(b_vec); let c = BigUint::from_slice(c_vec); assert_op!(a | b == c); assert_op!(b | a == c); } } #[test] fn test_bitxor() { for elm in BIT_TESTS { let (a_vec, b_vec, _, _, c_vec) = *elm; let a = BigUint::from_slice(a_vec); let b = BigUint::from_slice(b_vec); let c = BigUint::from_slice(c_vec); assert_op!(a ^ b == c); assert_op!(b ^ a == c); assert_op!(a ^ c == b); assert_op!(c ^ a == b); assert_op!(b ^ c == a); assert_op!(c ^ b == a); } } #[test] fn test_shl() { fn check(s: &str, shift: usize, ans: &str) { let opt_biguint = BigUint::from_str_radix(s, 16).ok(); let bu = (opt_biguint.unwrap() << shift).to_str_radix(16); assert_eq!(bu, ans); } check("0", 3, "0"); check("1", 3, "8"); check("1\ 0000\ 0000\ 0000\ 0001\ 0000\ 0000\ 0000\ 0001", 3, "8\ 0000\ 0000\ 0000\ 0008\ 0000\ 0000\ 0000\ 0008"); check("1\ 0000\ 0001\ 0000\ 0001", 2, "4\ 0000\ 0004\ 0000\ 0004"); check("1\ 0001\ 0001", 1, "2\ 0002\ 0002"); check("\ 4000\ 0000\ 0000\ 0000", 3, "2\ 0000\ 0000\ 0000\ 0000"); check("4000\ 0000", 2, "1\ 0000\ 0000"); check("4000", 2, "1\ 0000"); check("4000\ 0000\ 0000\ 0000", 67, "2\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000"); check("4000\ 0000", 35, "2\ 0000\ 0000\ 0000\ 0000"); check("4000", 19, "2\ 0000\ 0000"); check("fedc\ ba98\ 7654\ 3210\ fedc\ ba98\ 7654\ 3210", 4, "f\ edcb\ a987\ 6543\ 210f\ edcb\ a987\ 6543\ 2100"); check("88887777666655554444333322221111", 16, "888877776666555544443333222211110000"); } #[test] fn test_shr() { fn check(s: &str, shift: usize, ans: &str) { let opt_biguint = BigUint::from_str_radix(s, 16).ok(); let bu = (opt_biguint.unwrap() >> shift).to_str_radix(16); assert_eq!(bu, ans); } check("0", 3, "0"); check("f", 3, "1"); check("1\ 0000\ 0000\ 0000\ 0001\ 0000\ 0000\ 0000\ 0001", 3, "2000\ 0000\ 0000\ 0000\ 2000\ 0000\ 0000\ 0000"); check("1\ 0000\ 0001\ 0000\ 0001", 2, "4000\ 0000\ 4000\ 0000"); check("1\ 0001\ 0001", 1, "8000\ 8000"); check("2\ 0000\ 0000\ 0000\ 0001\ 0000\ 0000\ 0000\ 0001", 67, "4000\ 0000\ 0000\ 0000"); check("2\ 0000\ 0001\ 0000\ 0001", 35, "4000\ 0000"); check("2\ 0001\ 0001", 19, "4000"); check("1\ 0000\ 0000\ 0000\ 0000", 1, "8000\ 0000\ 0000\ 0000"); check("1\ 0000\ 0000", 1, "8000\ 0000"); check("1\ 0000", 1, "8000"); check("f\ edcb\ a987\ 6543\ 210f\ edcb\ a987\ 6543\ 2100", 4, "fedc\ ba98\ 7654\ 3210\ fedc\ ba98\ 7654\ 3210"); check("888877776666555544443333222211110000", 16, "88887777666655554444333322221111"); } const N1: BigDigit = -1i32 as BigDigit; const N2: BigDigit = -2i32 as BigDigit; // `DoubleBigDigit` size dependent #[test] fn test_convert_i64() { fn check(b1: BigUint, i: i64) { let b2: BigUint = FromPrimitive::from_i64(i).unwrap(); assert!(b1 == b2); assert!(b1.to_i64().unwrap() == i); } check(Zero::zero(), 0); check(One::one(), 1); check(i64::MAX.to_biguint().unwrap(), i64::MAX); check(BigUint::new(vec!( )), 0); check(BigUint::new(vec!( 1 )), (1 << (0*big_digit::BITS))); check(BigUint::new(vec!(N1 )), (1 << (1*big_digit::BITS)) - 1); check(BigUint::new(vec!( 0, 1 )), (1 << (1*big_digit::BITS))); check(BigUint::new(vec!(N1, N1 >> 1)), i64::MAX); assert_eq!(i64::MIN.to_biguint(), None); assert_eq!(BigUint::new(vec!(N1, N1 )).to_i64(), None); assert_eq!(BigUint::new(vec!( 0, 0, 1)).to_i64(), None); assert_eq!(BigUint::new(vec!(N1, N1, N1)).to_i64(), None); } // `DoubleBigDigit` size dependent #[test] fn test_convert_u64() { fn check(b1: BigUint, u: u64) { let b2: BigUint = FromPrimitive::from_u64(u).unwrap(); assert!(b1 == b2); assert!(b1.to_u64().unwrap() == u); } check(Zero::zero(), 0); check(One::one(), 1); check(u64::MIN.to_biguint().unwrap(), u64::MIN); check(u64::MAX.to_biguint().unwrap(), u64::MAX); check(BigUint::new(vec!( )), 0); check(BigUint::new(vec!( 1 )), (1 << (0*big_digit::BITS))); check(BigUint::new(vec!(N1 )), (1 << (1*big_digit::BITS)) - 1); check(BigUint::new(vec!( 0, 1)), (1 << (1*big_digit::BITS))); check(BigUint::new(vec!(N1, N1)), u64::MAX); assert_eq!(BigUint::new(vec!( 0, 0, 1)).to_u64(), None); assert_eq!(BigUint::new(vec!(N1, N1, N1)).to_u64(), None); } #[test] fn test_convert_to_bigint() { fn check(n: BigUint, ans: BigInt) { assert_eq!(n.to_bigint().unwrap(), ans); assert_eq!(n.to_bigint().unwrap().to_biguint().unwrap(), n); } check(Zero::zero(), Zero::zero()); check(BigUint::new(vec!(1,2,3)), BigInt::from_biguint(Plus, BigUint::new(vec!(1,2,3)))); } #[test] fn test_convert_from_uint() { macro_rules! check { ($ty:ident, $max:expr) => { assert_eq!(BigUint::from($ty::zero()), BigUint::zero()); assert_eq!(BigUint::from($ty::one()), BigUint::one()); assert_eq!(BigUint::from($ty::MAX - $ty::one()), $max - BigUint::one()); assert_eq!(BigUint::from($ty::MAX), $max); } } check!(u8, BigUint::from_slice(&[u8::MAX as BigDigit])); check!(u16, BigUint::from_slice(&[u16::MAX as BigDigit])); check!(u32, BigUint::from_slice(&[u32::MAX])); check!(u64, BigUint::from_slice(&[u32::MAX, u32::MAX])); check!(usize, BigUint::from(usize::MAX as u64)); } const SUM_TRIPLES: &'static [(&'static [BigDigit], &'static [BigDigit], &'static [BigDigit])] = &[ (&[], &[], &[]), (&[], &[ 1], &[ 1]), (&[ 1], &[ 1], &[ 2]), (&[ 1], &[ 1, 1], &[ 2, 1]), (&[ 1], &[N1], &[ 0, 1]), (&[ 1], &[N1, N1], &[ 0, 0, 1]), (&[N1, N1], &[N1, N1], &[N2, N1, 1]), (&[ 1, 1, 1], &[N1, N1], &[ 0, 1, 2]), (&[ 2, 2, 1], &[N1, N2], &[ 1, 1, 2]) ]; #[test] fn test_add() { for elm in SUM_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigUint::from_slice(a_vec); let b = BigUint::from_slice(b_vec); let c = BigUint::from_slice(c_vec); assert_op!(a + b == c); assert_op!(b + a == c); } } #[test] fn test_sub() { for elm in SUM_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigUint::from_slice(a_vec); let b = BigUint::from_slice(b_vec); let c = BigUint::from_slice(c_vec); assert_op!(c - a == b); assert_op!(c - b == a); } } #[test] #[should_panic] fn test_sub_fail_on_underflow() { let (a, b) : (BigUint, BigUint) = (Zero::zero(), One::one()); a - b; } const M: u32 = ::std::u32::MAX; const MUL_TRIPLES: &'static [(&'static [BigDigit], &'static [BigDigit], &'static [BigDigit])] = &[ (&[], &[], &[]), (&[], &[ 1], &[]), (&[ 2], &[], &[]), (&[ 1], &[ 1], &[1]), (&[ 2], &[ 3], &[ 6]), (&[ 1], &[ 1, 1, 1], &[1, 1, 1]), (&[ 1, 2, 3], &[ 3], &[ 3, 6, 9]), (&[ 1, 1, 1], &[N1], &[N1, N1, N1]), (&[ 1, 2, 3], &[N1], &[N1, N2, N2, 2]), (&[ 1, 2, 3, 4], &[N1], &[N1, N2, N2, N2, 3]), (&[N1], &[N1], &[ 1, N2]), (&[N1, N1], &[N1], &[ 1, N1, N2]), (&[N1, N1, N1], &[N1], &[ 1, N1, N1, N2]), (&[N1, N1, N1, N1], &[N1], &[ 1, N1, N1, N1, N2]), (&[ M/2 + 1], &[ 2], &[ 0, 1]), (&[0, M/2 + 1], &[ 2], &[ 0, 0, 1]), (&[ 1, 2], &[ 1, 2, 3], &[1, 4, 7, 6]), (&[N1, N1], &[N1, N1, N1], &[1, 0, N1, N2, N1]), (&[N1, N1, N1], &[N1, N1, N1, N1], &[1, 0, 0, N1, N2, N1, N1]), (&[ 0, 0, 1], &[ 1, 2, 3], &[0, 0, 1, 2, 3]), (&[ 0, 0, 1], &[ 0, 0, 0, 1], &[0, 0, 0, 0, 0, 1]) ]; const DIV_REM_QUADRUPLES: &'static [(&'static [BigDigit], &'static [BigDigit], &'static [BigDigit], &'static [BigDigit])] = &[ (&[ 1], &[ 2], &[], &[1]), (&[ 1, 1], &[ 2], &[ M/2+1], &[1]), (&[ 1, 1, 1], &[ 2], &[ M/2+1, M/2+1], &[1]), (&[ 0, 1], &[N1], &[1], &[1]), (&[N1, N1], &[N2], &[2, 1], &[3]) ]; #[test] fn test_mul() { for elm in MUL_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigUint::from_slice(a_vec); let b = BigUint::from_slice(b_vec); let c = BigUint::from_slice(c_vec); assert_op!(a * b == c); assert_op!(b * a == c); } for elm in DIV_REM_QUADRUPLES.iter() { let (a_vec, b_vec, c_vec, d_vec) = *elm; let a = BigUint::from_slice(a_vec); let b = BigUint::from_slice(b_vec); let c = BigUint::from_slice(c_vec); let d = BigUint::from_slice(d_vec); assert!(a == &b * &c + &d); assert!(a == &c * &b + &d); } } #[test] fn test_div_rem() { for elm in MUL_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigUint::from_slice(a_vec); let b = BigUint::from_slice(b_vec); let c = BigUint::from_slice(c_vec); if !a.is_zero() { assert_op!(c / a == b); assert_op!(c % a == Zero::zero()); assert_eq!(c.div_rem(&a), (b.clone(), Zero::zero())); } if !b.is_zero() { assert_op!(c / b == a); assert_op!(c % b == Zero::zero()); assert_eq!(c.div_rem(&b), (a.clone(), Zero::zero())); } } for elm in DIV_REM_QUADRUPLES.iter() { let (a_vec, b_vec, c_vec, d_vec) = *elm; let a = BigUint::from_slice(a_vec); let b = BigUint::from_slice(b_vec); let c = BigUint::from_slice(c_vec); let d = BigUint::from_slice(d_vec); if !b.is_zero() { assert_op!(a / b == c); assert_op!(a % b == d); assert!(a.div_rem(&b) == (c, d)); } } } #[test] fn test_checked_add() { for elm in SUM_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigUint::from_slice(a_vec); let b = BigUint::from_slice(b_vec); let c = BigUint::from_slice(c_vec); assert!(a.checked_add(&b).unwrap() == c); assert!(b.checked_add(&a).unwrap() == c); } } #[test] fn test_checked_sub() { for elm in SUM_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigUint::from_slice(a_vec); let b = BigUint::from_slice(b_vec); let c = BigUint::from_slice(c_vec); assert!(c.checked_sub(&a).unwrap() == b); assert!(c.checked_sub(&b).unwrap() == a); if a > c { assert!(a.checked_sub(&c).is_none()); } if b > c { assert!(b.checked_sub(&c).is_none()); } } } #[test] fn test_checked_mul() { for elm in MUL_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigUint::from_slice(a_vec); let b = BigUint::from_slice(b_vec); let c = BigUint::from_slice(c_vec); assert!(a.checked_mul(&b).unwrap() == c); assert!(b.checked_mul(&a).unwrap() == c); } for elm in DIV_REM_QUADRUPLES.iter() { let (a_vec, b_vec, c_vec, d_vec) = *elm; let a = BigUint::from_slice(a_vec); let b = BigUint::from_slice(b_vec); let c = BigUint::from_slice(c_vec); let d = BigUint::from_slice(d_vec); assert!(a == b.checked_mul(&c).unwrap() + &d); assert!(a == c.checked_mul(&b).unwrap() + &d); } } #[test] fn test_checked_div() { for elm in MUL_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigUint::from_slice(a_vec); let b = BigUint::from_slice(b_vec); let c = BigUint::from_slice(c_vec); if !a.is_zero() { assert!(c.checked_div(&a).unwrap() == b); } if !b.is_zero() { assert!(c.checked_div(&b).unwrap() == a); } assert!(c.checked_div(&Zero::zero()).is_none()); } } #[test] fn test_gcd() { fn check(a: usize, b: usize, c: usize) { let big_a: BigUint = FromPrimitive::from_usize(a).unwrap(); let big_b: BigUint = FromPrimitive::from_usize(b).unwrap(); let big_c: BigUint = FromPrimitive::from_usize(c).unwrap(); assert_eq!(big_a.gcd(&big_b), big_c); } check(10, 2, 2); check(10, 3, 1); check(0, 3, 3); check(3, 3, 3); check(56, 42, 14); } #[test] fn test_lcm() { fn check(a: usize, b: usize, c: usize) { let big_a: BigUint = FromPrimitive::from_usize(a).unwrap(); let big_b: BigUint = FromPrimitive::from_usize(b).unwrap(); let big_c: BigUint = FromPrimitive::from_usize(c).unwrap(); assert_eq!(big_a.lcm(&big_b), big_c); } check(1, 0, 0); check(0, 1, 0); check(1, 1, 1); check(8, 9, 72); check(11, 5, 55); check(99, 17, 1683); } #[test] fn test_is_even() { let one: BigUint = FromStr::from_str("1").unwrap(); let two: BigUint = FromStr::from_str("2").unwrap(); let thousand: BigUint = FromStr::from_str("1000").unwrap(); let big: BigUint = FromStr::from_str("1000000000000000000000").unwrap(); let bigger: BigUint = FromStr::from_str("1000000000000000000001").unwrap(); assert!(one.is_odd()); assert!(two.is_even()); assert!(thousand.is_even()); assert!(big.is_even()); assert!(bigger.is_odd()); assert!((&one << 64).is_even()); assert!(((&one << 64) + one).is_odd()); } fn to_str_pairs() -> Vec<(BigUint, Vec<(u32, String)>)> { let bits = big_digit::BITS; vec!(( Zero::zero(), vec!( (2, "0".to_string()), (3, "0".to_string()) )), ( BigUint::from_slice(&[ 0xff ]), vec!( (2, "11111111".to_string()), (3, "100110".to_string()), (4, "3333".to_string()), (5, "2010".to_string()), (6, "1103".to_string()), (7, "513".to_string()), (8, "377".to_string()), (9, "313".to_string()), (10, "255".to_string()), (11, "212".to_string()), (12, "193".to_string()), (13, "168".to_string()), (14, "143".to_string()), (15, "120".to_string()), (16, "ff".to_string()) )), ( BigUint::from_slice(&[ 0xfff ]), vec!( (2, "111111111111".to_string()), (4, "333333".to_string()), (16, "fff".to_string()) )), ( BigUint::from_slice(&[ 1, 2 ]), vec!( (2, format!("10{}1", repeat("0").take(bits - 1).collect::())), (4, format!("2{}1", repeat("0").take(bits / 2 - 1).collect::())), (10, match bits { 32 => "8589934593".to_string(), 16 => "131073".to_string(), _ => panic!() }), (16, format!("2{}1", repeat("0").take(bits / 4 - 1).collect::())) )), ( BigUint::from_slice(&[ 1, 2, 3 ]), vec!( (2, format!("11{}10{}1", repeat("0").take(bits - 2).collect::(), repeat("0").take(bits - 1).collect::())), (4, format!("3{}2{}1", repeat("0").take(bits / 2 - 1).collect::(), repeat("0").take(bits / 2 - 1).collect::())), (8, match bits { 32 => "6000000000100000000001".to_string(), 16 => "140000400001".to_string(), _ => panic!() }), (10, match bits { 32 => "55340232229718589441".to_string(), 16 => "12885032961".to_string(), _ => panic!() }), (16, format!("3{}2{}1", repeat("0").take(bits / 4 - 1).collect::(), repeat("0").take(bits / 4 - 1).collect::())) )) ) } #[test] fn test_to_str_radix() { let r = to_str_pairs(); for num_pair in r.iter() { let &(ref n, ref rs) = num_pair; for str_pair in rs.iter() { let &(ref radix, ref str) = str_pair; assert_eq!(n.to_str_radix(*radix), *str); } } } #[test] fn test_from_str_radix() { let r = to_str_pairs(); for num_pair in r.iter() { let &(ref n, ref rs) = num_pair; for str_pair in rs.iter() { let &(ref radix, ref str) = str_pair; assert_eq!(n, &BigUint::from_str_radix(str, *radix).unwrap()); } } let zed = BigUint::from_str_radix("Z", 10).ok(); assert_eq!(zed, None); let blank = BigUint::from_str_radix("_", 2).ok(); assert_eq!(blank, None); let minus_one = BigUint::from_str_radix("-1", 10).ok(); assert_eq!(minus_one, None); } #[test] fn test_all_str_radix() { let n = BigUint::new((0..10).collect()); for radix in 2..37 { let s = n.to_str_radix(radix); let x = BigUint::from_str_radix(&s, radix); assert_eq!(x.unwrap(), n); } } #[test] fn test_factor() { fn factor(n: usize) -> BigUint { let mut f: BigUint = One::one(); for i in 2..n + 1 { // FIXME(#5992): assignment operator overloads // f *= FromPrimitive::from_usize(i); let bu: BigUint = FromPrimitive::from_usize(i).unwrap(); f = f * bu; } return f; } fn check(n: usize, s: &str) { let n = factor(n); let ans = match BigUint::from_str_radix(s, 10) { Ok(x) => x, Err(_) => panic!() }; assert_eq!(n, ans); } check(3, "6"); check(10, "3628800"); check(20, "2432902008176640000"); check(30, "265252859812191058636308480000000"); } #[test] fn test_bits() { assert_eq!(BigUint::new(vec!(0,0,0,0)).bits(), 0); let n: BigUint = FromPrimitive::from_usize(0).unwrap(); assert_eq!(n.bits(), 0); let n: BigUint = FromPrimitive::from_usize(1).unwrap(); assert_eq!(n.bits(), 1); let n: BigUint = FromPrimitive::from_usize(3).unwrap(); assert_eq!(n.bits(), 2); let n: BigUint = BigUint::from_str_radix("4000000000", 16).unwrap(); assert_eq!(n.bits(), 39); let one: BigUint = One::one(); assert_eq!((one << 426).bits(), 427); } #[test] fn test_rand() { let mut rng = thread_rng(); let _n: BigUint = rng.gen_biguint(137); assert!(rng.gen_biguint(0).is_zero()); } #[test] fn test_rand_range() { let mut rng = thread_rng(); for _ in 0..10 { assert_eq!(rng.gen_bigint_range(&FromPrimitive::from_usize(236).unwrap(), &FromPrimitive::from_usize(237).unwrap()), FromPrimitive::from_usize(236).unwrap()); } let l = FromPrimitive::from_usize(403469000 + 2352).unwrap(); let u = FromPrimitive::from_usize(403469000 + 3513).unwrap(); for _ in 0..1000 { let n: BigUint = rng.gen_biguint_below(&u); assert!(n < u); let n: BigUint = rng.gen_biguint_range(&l, &u); assert!(n >= l); assert!(n < u); } } #[test] #[should_panic] fn test_zero_rand_range() { thread_rng().gen_biguint_range(&FromPrimitive::from_usize(54).unwrap(), &FromPrimitive::from_usize(54).unwrap()); } #[test] #[should_panic] fn test_negative_rand_range() { let mut rng = thread_rng(); let l = FromPrimitive::from_usize(2352).unwrap(); let u = FromPrimitive::from_usize(3513).unwrap(); // Switching u and l should fail: let _n: BigUint = rng.gen_biguint_range(&u, &l); } #[test] fn test_sub_sign() { use super::sub_sign; let a = BigInt::from_str_radix("265252859812191058636308480000000", 10).unwrap(); let b = BigInt::from_str_radix("26525285981219105863630848000000", 10).unwrap(); assert_eq!(sub_sign(&a.data.data[..], &b.data.data[..]), &a - &b); assert_eq!(sub_sign(&b.data.data[..], &a.data.data[..]), &b - &a); } fn test_mul_divide_torture_count(count: usize) { use rand::{SeedableRng, StdRng, Rng}; let bits_max = 1 << 12; let seed: &[_] = &[1, 2, 3, 4]; let mut rng: StdRng = SeedableRng::from_seed(seed); for _ in 0..count { /* Test with numbers of random sizes: */ let xbits = rng.gen_range(0, bits_max); let ybits = rng.gen_range(0, bits_max); let x = rng.gen_biguint(xbits); let y = rng.gen_biguint(ybits); if x.is_zero() || y.is_zero() { continue; } let prod = &x * &y; assert_eq!(&prod / &x, y); assert_eq!(&prod / &y, x); } } #[test] fn test_mul_divide_torture() { test_mul_divide_torture_count(1000); } #[test] #[ignore] fn test_mul_divide_torture_long() { test_mul_divide_torture_count(1000000); } } #[cfg(test)] mod bigint_tests { use Integer; use super::{BigDigit, BigUint, ToBigUint}; use super::{Sign, BigInt, RandBigInt, ToBigInt, big_digit}; use super::Sign::{Minus, NoSign, Plus}; use std::cmp::Ordering::{Less, Equal, Greater}; use std::{i8, i16, i32, i64, isize}; use std::iter::repeat; use std::{u8, u16, u32, u64, usize}; use std::ops::{Neg}; use rand::thread_rng; use {Zero, One, Signed, ToPrimitive, FromPrimitive, Num}; /// Assert that an op works for all val/ref combinations macro_rules! assert_op { ($left:ident $op:tt $right:ident == $expected:expr) => { assert_eq!((&$left) $op (&$right), $expected); assert_eq!((&$left) $op $right.clone(), $expected); assert_eq!($left.clone() $op (&$right), $expected); assert_eq!($left.clone() $op $right.clone(), $expected); }; } #[test] fn test_from_biguint() { fn check(inp_s: Sign, inp_n: usize, ans_s: Sign, ans_n: usize) { let inp = BigInt::from_biguint(inp_s, FromPrimitive::from_usize(inp_n).unwrap()); let ans = BigInt { sign: ans_s, data: FromPrimitive::from_usize(ans_n).unwrap()}; assert_eq!(inp, ans); } check(Plus, 1, Plus, 1); check(Plus, 0, NoSign, 0); check(Minus, 1, Minus, 1); check(NoSign, 1, NoSign, 0); } #[test] fn test_from_bytes_be() { fn check(s: &str, result: &str) { assert_eq!(BigInt::from_bytes_be(Plus, s.as_bytes()), BigInt::parse_bytes(result.as_bytes(), 10).unwrap()); } check("A", "65"); check("AA", "16705"); check("AB", "16706"); check("Hello world!", "22405534230753963835153736737"); assert_eq!(BigInt::from_bytes_be(Plus, &[]), Zero::zero()); assert_eq!(BigInt::from_bytes_be(Minus, &[]), Zero::zero()); } #[test] fn test_to_bytes_be() { fn check(s: &str, result: &str) { let b = BigInt::parse_bytes(result.as_bytes(), 10).unwrap(); let (sign, v) = b.to_bytes_be(); assert_eq!((Plus, s.as_bytes()), (sign, &*v)); } check("A", "65"); check("AA", "16705"); check("AB", "16706"); check("Hello world!", "22405534230753963835153736737"); let b: BigInt = Zero::zero(); assert_eq!(b.to_bytes_be(), (NoSign, vec![0])); // Test with leading/trailing zero bytes and a full BigDigit of value 0 let b = BigInt::from_str_radix("00010000000000000200", 16).unwrap(); assert_eq!(b.to_bytes_be(), (Plus, vec![1, 0, 0, 0, 0, 0, 0, 2, 0])); } #[test] fn test_from_bytes_le() { fn check(s: &str, result: &str) { assert_eq!(BigInt::from_bytes_le(Plus, s.as_bytes()), BigInt::parse_bytes(result.as_bytes(), 10).unwrap()); } check("A", "65"); check("AA", "16705"); check("BA", "16706"); check("!dlrow olleH", "22405534230753963835153736737"); assert_eq!(BigInt::from_bytes_le(Plus, &[]), Zero::zero()); assert_eq!(BigInt::from_bytes_le(Minus, &[]), Zero::zero()); } #[test] fn test_to_bytes_le() { fn check(s: &str, result: &str) { let b = BigInt::parse_bytes(result.as_bytes(), 10).unwrap(); let (sign, v) = b.to_bytes_le(); assert_eq!((Plus, s.as_bytes()), (sign, &*v)); } check("A", "65"); check("AA", "16705"); check("BA", "16706"); check("!dlrow olleH", "22405534230753963835153736737"); let b: BigInt = Zero::zero(); assert_eq!(b.to_bytes_le(), (NoSign, vec![0])); // Test with leading/trailing zero bytes and a full BigDigit of value 0 let b = BigInt::from_str_radix("00010000000000000200", 16).unwrap(); assert_eq!(b.to_bytes_le(), (Plus, vec![0, 2, 0, 0, 0, 0, 0, 0, 1])); } #[test] fn test_cmp() { let vs: [&[BigDigit]; 4] = [ &[2 as BigDigit], &[1, 1], &[2, 1], &[1, 1, 1] ]; let mut nums = Vec::new(); for s in vs.iter().rev() { nums.push(BigInt::from_slice(Minus, *s)); } nums.push(Zero::zero()); nums.extend(vs.iter().map(|s| BigInt::from_slice(Plus, *s))); for (i, ni) in nums.iter().enumerate() { for (j0, nj) in nums[i..].iter().enumerate() { let j = i + j0; if i == j { assert_eq!(ni.cmp(nj), Equal); assert_eq!(nj.cmp(ni), Equal); assert_eq!(ni, nj); assert!(!(ni != nj)); assert!(ni <= nj); assert!(ni >= nj); assert!(!(ni < nj)); assert!(!(ni > nj)); } else { assert_eq!(ni.cmp(nj), Less); assert_eq!(nj.cmp(ni), Greater); assert!(!(ni == nj)); assert!(ni != nj); assert!(ni <= nj); assert!(!(ni >= nj)); assert!(ni < nj); assert!(!(ni > nj)); assert!(!(nj <= ni)); assert!(nj >= ni); assert!(!(nj < ni)); assert!(nj > ni); } } } } #[test] fn test_hash() { let a = BigInt::new(NoSign, vec!()); let b = BigInt::new(NoSign, vec!(0)); let c = BigInt::new(Plus, vec!(1)); let d = BigInt::new(Plus, vec!(1,0,0,0,0,0)); let e = BigInt::new(Plus, vec!(0,0,0,0,0,1)); let f = BigInt::new(Minus, vec!(1)); assert!(::hash(&a) == ::hash(&b)); assert!(::hash(&b) != ::hash(&c)); assert!(::hash(&c) == ::hash(&d)); assert!(::hash(&d) != ::hash(&e)); assert!(::hash(&c) != ::hash(&f)); } #[test] fn test_convert_i64() { fn check(b1: BigInt, i: i64) { let b2: BigInt = FromPrimitive::from_i64(i).unwrap(); assert!(b1 == b2); assert!(b1.to_i64().unwrap() == i); } check(Zero::zero(), 0); check(One::one(), 1); check(i64::MIN.to_bigint().unwrap(), i64::MIN); check(i64::MAX.to_bigint().unwrap(), i64::MAX); assert_eq!( (i64::MAX as u64 + 1).to_bigint().unwrap().to_i64(), None); assert_eq!( BigInt::from_biguint(Plus, BigUint::new(vec!(1, 2, 3, 4, 5))).to_i64(), None); assert_eq!( BigInt::from_biguint(Minus, BigUint::new(vec!(1,0,0,1<<(big_digit::BITS-1)))).to_i64(), None); assert_eq!( BigInt::from_biguint(Minus, BigUint::new(vec!(1, 2, 3, 4, 5))).to_i64(), None); } #[test] fn test_convert_u64() { fn check(b1: BigInt, u: u64) { let b2: BigInt = FromPrimitive::from_u64(u).unwrap(); assert!(b1 == b2); assert!(b1.to_u64().unwrap() == u); } check(Zero::zero(), 0); check(One::one(), 1); check(u64::MIN.to_bigint().unwrap(), u64::MIN); check(u64::MAX.to_bigint().unwrap(), u64::MAX); assert_eq!( BigInt::from_biguint(Plus, BigUint::new(vec!(1, 2, 3, 4, 5))).to_u64(), None); let max_value: BigUint = FromPrimitive::from_u64(u64::MAX).unwrap(); assert_eq!(BigInt::from_biguint(Minus, max_value).to_u64(), None); assert_eq!(BigInt::from_biguint(Minus, BigUint::new(vec!(1, 2, 3, 4, 5))).to_u64(), None); } #[test] fn test_convert_to_biguint() { fn check(n: BigInt, ans_1: BigUint) { assert_eq!(n.to_biguint().unwrap(), ans_1); assert_eq!(n.to_biguint().unwrap().to_bigint().unwrap(), n); } let zero: BigInt = Zero::zero(); let unsigned_zero: BigUint = Zero::zero(); let positive = BigInt::from_biguint( Plus, BigUint::new(vec!(1,2,3))); let negative = -&positive; check(zero, unsigned_zero); check(positive, BigUint::new(vec!(1,2,3))); assert_eq!(negative.to_biguint(), None); } #[test] fn test_convert_from_uint() { macro_rules! check { ($ty:ident, $max:expr) => { assert_eq!(BigInt::from($ty::zero()), BigInt::zero()); assert_eq!(BigInt::from($ty::one()), BigInt::one()); assert_eq!(BigInt::from($ty::MAX - $ty::one()), $max - BigInt::one()); assert_eq!(BigInt::from($ty::MAX), $max); } } check!(u8, BigInt::from_slice(Plus, &[u8::MAX as BigDigit])); check!(u16, BigInt::from_slice(Plus, &[u16::MAX as BigDigit])); check!(u32, BigInt::from_slice(Plus, &[u32::MAX as BigDigit])); check!(u64, BigInt::from_slice(Plus, &[u32::MAX as BigDigit, u32::MAX as BigDigit])); check!(usize, BigInt::from(usize::MAX as u64)); } #[test] fn test_convert_from_int() { macro_rules! check { ($ty:ident, $min:expr, $max:expr) => { assert_eq!(BigInt::from($ty::MIN), $min); assert_eq!(BigInt::from($ty::MIN + $ty::one()), $min + BigInt::one()); assert_eq!(BigInt::from(-$ty::one()), -BigInt::one()); assert_eq!(BigInt::from($ty::zero()), BigInt::zero()); assert_eq!(BigInt::from($ty::one()), BigInt::one()); assert_eq!(BigInt::from($ty::MAX - $ty::one()), $max - BigInt::one()); assert_eq!(BigInt::from($ty::MAX), $max); } } check!(i8, BigInt::from_slice(Minus, &[1 << 7]), BigInt::from_slice(Plus, &[i8::MAX as BigDigit])); check!(i16, BigInt::from_slice(Minus, &[1 << 15]), BigInt::from_slice(Plus, &[i16::MAX as BigDigit])); check!(i32, BigInt::from_slice(Minus, &[1 << 31]), BigInt::from_slice(Plus, &[i32::MAX as BigDigit])); check!(i64, BigInt::from_slice(Minus, &[0, 1 << 31]), BigInt::from_slice(Plus, &[u32::MAX as BigDigit, i32::MAX as BigDigit])); check!(isize, BigInt::from(isize::MIN as i64), BigInt::from(isize::MAX as i64)); } #[test] fn test_convert_from_biguint() { assert_eq!(BigInt::from(BigUint::zero()), BigInt::zero()); assert_eq!(BigInt::from(BigUint::one()), BigInt::one()); assert_eq!(BigInt::from(BigUint::from_slice(&[1, 2, 3])), BigInt::from_slice(Plus, &[1, 2, 3])); } const N1: BigDigit = -1i32 as BigDigit; const N2: BigDigit = -2i32 as BigDigit; const SUM_TRIPLES: &'static [(&'static [BigDigit], &'static [BigDigit], &'static [BigDigit])] = &[ (&[], &[], &[]), (&[], &[ 1], &[ 1]), (&[ 1], &[ 1], &[ 2]), (&[ 1], &[ 1, 1], &[ 2, 1]), (&[ 1], &[N1], &[ 0, 1]), (&[ 1], &[N1, N1], &[ 0, 0, 1]), (&[N1, N1], &[N1, N1], &[N2, N1, 1]), (&[ 1, 1, 1], &[N1, N1], &[ 0, 1, 2]), (&[ 2, 2, 1], &[N1, N2], &[ 1, 1, 2]) ]; #[test] fn test_add() { for elm in SUM_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigInt::from_slice(Plus, a_vec); let b = BigInt::from_slice(Plus, b_vec); let c = BigInt::from_slice(Plus, c_vec); let (na, nb, nc) = (-&a, -&b, -&c); assert_op!(a + b == c); assert_op!(b + a == c); assert_op!(c + na == b); assert_op!(c + nb == a); assert_op!(a + nc == nb); assert_op!(b + nc == na); assert_op!(na + nb == nc); assert_op!(a + na == Zero::zero()); } } #[test] fn test_sub() { for elm in SUM_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigInt::from_slice(Plus, a_vec); let b = BigInt::from_slice(Plus, b_vec); let c = BigInt::from_slice(Plus, c_vec); let (na, nb, nc) = (-&a, -&b, -&c); assert_op!(c - a == b); assert_op!(c - b == a); assert_op!(nb - a == nc); assert_op!(na - b == nc); assert_op!(b - na == c); assert_op!(a - nb == c); assert_op!(nc - na == nb); assert_op!(a - a == Zero::zero()); } } const M: u32 = ::std::u32::MAX; static MUL_TRIPLES: &'static [(&'static [BigDigit], &'static [BigDigit], &'static [BigDigit])] = &[ (&[], &[], &[]), (&[], &[ 1], &[]), (&[ 2], &[], &[]), (&[ 1], &[ 1], &[1]), (&[ 2], &[ 3], &[ 6]), (&[ 1], &[ 1, 1, 1], &[1, 1, 1]), (&[ 1, 2, 3], &[ 3], &[ 3, 6, 9]), (&[ 1, 1, 1], &[N1], &[N1, N1, N1]), (&[ 1, 2, 3], &[N1], &[N1, N2, N2, 2]), (&[ 1, 2, 3, 4], &[N1], &[N1, N2, N2, N2, 3]), (&[N1], &[N1], &[ 1, N2]), (&[N1, N1], &[N1], &[ 1, N1, N2]), (&[N1, N1, N1], &[N1], &[ 1, N1, N1, N2]), (&[N1, N1, N1, N1], &[N1], &[ 1, N1, N1, N1, N2]), (&[ M/2 + 1], &[ 2], &[ 0, 1]), (&[0, M/2 + 1], &[ 2], &[ 0, 0, 1]), (&[ 1, 2], &[ 1, 2, 3], &[1, 4, 7, 6]), (&[N1, N1], &[N1, N1, N1], &[1, 0, N1, N2, N1]), (&[N1, N1, N1], &[N1, N1, N1, N1], &[1, 0, 0, N1, N2, N1, N1]), (&[ 0, 0, 1], &[ 1, 2, 3], &[0, 0, 1, 2, 3]), (&[ 0, 0, 1], &[ 0, 0, 0, 1], &[0, 0, 0, 0, 0, 1]) ]; static DIV_REM_QUADRUPLES: &'static [(&'static [BigDigit], &'static [BigDigit], &'static [BigDigit], &'static [BigDigit])] = &[ (&[ 1], &[ 2], &[], &[1]), (&[ 1, 1], &[ 2], &[ M/2+1], &[1]), (&[ 1, 1, 1], &[ 2], &[ M/2+1, M/2+1], &[1]), (&[ 0, 1], &[N1], &[1], &[1]), (&[N1, N1], &[N2], &[2, 1], &[3]) ]; #[test] fn test_mul() { for elm in MUL_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigInt::from_slice(Plus, a_vec); let b = BigInt::from_slice(Plus, b_vec); let c = BigInt::from_slice(Plus, c_vec); let (na, nb, nc) = (-&a, -&b, -&c); assert_op!(a * b == c); assert_op!(b * a == c); assert_op!(na * nb == c); assert_op!(na * b == nc); assert_op!(nb * a == nc); } for elm in DIV_REM_QUADRUPLES.iter() { let (a_vec, b_vec, c_vec, d_vec) = *elm; let a = BigInt::from_slice(Plus, a_vec); let b = BigInt::from_slice(Plus, b_vec); let c = BigInt::from_slice(Plus, c_vec); let d = BigInt::from_slice(Plus, d_vec); assert!(a == &b * &c + &d); assert!(a == &c * &b + &d); } } #[test] fn test_div_mod_floor() { fn check_sub(a: &BigInt, b: &BigInt, ans_d: &BigInt, ans_m: &BigInt) { let (d, m) = a.div_mod_floor(b); if !m.is_zero() { assert_eq!(m.sign, b.sign); } assert!(m.abs() <= b.abs()); assert!(*a == b * &d + &m); assert!(d == *ans_d); assert!(m == *ans_m); } fn check(a: &BigInt, b: &BigInt, d: &BigInt, m: &BigInt) { if m.is_zero() { check_sub(a, b, d, m); check_sub(a, &b.neg(), &d.neg(), m); check_sub(&a.neg(), b, &d.neg(), m); check_sub(&a.neg(), &b.neg(), d, m); } else { let one: BigInt = One::one(); check_sub(a, b, d, m); check_sub(a, &b.neg(), &(d.neg() - &one), &(m - b)); check_sub(&a.neg(), b, &(d.neg() - &one), &(b - m)); check_sub(&a.neg(), &b.neg(), d, &m.neg()); } } for elm in MUL_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigInt::from_slice(Plus, a_vec); let b = BigInt::from_slice(Plus, b_vec); let c = BigInt::from_slice(Plus, c_vec); if !a.is_zero() { check(&c, &a, &b, &Zero::zero()); } if !b.is_zero() { check(&c, &b, &a, &Zero::zero()); } } for elm in DIV_REM_QUADRUPLES.iter() { let (a_vec, b_vec, c_vec, d_vec) = *elm; let a = BigInt::from_slice(Plus, a_vec); let b = BigInt::from_slice(Plus, b_vec); let c = BigInt::from_slice(Plus, c_vec); let d = BigInt::from_slice(Plus, d_vec); if !b.is_zero() { check(&a, &b, &c, &d); } } } #[test] fn test_div_rem() { fn check_sub(a: &BigInt, b: &BigInt, ans_q: &BigInt, ans_r: &BigInt) { let (q, r) = a.div_rem(b); if !r.is_zero() { assert_eq!(r.sign, a.sign); } assert!(r.abs() <= b.abs()); assert!(*a == b * &q + &r); assert!(q == *ans_q); assert!(r == *ans_r); let (a, b, ans_q, ans_r) = (a.clone(), b.clone(), ans_q.clone(), ans_r.clone()); assert_op!(a / b == ans_q); assert_op!(a % b == ans_r); } fn check(a: &BigInt, b: &BigInt, q: &BigInt, r: &BigInt) { check_sub(a, b, q, r); check_sub(a, &b.neg(), &q.neg(), r); check_sub(&a.neg(), b, &q.neg(), &r.neg()); check_sub(&a.neg(), &b.neg(), q, &r.neg()); } for elm in MUL_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigInt::from_slice(Plus, a_vec); let b = BigInt::from_slice(Plus, b_vec); let c = BigInt::from_slice(Plus, c_vec); if !a.is_zero() { check(&c, &a, &b, &Zero::zero()); } if !b.is_zero() { check(&c, &b, &a, &Zero::zero()); } } for elm in DIV_REM_QUADRUPLES.iter() { let (a_vec, b_vec, c_vec, d_vec) = *elm; let a = BigInt::from_slice(Plus, a_vec); let b = BigInt::from_slice(Plus, b_vec); let c = BigInt::from_slice(Plus, c_vec); let d = BigInt::from_slice(Plus, d_vec); if !b.is_zero() { check(&a, &b, &c, &d); } } } #[test] fn test_checked_add() { for elm in SUM_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigInt::from_slice(Plus, a_vec); let b = BigInt::from_slice(Plus, b_vec); let c = BigInt::from_slice(Plus, c_vec); assert!(a.checked_add(&b).unwrap() == c); assert!(b.checked_add(&a).unwrap() == c); assert!(c.checked_add(&(-&a)).unwrap() == b); assert!(c.checked_add(&(-&b)).unwrap() == a); assert!(a.checked_add(&(-&c)).unwrap() == (-&b)); assert!(b.checked_add(&(-&c)).unwrap() == (-&a)); assert!((-&a).checked_add(&(-&b)).unwrap() == (-&c)); assert!(a.checked_add(&(-&a)).unwrap() == Zero::zero()); } } #[test] fn test_checked_sub() { for elm in SUM_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigInt::from_slice(Plus, a_vec); let b = BigInt::from_slice(Plus, b_vec); let c = BigInt::from_slice(Plus, c_vec); assert!(c.checked_sub(&a).unwrap() == b); assert!(c.checked_sub(&b).unwrap() == a); assert!((-&b).checked_sub(&a).unwrap() == (-&c)); assert!((-&a).checked_sub(&b).unwrap() == (-&c)); assert!(b.checked_sub(&(-&a)).unwrap() == c); assert!(a.checked_sub(&(-&b)).unwrap() == c); assert!((-&c).checked_sub(&(-&a)).unwrap() == (-&b)); assert!(a.checked_sub(&a).unwrap() == Zero::zero()); } } #[test] fn test_checked_mul() { for elm in MUL_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigInt::from_slice(Plus, a_vec); let b = BigInt::from_slice(Plus, b_vec); let c = BigInt::from_slice(Plus, c_vec); assert!(a.checked_mul(&b).unwrap() == c); assert!(b.checked_mul(&a).unwrap() == c); assert!((-&a).checked_mul(&b).unwrap() == -&c); assert!((-&b).checked_mul(&a).unwrap() == -&c); } for elm in DIV_REM_QUADRUPLES.iter() { let (a_vec, b_vec, c_vec, d_vec) = *elm; let a = BigInt::from_slice(Plus, a_vec); let b = BigInt::from_slice(Plus, b_vec); let c = BigInt::from_slice(Plus, c_vec); let d = BigInt::from_slice(Plus, d_vec); assert!(a == b.checked_mul(&c).unwrap() + &d); assert!(a == c.checked_mul(&b).unwrap() + &d); } } #[test] fn test_checked_div() { for elm in MUL_TRIPLES.iter() { let (a_vec, b_vec, c_vec) = *elm; let a = BigInt::from_slice(Plus, a_vec); let b = BigInt::from_slice(Plus, b_vec); let c = BigInt::from_slice(Plus, c_vec); if !a.is_zero() { assert!(c.checked_div(&a).unwrap() == b); assert!((-&c).checked_div(&(-&a)).unwrap() == b); assert!((-&c).checked_div(&a).unwrap() == -&b); } if !b.is_zero() { assert!(c.checked_div(&b).unwrap() == a); assert!((-&c).checked_div(&(-&b)).unwrap() == a); assert!((-&c).checked_div(&b).unwrap() == -&a); } assert!(c.checked_div(&Zero::zero()).is_none()); assert!((-&c).checked_div(&Zero::zero()).is_none()); } } #[test] fn test_gcd() { fn check(a: isize, b: isize, c: isize) { let big_a: BigInt = FromPrimitive::from_isize(a).unwrap(); let big_b: BigInt = FromPrimitive::from_isize(b).unwrap(); let big_c: BigInt = FromPrimitive::from_isize(c).unwrap(); assert_eq!(big_a.gcd(&big_b), big_c); } check(10, 2, 2); check(10, 3, 1); check(0, 3, 3); check(3, 3, 3); check(56, 42, 14); check(3, -3, 3); check(-6, 3, 3); check(-4, -2, 2); } #[test] fn test_lcm() { fn check(a: isize, b: isize, c: isize) { let big_a: BigInt = FromPrimitive::from_isize(a).unwrap(); let big_b: BigInt = FromPrimitive::from_isize(b).unwrap(); let big_c: BigInt = FromPrimitive::from_isize(c).unwrap(); assert_eq!(big_a.lcm(&big_b), big_c); } check(1, 0, 0); check(0, 1, 0); check(1, 1, 1); check(-1, 1, 1); check(1, -1, 1); check(-1, -1, 1); check(8, 9, 72); check(11, 5, 55); } #[test] fn test_abs_sub() { let zero: BigInt = Zero::zero(); let one: BigInt = One::one(); assert_eq!((-&one).abs_sub(&one), zero); let one: BigInt = One::one(); let zero: BigInt = Zero::zero(); assert_eq!(one.abs_sub(&one), zero); let one: BigInt = One::one(); let zero: BigInt = Zero::zero(); assert_eq!(one.abs_sub(&zero), one); let one: BigInt = One::one(); let two: BigInt = FromPrimitive::from_isize(2).unwrap(); assert_eq!(one.abs_sub(&-&one), two); } #[test] fn test_from_str_radix() { fn check(s: &str, ans: Option) { let ans = ans.map(|n| { let x: BigInt = FromPrimitive::from_isize(n).unwrap(); x }); assert_eq!(BigInt::from_str_radix(s, 10).ok(), ans); } check("10", Some(10)); check("1", Some(1)); check("0", Some(0)); check("-1", Some(-1)); check("-10", Some(-10)); check("Z", None); check("_", None); // issue 10522, this hit an edge case that caused it to // attempt to allocate a vector of size (-1u) == huge. let x: BigInt = format!("1{}", repeat("0").take(36).collect::()).parse().unwrap(); let _y = x.to_string(); } #[test] fn test_neg() { assert!(-BigInt::new(Plus, vec!(1, 1, 1)) == BigInt::new(Minus, vec!(1, 1, 1))); assert!(-BigInt::new(Minus, vec!(1, 1, 1)) == BigInt::new(Plus, vec!(1, 1, 1))); let zero: BigInt = Zero::zero(); assert_eq!(-&zero, zero); } #[test] fn test_rand() { let mut rng = thread_rng(); let _n: BigInt = rng.gen_bigint(137); assert!(rng.gen_bigint(0).is_zero()); } #[test] fn test_rand_range() { let mut rng = thread_rng(); for _ in 0..10 { assert_eq!(rng.gen_bigint_range(&FromPrimitive::from_usize(236).unwrap(), &FromPrimitive::from_usize(237).unwrap()), FromPrimitive::from_usize(236).unwrap()); } fn check(l: BigInt, u: BigInt) { let mut rng = thread_rng(); for _ in 0..1000 { let n: BigInt = rng.gen_bigint_range(&l, &u); assert!(n >= l); assert!(n < u); } } let l: BigInt = FromPrimitive::from_usize(403469000 + 2352).unwrap(); let u: BigInt = FromPrimitive::from_usize(403469000 + 3513).unwrap(); check( l.clone(), u.clone()); check(-l.clone(), u.clone()); check(-u.clone(), -l.clone()); } #[test] #[should_panic] fn test_zero_rand_range() { thread_rng().gen_bigint_range(&FromPrimitive::from_isize(54).unwrap(), &FromPrimitive::from_isize(54).unwrap()); } #[test] #[should_panic] fn test_negative_rand_range() { let mut rng = thread_rng(); let l = FromPrimitive::from_usize(2352).unwrap(); let u = FromPrimitive::from_usize(3513).unwrap(); // Switching u and l should fail: let _n: BigInt = rng.gen_bigint_range(&u, &l); } }