use core::{i8, i16, i32, i64, isize}; use core::{u8, u16, u32, u64, usize}; use core::{f32, f64}; use core::mem::size_of; use core::num::Wrapping; use float::FloatCore; /// A generic trait for converting a value to a number. pub trait ToPrimitive { /// Converts the value of `self` to an `isize`. #[inline] fn to_isize(&self) -> Option { self.to_i64().and_then(|x| x.to_isize()) } /// Converts the value of `self` to an `i8`. #[inline] fn to_i8(&self) -> Option { self.to_i64().and_then(|x| x.to_i8()) } /// Converts the value of `self` to an `i16`. #[inline] fn to_i16(&self) -> Option { self.to_i64().and_then(|x| x.to_i16()) } /// Converts the value of `self` to an `i32`. #[inline] fn to_i32(&self) -> Option { self.to_i64().and_then(|x| x.to_i32()) } /// Converts the value of `self` to an `i64`. fn to_i64(&self) -> Option; /// Converts the value of `self` to a `usize`. #[inline] fn to_usize(&self) -> Option { self.to_u64().and_then(|x| x.to_usize()) } /// Converts the value of `self` to an `u8`. #[inline] fn to_u8(&self) -> Option { self.to_u64().and_then(|x| x.to_u8()) } /// Converts the value of `self` to an `u16`. #[inline] fn to_u16(&self) -> Option { self.to_u64().and_then(|x| x.to_u16()) } /// Converts the value of `self` to an `u32`. #[inline] fn to_u32(&self) -> Option { self.to_u64().and_then(|x| x.to_u32()) } /// Converts the value of `self` to an `u64`. #[inline] fn to_u64(&self) -> Option; /// Converts the value of `self` to an `f32`. #[inline] fn to_f32(&self) -> Option { self.to_f64().and_then(|x| x.to_f32()) } /// Converts the value of `self` to an `f64`. #[inline] fn to_f64(&self) -> Option { self.to_i64().and_then(|x| x.to_f64()) } } macro_rules! impl_to_primitive_int_to_int { ($SrcT:ident : $( fn $method:ident -> $DstT:ident ; )*) => {$( #[inline] fn $method(&self) -> Option<$DstT> { let min = $DstT::MIN as $SrcT; let max = $DstT::MAX as $SrcT; if size_of::<$SrcT>() <= size_of::<$DstT>() || (min <= *self && *self <= max) { Some(*self as $DstT) } else { None } } )*} } macro_rules! impl_to_primitive_int_to_uint { ($SrcT:ident : $( fn $method:ident -> $DstT:ident ; )*) => {$( #[inline] fn $method(&self) -> Option<$DstT> { let max = $DstT::MAX as u64; if 0 <= *self && (size_of::<$SrcT>() < size_of::<$DstT>() || *self as u64 <= max) { Some(*self as $DstT) } else { None } } )*} } macro_rules! impl_to_primitive_int { ($T:ident) => ( impl ToPrimitive for $T { impl_to_primitive_int_to_int! { $T: fn to_isize -> isize; fn to_i8 -> i8; fn to_i16 -> i16; fn to_i32 -> i32; fn to_i64 -> i64; } impl_to_primitive_int_to_uint! { $T: fn to_usize -> usize; fn to_u8 -> u8; fn to_u16 -> u16; fn to_u32 -> u32; fn to_u64 -> u64; } #[inline] fn to_f32(&self) -> Option { Some(*self as f32) } #[inline] fn to_f64(&self) -> Option { Some(*self as f64) } } ) } impl_to_primitive_int!(isize); impl_to_primitive_int!(i8); impl_to_primitive_int!(i16); impl_to_primitive_int!(i32); impl_to_primitive_int!(i64); macro_rules! impl_to_primitive_uint_to_int { ($SrcT:ident : $( fn $method:ident -> $DstT:ident ; )*) => {$( #[inline] fn $method(&self) -> Option<$DstT> { let max = $DstT::MAX as u64; if size_of::<$SrcT>() < size_of::<$DstT>() || *self as u64 <= max { Some(*self as $DstT) } else { None } } )*} } macro_rules! impl_to_primitive_uint_to_uint { ($SrcT:ident : $( fn $method:ident -> $DstT:ident ; )*) => {$( #[inline] fn $method(&self) -> Option<$DstT> { let max = $DstT::MAX as $SrcT; if size_of::<$SrcT>() <= size_of::<$DstT>() || *self <= max { Some(*self as $DstT) } else { None } } )*} } macro_rules! impl_to_primitive_uint { ($T:ident) => ( impl ToPrimitive for $T { impl_to_primitive_uint_to_int! { $T: fn to_isize -> isize; fn to_i8 -> i8; fn to_i16 -> i16; fn to_i32 -> i32; fn to_i64 -> i64; } impl_to_primitive_uint_to_uint! { $T: fn to_usize -> usize; fn to_u8 -> u8; fn to_u16 -> u16; fn to_u32 -> u32; fn to_u64 -> u64; } #[inline] fn to_f32(&self) -> Option { Some(*self as f32) } #[inline] fn to_f64(&self) -> Option { Some(*self as f64) } } ) } impl_to_primitive_uint!(usize); impl_to_primitive_uint!(u8); impl_to_primitive_uint!(u16); impl_to_primitive_uint!(u32); impl_to_primitive_uint!(u64); macro_rules! impl_to_primitive_float_to_float { ($SrcT:ident : $( fn $method:ident -> $DstT:ident ; )*) => {$( #[inline] fn $method(&self) -> Option<$DstT> { // Only finite values that are reducing size need to worry about overflow. if size_of::<$SrcT>() > size_of::<$DstT>() && FloatCore::is_finite(*self) { let n = *self as f64; if n < $DstT::MIN as f64 || n > $DstT::MAX as f64 { return None; } } // We can safely cast NaN, +-inf, and finite values in range. Some(*self as $DstT) } )*} } macro_rules! impl_to_primitive_float_to_signed_int { ($f:ident : $( fn $method:ident -> $i:ident ; )*) => {$( #[inline] fn $method(&self) -> Option<$i> { // Float as int truncates toward zero, so we want to allow values // in the exclusive range `(MIN-1, MAX+1)`. if size_of::<$f>() > size_of::<$i>() { // With a larger size, we can represent the range exactly. const MIN_M1: $f = $i::MIN as $f - 1.0; const MAX_P1: $f = $i::MAX as $f + 1.0; if *self > MIN_M1 && *self < MAX_P1 { return Some(*self as $i); } } else { // We can't represent `MIN-1` exactly, but there's no fractional part // at this magnitude, so we can just use a `MIN` inclusive boundary. const MIN: $f = $i::MIN as $f; // We can't represent `MAX` exactly, but it will round up to exactly // `MAX+1` (a power of two) when we cast it. const MAX_P1: $f = $i::MAX as $f; if *self >= MIN && *self < MAX_P1 { return Some(*self as $i); } } None } )*} } macro_rules! impl_to_primitive_float_to_unsigned_int { ($f:ident : $( fn $method:ident -> $u:ident ; )*) => {$( #[inline] fn $method(&self) -> Option<$u> { // Float as int truncates toward zero, so we want to allow values // in the exclusive range `(-1, MAX+1)`. if size_of::<$f>() > size_of::<$u>() { // With a larger size, we can represent the range exactly. const MAX_P1: $f = $u::MAX as $f + 1.0; if *self > -1.0 && *self < MAX_P1 { return Some(*self as $u); } } else { // We can't represent `MAX` exactly, but it will round up to exactly // `MAX+1` (a power of two) when we cast it. const MAX_P1: $f = $u::MAX as $f; if *self > -1.0 && *self < MAX_P1 { return Some(*self as $u); } } None } )*} } macro_rules! impl_to_primitive_float { ($T:ident) => ( impl ToPrimitive for $T { impl_to_primitive_float_to_signed_int! { $T: fn to_isize -> isize; fn to_i8 -> i8; fn to_i16 -> i16; fn to_i32 -> i32; fn to_i64 -> i64; } impl_to_primitive_float_to_unsigned_int! { $T: fn to_usize -> usize; fn to_u8 -> u8; fn to_u16 -> u16; fn to_u32 -> u32; fn to_u64 -> u64; } impl_to_primitive_float_to_float! { $T: fn to_f32 -> f32; fn to_f64 -> f64; } } ) } impl_to_primitive_float!(f32); impl_to_primitive_float!(f64); /// A generic trait for converting a number to a value. pub trait FromPrimitive: Sized { /// Convert an `isize` to return an optional value of this type. If the /// value cannot be represented by this value, the `None` is returned. #[inline] fn from_isize(n: isize) -> Option { FromPrimitive::from_i64(n as i64) } /// Convert an `i8` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_i8(n: i8) -> Option { FromPrimitive::from_i64(n as i64) } /// Convert an `i16` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_i16(n: i16) -> Option { FromPrimitive::from_i64(n as i64) } /// Convert an `i32` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_i32(n: i32) -> Option { FromPrimitive::from_i64(n as i64) } /// Convert an `i64` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. fn from_i64(n: i64) -> Option; /// Convert a `usize` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_usize(n: usize) -> Option { FromPrimitive::from_u64(n as u64) } /// Convert an `u8` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_u8(n: u8) -> Option { FromPrimitive::from_u64(n as u64) } /// Convert an `u16` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_u16(n: u16) -> Option { FromPrimitive::from_u64(n as u64) } /// Convert an `u32` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_u32(n: u32) -> Option { FromPrimitive::from_u64(n as u64) } /// Convert an `u64` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. fn from_u64(n: u64) -> Option; /// Convert a `f32` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_f32(n: f32) -> Option { FromPrimitive::from_f64(n as f64) } /// Convert a `f64` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_f64(n: f64) -> Option { FromPrimitive::from_i64(n as i64) } } macro_rules! impl_from_primitive { ($T:ty, $to_ty:ident) => ( #[allow(deprecated)] impl FromPrimitive for $T { #[inline] fn from_i8(n: i8) -> Option<$T> { n.$to_ty() } #[inline] fn from_i16(n: i16) -> Option<$T> { n.$to_ty() } #[inline] fn from_i32(n: i32) -> Option<$T> { n.$to_ty() } #[inline] fn from_i64(n: i64) -> Option<$T> { n.$to_ty() } #[inline] fn from_u8(n: u8) -> Option<$T> { n.$to_ty() } #[inline] fn from_u16(n: u16) -> Option<$T> { n.$to_ty() } #[inline] fn from_u32(n: u32) -> Option<$T> { n.$to_ty() } #[inline] fn from_u64(n: u64) -> Option<$T> { n.$to_ty() } #[inline] fn from_f32(n: f32) -> Option<$T> { n.$to_ty() } #[inline] fn from_f64(n: f64) -> Option<$T> { n.$to_ty() } } ) } impl_from_primitive!(isize, to_isize); impl_from_primitive!(i8, to_i8); impl_from_primitive!(i16, to_i16); impl_from_primitive!(i32, to_i32); impl_from_primitive!(i64, to_i64); impl_from_primitive!(usize, to_usize); impl_from_primitive!(u8, to_u8); impl_from_primitive!(u16, to_u16); impl_from_primitive!(u32, to_u32); impl_from_primitive!(u64, to_u64); impl_from_primitive!(f32, to_f32); impl_from_primitive!(f64, to_f64); impl ToPrimitive for Wrapping { fn to_i64(&self) -> Option { self.0.to_i64() } fn to_u64(&self) -> Option { self.0.to_u64() } } impl FromPrimitive for Wrapping { fn from_u64(n: u64) -> Option { T::from_u64(n).map(Wrapping) } fn from_i64(n: i64) -> Option { T::from_i64(n).map(Wrapping) } } /// Cast from one machine scalar to another. /// /// # Examples /// /// ``` /// # use num_traits as num; /// let twenty: f32 = num::cast(0x14).unwrap(); /// assert_eq!(twenty, 20f32); /// ``` /// #[inline] pub fn cast(n: T) -> Option { NumCast::from(n) } /// An interface for casting between machine scalars. pub trait NumCast: Sized + ToPrimitive { /// Creates a number from another value that can be converted into /// a primitive via the `ToPrimitive` trait. fn from(n: T) -> Option; } macro_rules! impl_num_cast { ($T:ty, $conv:ident) => ( impl NumCast for $T { #[inline] #[allow(deprecated)] fn from(n: N) -> Option<$T> { // `$conv` could be generated using `concat_idents!`, but that // macro seems to be broken at the moment n.$conv() } } ) } impl_num_cast!(u8, to_u8); impl_num_cast!(u16, to_u16); impl_num_cast!(u32, to_u32); impl_num_cast!(u64, to_u64); impl_num_cast!(usize, to_usize); impl_num_cast!(i8, to_i8); impl_num_cast!(i16, to_i16); impl_num_cast!(i32, to_i32); impl_num_cast!(i64, to_i64); impl_num_cast!(isize, to_isize); impl_num_cast!(f32, to_f32); impl_num_cast!(f64, to_f64); impl NumCast for Wrapping { fn from(n: U) -> Option { T::from(n).map(Wrapping) } } /// A generic interface for casting between machine scalars with the /// `as` operator, which admits narrowing and precision loss. /// Implementers of this trait AsPrimitive should behave like a primitive /// numeric type (e.g. a newtype around another primitive), and the /// intended conversion must never fail. /// /// # Examples /// /// ``` /// # use num_traits::AsPrimitive; /// let three: i32 = (3.14159265f32).as_(); /// assert_eq!(three, 3); /// ``` /// /// # Safety /// /// Currently, some uses of the `as` operator are not entirely safe. /// In particular, it is undefined behavior if: /// /// - A truncated floating point value cannot fit in the target integer /// type ([#10184](https://github.com/rust-lang/rust/issues/10184)); /// /// ```ignore /// # use num_traits::AsPrimitive; /// let x: u8 = (1.04E+17).as_(); // UB /// ``` /// /// - Or a floating point value does not fit in another floating /// point type ([#15536](https://github.com/rust-lang/rust/issues/15536)). /// /// ```ignore /// # use num_traits::AsPrimitive; /// let x: f32 = (1e300f64).as_(); // UB /// ``` /// pub trait AsPrimitive: 'static + Copy where T: 'static + Copy { /// Convert a value to another, using the `as` operator. fn as_(self) -> T; } macro_rules! impl_as_primitive { ($T: ty => $( $U: ty ),* ) => { $( impl AsPrimitive<$U> for $T { #[inline] fn as_(self) -> $U { self as $U } } )* }; } impl_as_primitive!(u8 => char, u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); impl_as_primitive!(i8 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); impl_as_primitive!(u16 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); impl_as_primitive!(i16 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); impl_as_primitive!(u32 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); impl_as_primitive!(i32 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); impl_as_primitive!(u64 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); impl_as_primitive!(i64 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); impl_as_primitive!(usize => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); impl_as_primitive!(isize => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); impl_as_primitive!(f32 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); impl_as_primitive!(f64 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); impl_as_primitive!(char => char, u8, i8, u16, i16, u32, i32, u64, isize, usize, i64); impl_as_primitive!(bool => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64); #[test] fn to_primitive_float() { use core::f32; use core::f64; let f32_toolarge = 1e39f64; assert_eq!(f32_toolarge.to_f32(), None); assert_eq!((f32::MAX as f64).to_f32(), Some(f32::MAX)); assert_eq!((-f32::MAX as f64).to_f32(), Some(-f32::MAX)); assert_eq!(f64::INFINITY.to_f32(), Some(f32::INFINITY)); assert_eq!((f64::NEG_INFINITY).to_f32(), Some(f32::NEG_INFINITY)); assert!((f64::NAN).to_f32().map_or(false, |f| f.is_nan())); } #[test] fn wrapping_to_primitive() { macro_rules! test_wrapping_to_primitive { ($($t:ty)+) => { $({ let i: $t = 0; let w = Wrapping(i); assert_eq!(i.to_u8(), w.to_u8()); assert_eq!(i.to_u16(), w.to_u16()); assert_eq!(i.to_u32(), w.to_u32()); assert_eq!(i.to_u64(), w.to_u64()); assert_eq!(i.to_usize(), w.to_usize()); assert_eq!(i.to_i8(), w.to_i8()); assert_eq!(i.to_i16(), w.to_i16()); assert_eq!(i.to_i32(), w.to_i32()); assert_eq!(i.to_i64(), w.to_i64()); assert_eq!(i.to_isize(), w.to_isize()); assert_eq!(i.to_f32(), w.to_f32()); assert_eq!(i.to_f64(), w.to_f64()); })+ }; } test_wrapping_to_primitive!(usize u8 u16 u32 u64 isize i8 i16 i32 i64); } #[test] fn wrapping_is_toprimitive() { fn require_toprimitive(_: &T) {} require_toprimitive(&Wrapping(42)); } #[test] fn wrapping_is_fromprimitive() { fn require_fromprimitive(_: &T) {} require_fromprimitive(&Wrapping(42)); } #[test] fn wrapping_is_numcast() { fn require_numcast(_: &T) {} require_numcast(&Wrapping(42)); } #[test] fn as_primitive() { let x: f32 = (1.625f64).as_(); assert_eq!(x, 1.625f32); let x: f32 = (3.14159265358979323846f64).as_(); assert_eq!(x, 3.1415927f32); let x: u8 = (768i16).as_(); assert_eq!(x, 0); } #[test] fn float_to_integer_checks_overflow() { // This will overflow an i32 let source: f64 = 1.0e+123f64; // Expect the overflow to be caught assert_eq!(cast::(source), None); } #[test] fn cast_to_int_checks_overflow() { let big_f: f64 = 1.0e123; let normal_f: f64 = 1.0; let small_f: f64 = -1.0e123; assert_eq!(None, cast::(big_f)); assert_eq!(None, cast::(big_f)); assert_eq!(None, cast::(big_f)); assert_eq!(None, cast::(big_f)); assert_eq!(None, cast::(big_f)); assert_eq!(Some(normal_f as isize), cast::(normal_f)); assert_eq!(Some(normal_f as i8), cast::(normal_f)); assert_eq!(Some(normal_f as i16), cast::(normal_f)); assert_eq!(Some(normal_f as i32), cast::(normal_f)); assert_eq!(Some(normal_f as i64), cast::(normal_f)); assert_eq!(None, cast::(small_f)); assert_eq!(None, cast::(small_f)); assert_eq!(None, cast::(small_f)); assert_eq!(None, cast::(small_f)); assert_eq!(None, cast::(small_f)); } #[test] fn cast_to_unsigned_int_checks_overflow() { let big_f: f64 = 1.0e123; let normal_f: f64 = 1.0; let small_f: f64 = -1.0e123; assert_eq!(None, cast::(big_f)); assert_eq!(None, cast::(big_f)); assert_eq!(None, cast::(big_f)); assert_eq!(None, cast::(big_f)); assert_eq!(None, cast::(big_f)); assert_eq!(Some(normal_f as usize), cast::(normal_f)); assert_eq!(Some(normal_f as u8), cast::(normal_f)); assert_eq!(Some(normal_f as u16), cast::(normal_f)); assert_eq!(Some(normal_f as u32), cast::(normal_f)); assert_eq!(Some(normal_f as u64), cast::(normal_f)); assert_eq!(None, cast::(small_f)); assert_eq!(None, cast::(small_f)); assert_eq!(None, cast::(small_f)); assert_eq!(None, cast::(small_f)); assert_eq!(None, cast::(small_f)); } #[cfg(all(test, feature = "std"))] fn dbg(args: ::core::fmt::Arguments) { println!("{}", args); } #[cfg(all(test, not(feature = "std")))] fn dbg(_: ::core::fmt::Arguments) {} // Rust 1.8 doesn't handle cfg on macros correctly // #[cfg(test)] #[allow(unused)] macro_rules! dbg { ($($tok:tt)*) => { dbg(format_args!($($tok)*)) } } #[test] fn cast_float_to_int_edge_cases() { use core::mem::transmute; trait RawOffset: Sized { type Raw; fn raw_offset(self, offset: Self::Raw) -> Self; } impl RawOffset for f32 { type Raw = i32; fn raw_offset(self, offset: Self::Raw) -> Self { unsafe { let raw: Self::Raw = transmute(self); transmute(raw + offset) } } } impl RawOffset for f64 { type Raw = i64; fn raw_offset(self, offset: Self::Raw) -> Self { unsafe { let raw: Self::Raw = transmute(self); transmute(raw + offset) } } } macro_rules! test_edge { ($f:ident -> $($t:ident)+) => { $({ dbg!("testing cast edge cases for {} -> {}", stringify!($f), stringify!($t)); let small = if $t::MIN == 0 || size_of::<$t>() < size_of::<$f>() { $t::MIN as $f - 1.0 } else { ($t::MIN as $f).raw_offset(1).floor() }; let fmin = small.raw_offset(-1); dbg!(" testing min {}\n\tvs. {:.16}\n\tand {:.16}", $t::MIN, fmin, small); assert_eq!(Some($t::MIN), cast::<$f, $t>($t::MIN as $f)); assert_eq!(Some($t::MIN), cast::<$f, $t>(fmin)); assert_eq!(None, cast::<$f, $t>(small)); let (max, large) = if size_of::<$t>() < size_of::<$f>() { ($t::MAX, $t::MAX as $f + 1.0) } else { let large = $t::MAX as $f; // rounds up! let max = large.raw_offset(-1) as $t; // the next smallest possible assert_eq!(max.count_ones(), $f::MANTISSA_DIGITS); (max, large) }; let fmax = large.raw_offset(-1); dbg!(" testing max {}\n\tvs. {:.16}\n\tand {:.16}", max, fmax, large); assert_eq!(Some(max), cast::<$f, $t>(max as $f)); assert_eq!(Some(max), cast::<$f, $t>(fmax)); assert_eq!(None, cast::<$f, $t>(large)); dbg!(" testing non-finite values"); assert_eq!(None, cast::<$f, $t>($f::NAN)); assert_eq!(None, cast::<$f, $t>($f::INFINITY)); assert_eq!(None, cast::<$f, $t>($f::NEG_INFINITY)); })+} } test_edge!(f32 -> isize i8 i16 i32 i64); test_edge!(f32 -> usize u8 u16 u32 u64); test_edge!(f64 -> isize i8 i16 i32 i64); test_edge!(f64 -> usize u8 u16 u32 u64); } #[test] fn cast_int_to_int_edge_cases() { use core::cmp::Ordering::*; macro_rules! test_edge { ($f:ident -> $($t:ident)+) => { $({ fn test_edge() { dbg!("testing cast edge cases for {} -> {}", stringify!($f), stringify!($t)); match ($f::MIN as i64).cmp(&($t::MIN as i64)) { Greater => { assert_eq!(Some($f::MIN as $t), cast::<$f, $t>($f::MIN)); } Equal => { assert_eq!(Some($t::MIN), cast::<$f, $t>($f::MIN)); } Less => { let min = $t::MIN as $f; assert_eq!(Some($t::MIN), cast::<$f, $t>(min)); assert_eq!(None, cast::<$f, $t>(min - 1)); } } match ($f::MAX as u64).cmp(&($t::MAX as u64)) { Greater => { let max = $t::MAX as $f; assert_eq!(Some($t::MAX), cast::<$f, $t>(max)); assert_eq!(None, cast::<$f, $t>(max + 1)); } Equal => { assert_eq!(Some($t::MAX), cast::<$f, $t>($f::MAX)); } Less => { assert_eq!(Some($f::MAX as $t), cast::<$f, $t>($f::MAX)); } } } test_edge(); })+}; ($( $from:ident )+) => { $({ test_edge!($from -> isize i8 i16 i32 i64); test_edge!($from -> usize u8 u16 u32 u64); })+} } test_edge!(isize i8 i16 i32 i64); test_edge!(usize u8 u16 u32 u64); }