// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! External iterators for generic mathematics use {Integer, Zero, One, CheckedAdd}; use std::num::Int; /// An iterator over the range [start, stop) #[deriving(Clone)] pub struct Range { state: A, stop: A, one: A } /// Returns an iterator over the given range [start, stop) (that is, starting /// at start (inclusive), and ending at stop (exclusive)). /// /// # Example /// /// ```rust /// let array = [0, 1, 2, 3, 4]; /// /// for i in range(0, 5u) { /// println!("{}", i); /// assert_eq!(i, array[i]); /// } /// ``` #[inline] pub fn range + PartialOrd + Clone + One>(start: A, stop: A) -> Range { Range{state: start, stop: stop, one: One::one()} } // FIXME: rust-lang/rust#10414: Unfortunate type bound impl + PartialOrd + Clone + ToPrimitive> Iterator for Range { #[inline] fn next(&mut self) -> Option { if self.state < self.stop { let result = self.state.clone(); self.state = self.state.clone() + self.one.clone(); Some(result) } else { None } } #[inline] fn size_hint(&self) -> (uint, Option) { // This first checks if the elements are representable as i64. If they aren't, try u64 (to // handle cases like range(huge, huger)). We don't use uint/int because the difference of // the i64/u64 might lie within their range. let bound = match self.state.to_i64() { Some(a) => { let sz = self.stop.to_i64().map(|b| b.checked_sub(a)); match sz { Some(Some(bound)) => bound.to_uint(), _ => None, } }, None => match self.state.to_u64() { Some(a) => { let sz = self.stop.to_u64().map(|b| b.checked_sub(a)); match sz { Some(Some(bound)) => bound.to_uint(), _ => None } }, None => None } }; match bound { Some(b) => (b, Some(b)), // Standard fallback for unbounded/unrepresentable bounds None => (0, None) } } } /// `Integer` is required to ensure the range will be the same regardless of /// the direction it is consumed. impl DoubleEndedIterator for Range { #[inline] fn next_back(&mut self) -> Option { if self.stop > self.state { self.stop = self.stop.clone() - self.one.clone(); Some(self.stop.clone()) } else { None } } } /// An iterator over the range [start, stop] #[deriving(Clone)] pub struct RangeInclusive { range: Range, done: bool, } /// Return an iterator over the range [start, stop] #[inline] pub fn range_inclusive + PartialOrd + Clone + One>(start: A, stop: A) -> RangeInclusive { RangeInclusive{range: range(start, stop), done: false} } impl + PartialOrd + Clone + ToPrimitive> Iterator for RangeInclusive { #[inline] fn next(&mut self) -> Option { match self.range.next() { Some(x) => Some(x), None => { if !self.done && self.range.state == self.range.stop { self.done = true; Some(self.range.stop.clone()) } else { None } } } } #[inline] fn size_hint(&self) -> (uint, Option) { let (lo, hi) = self.range.size_hint(); if self.done { (lo, hi) } else { let lo = lo.saturating_add(1); let hi = match hi { Some(x) => x.checked_add(1), None => None }; (lo, hi) } } } impl + Integer + PartialOrd + Clone + ToPrimitive> DoubleEndedIterator for RangeInclusive { #[inline] fn next_back(&mut self) -> Option { if self.range.stop > self.range.state { let result = self.range.stop.clone(); self.range.stop = self.range.stop.clone() - self.range.one.clone(); Some(result) } else if !self.done && self.range.state == self.range.stop { self.done = true; Some(self.range.stop.clone()) } else { None } } } /// An iterator over the range [start, stop) by `step`. It handles overflow by stopping. #[deriving(Clone)] pub struct RangeStep { state: A, stop: A, step: A, rev: bool, } /// Return an iterator over the range [start, stop) by `step`. It handles overflow by stopping. #[inline] pub fn range_step(start: A, stop: A, step: A) -> RangeStep { let rev = step < Zero::zero(); RangeStep{state: start, stop: stop, step: step, rev: rev} } impl Iterator for RangeStep { #[inline] fn next(&mut self) -> Option { if (self.rev && self.state > self.stop) || (!self.rev && self.state < self.stop) { let result = self.state.clone(); match self.state.checked_add(&self.step) { Some(x) => self.state = x, None => self.state = self.stop.clone() } Some(result) } else { None } } } /// An iterator over the range [start, stop] by `step`. It handles overflow by stopping. #[deriving(Clone)] pub struct RangeStepInclusive { state: A, stop: A, step: A, rev: bool, done: bool, } /// Return an iterator over the range [start, stop] by `step`. It handles overflow by stopping. #[inline] pub fn range_step_inclusive(start: A, stop: A, step: A) -> RangeStepInclusive { let rev = step < Zero::zero(); RangeStepInclusive{state: start, stop: stop, step: step, rev: rev, done: false} } impl Iterator for RangeStepInclusive { #[inline] fn next(&mut self) -> Option { if !self.done && ((self.rev && self.state >= self.stop) || (!self.rev && self.state <= self.stop)) { let result = self.state.clone(); match self.state.checked_add(&self.step) { Some(x) => self.state = x, None => self.done = true } Some(result) } else { None } } } #[cfg(test)] mod tests { use std::uint; use One; #[test] fn test_range() { /// A mock type to check Range when ToPrimitive returns None struct Foo; impl ToPrimitive for Foo { fn to_i64(&self) -> Option { None } fn to_u64(&self) -> Option { None } } impl Add for Foo { fn add(self, _: Foo) -> Foo { Foo } } impl PartialEq for Foo { fn eq(&self, _: &Foo) -> bool { true } } impl PartialOrd for Foo { fn partial_cmp(&self, _: &Foo) -> Option { None } } impl Clone for Foo { fn clone(&self) -> Foo { Foo } } impl Mul for Foo { fn mul(self, _: Foo) -> Foo { Foo } } impl One for Foo { fn one() -> Foo { Foo } } assert!(super::range(0i, 5).collect::>() == vec![0i, 1, 2, 3, 4]); assert!(super::range(-10i, -1).collect::>() == vec![-10, -9, -8, -7, -6, -5, -4, -3, -2]); assert!(super::range(0i, 5).rev().collect::>() == vec![4, 3, 2, 1, 0]); assert_eq!(super::range(200i, -5).count(), 0); assert_eq!(super::range(200i, -5).rev().count(), 0); assert_eq!(super::range(200i, 200).count(), 0); assert_eq!(super::range(200i, 200).rev().count(), 0); assert_eq!(super::range(0i, 100).size_hint(), (100, Some(100))); // this test is only meaningful when sizeof uint < sizeof u64 assert_eq!(super::range(uint::MAX - 1, uint::MAX).size_hint(), (1, Some(1))); assert_eq!(super::range(-10i, -1).size_hint(), (9, Some(9))); assert_eq!(super::range(Foo, Foo).size_hint(), (0, None)); } #[test] fn test_range_inclusive() { assert!(super::range_inclusive(0i, 5).collect::>() == vec![0i, 1, 2, 3, 4, 5]); assert!(super::range_inclusive(0i, 5).rev().collect::>() == vec![5i, 4, 3, 2, 1, 0]); assert_eq!(super::range_inclusive(200i, -5).count(), 0); assert_eq!(super::range_inclusive(200i, -5).rev().count(), 0); assert!(super::range_inclusive(200i, 200).collect::>() == vec![200]); assert!(super::range_inclusive(200i, 200).rev().collect::>() == vec![200]); } #[test] fn test_range_step() { assert!(super::range_step(0i, 20, 5).collect::>() == vec![0, 5, 10, 15]); assert!(super::range_step(20i, 0, -5).collect::>() == vec![20, 15, 10, 5]); assert!(super::range_step(20i, 0, -6).collect::>() == vec![20, 14, 8, 2]); assert!(super::range_step(200u8, 255, 50).collect::>() == vec![200u8, 250]); assert!(super::range_step(200i, -5, 1).collect::>() == vec![]); assert!(super::range_step(200i, 200, 1).collect::>() == vec![]); } #[test] fn test_range_step_inclusive() { assert!(super::range_step_inclusive(0i, 20, 5).collect::>() == vec![0, 5, 10, 15, 20]); assert!(super::range_step_inclusive(20i, 0, -5).collect::>() == vec![20, 15, 10, 5, 0]); assert!(super::range_step_inclusive(20i, 0, -6).collect::>() == vec![20, 14, 8, 2]); assert!(super::range_step_inclusive(200u8, 255, 50).collect::>() == vec![200u8, 250]); assert!(super::range_step_inclusive(200i, -5, 1).collect::>() == vec![]); assert!(super::range_step_inclusive(200i, 200, 1).collect::>() == vec![200]); } }