// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Rational numbers use Integer; use std::cmp; use std::fmt; use std::from_str::FromStr; use std::num; use std::num::{Zero, One, FromStrRadix}; use bigint::{BigInt, BigUint, Sign, Plus, Minus}; /// Represents the ratio between 2 numbers. #[deriving(Clone, Hash)] #[allow(missing_doc)] pub struct Ratio { numer: T, denom: T } /// Alias for a `Ratio` of machine-sized integers. pub type Rational = Ratio; pub type Rational32 = Ratio; pub type Rational64 = Ratio; /// Alias for arbitrary precision rationals. pub type BigRational = Ratio; impl Ratio { /// Creates a ratio representing the integer `t`. #[inline] pub fn from_integer(t: T) -> Ratio { Ratio::new_raw(t, One::one()) } /// Creates a ratio without checking for `denom == 0` or reducing. #[inline] pub fn new_raw(numer: T, denom: T) -> Ratio { Ratio { numer: numer, denom: denom } } /// Create a new Ratio. Fails if `denom == 0`. #[inline] pub fn new(numer: T, denom: T) -> Ratio { if denom == Zero::zero() { fail!("denominator == 0"); } let mut ret = Ratio::new_raw(numer, denom); ret.reduce(); ret } /// Converts to an integer. #[inline] pub fn to_integer(&self) -> T { self.trunc().numer } /// Gets an immutable reference to the numerator. #[inline] pub fn numer<'a>(&'a self) -> &'a T { &self.numer } /// Gets an immutable reference to the denominator. #[inline] pub fn denom<'a>(&'a self) -> &'a T { &self.denom } /// Returns true if the rational number is an integer (denominator is 1). #[inline] pub fn is_integer(&self) -> bool { self.denom == One::one() } /// Put self into lowest terms, with denom > 0. fn reduce(&mut self) { let g : T = self.numer.gcd(&self.denom); // FIXME(#5992): assignment operator overloads // self.numer /= g; self.numer = self.numer / g; // FIXME(#5992): assignment operator overloads // self.denom /= g; self.denom = self.denom / g; // keep denom positive! if self.denom < Zero::zero() { self.numer = -self.numer; self.denom = -self.denom; } } /// Returns a `reduce`d copy of self. pub fn reduced(&self) -> Ratio { let mut ret = self.clone(); ret.reduce(); ret } /// Returns the reciprocal. #[inline] pub fn recip(&self) -> Ratio { Ratio::new_raw(self.denom.clone(), self.numer.clone()) } /// Rounds towards minus infinity. #[inline] pub fn floor(&self) -> Ratio { if *self < Zero::zero() { Ratio::from_integer((self.numer - self.denom + One::one()) / self.denom) } else { Ratio::from_integer(self.numer / self.denom) } } /// Rounds towards plus infinity. #[inline] pub fn ceil(&self) -> Ratio { if *self < Zero::zero() { Ratio::from_integer(self.numer / self.denom) } else { Ratio::from_integer((self.numer + self.denom - One::one()) / self.denom) } } /// Rounds to the nearest integer. Rounds half-way cases away from zero. #[inline] pub fn round(&self) -> Ratio { let one: T = One::one(); let two: T = one + one; // Find unsigned fractional part of rational number let fractional = self.fract().abs(); // The algorithm compares the unsigned fractional part with 1/2, that // is, a/b >= 1/2, or a >= b/2. For odd denominators, we use // a >= (b/2)+1. This avoids overflow issues. let half_or_larger = if fractional.denom().is_even() { *fractional.numer() >= *fractional.denom() / two } else { *fractional.numer() >= (*fractional.denom() / two) + one }; if half_or_larger { if *self >= Zero::zero() { self.trunc() + One::one() } else { self.trunc() - One::one() } } else { self.trunc() } } /// Rounds towards zero. #[inline] pub fn trunc(&self) -> Ratio { Ratio::from_integer(self.numer / self.denom) } /// Returns the fractional part of a number. #[inline] pub fn fract(&self) -> Ratio { Ratio::new_raw(self.numer % self.denom, self.denom.clone()) } } impl Ratio { /// Converts a float into a rational number. pub fn from_float(f: T) -> Option { if !f.is_finite() { return None; } let (mantissa, exponent, sign) = f.integer_decode(); let bigint_sign: Sign = if sign == 1 { Plus } else { Minus }; if exponent < 0 { let one: BigInt = One::one(); let denom: BigInt = one << ((-exponent) as uint); let numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap(); Some(Ratio::new(BigInt::from_biguint(bigint_sign, numer), denom)) } else { let mut numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap(); numer = numer << (exponent as uint); Some(Ratio::from_integer(BigInt::from_biguint(bigint_sign, numer))) } } } /* Comparisons */ // comparing a/b and c/d is the same as comparing a*d and b*c, so we // abstract that pattern. The following macro takes a trait and either // a comma-separated list of "method name -> return value" or just // "method name" (return value is bool in that case) macro_rules! cmp_impl { (impl $imp:ident, $($method:ident),+) => { cmp_impl!(impl $imp, $($method -> bool),+) }; // return something other than a Ratio (impl $imp:ident, $($method:ident -> $res:ty),*) => { impl + $imp> $imp for Ratio { $( #[inline] fn $method(&self, other: &Ratio) -> $res { (self.numer * other.denom). $method (&(self.denom*other.numer)) } )* } }; } cmp_impl!(impl PartialEq, eq, ne) cmp_impl!(impl PartialOrd, lt -> bool, gt -> bool, le -> bool, ge -> bool, partial_cmp -> Option) cmp_impl!(impl Eq, ) cmp_impl!(impl Ord, cmp -> cmp::Ordering) /* Arithmetic */ // a/b * c/d = (a*c)/(b*d) impl Mul,Ratio> for Ratio { #[inline] fn mul(&self, rhs: &Ratio) -> Ratio { Ratio::new(self.numer * rhs.numer, self.denom * rhs.denom) } } // (a/b) / (c/d) = (a*d)/(b*c) impl Div,Ratio> for Ratio { #[inline] fn div(&self, rhs: &Ratio) -> Ratio { Ratio::new(self.numer * rhs.denom, self.denom * rhs.numer) } } // Abstracts the a/b `op` c/d = (a*d `op` b*d) / (b*d) pattern macro_rules! arith_impl { (impl $imp:ident, $method:ident) => { impl $imp,Ratio> for Ratio { #[inline] fn $method(&self, rhs: &Ratio) -> Ratio { Ratio::new((self.numer * rhs.denom).$method(&(self.denom * rhs.numer)), self.denom * rhs.denom) } } } } // a/b + c/d = (a*d + b*c)/(b*d) arith_impl!(impl Add, add) // a/b - c/d = (a*d - b*c)/(b*d) arith_impl!(impl Sub, sub) // a/b % c/d = (a*d % b*c)/(b*d) arith_impl!(impl Rem, rem) impl Neg> for Ratio { #[inline] fn neg(&self) -> Ratio { Ratio::new_raw(-self.numer, self.denom.clone()) } } /* Constants */ impl Zero for Ratio { #[inline] fn zero() -> Ratio { Ratio::new_raw(Zero::zero(), One::one()) } #[inline] fn is_zero(&self) -> bool { *self == Zero::zero() } } impl One for Ratio { #[inline] fn one() -> Ratio { Ratio::new_raw(One::one(), One::one()) } } impl Num for Ratio {} impl num::Signed for Ratio { #[inline] fn abs(&self) -> Ratio { if self.is_negative() { -self.clone() } else { self.clone() } } #[inline] fn abs_sub(&self, other: &Ratio) -> Ratio { if *self <= *other { Zero::zero() } else { *self - *other } } #[inline] fn signum(&self) -> Ratio { if *self > Zero::zero() { num::one() } else if self.is_zero() { num::zero() } else { - num::one::>() } } #[inline] fn is_positive(&self) -> bool { *self > Zero::zero() } #[inline] fn is_negative(&self) -> bool { *self < Zero::zero() } } /* String conversions */ impl fmt::Show for Ratio { /// Renders as `numer/denom`. If denom=1, renders as numer. fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { if self.denom == One::one() { write!(f, "{}", self.numer) } else { write!(f, "{}/{}", self.numer, self.denom) } } } impl FromStr for Ratio { /// Parses `numer/denom` or just `numer`. fn from_str(s: &str) -> Option> { let mut split = s.splitn(1, '/'); let num = split.next().and_then(|n| FromStr::from_str(n)); let den = split.next().or(Some("1")).and_then(|d| FromStr::from_str(d)); match (num, den) { (Some(n), Some(d)) => Some(Ratio::new(n, d)), _ => None } } } impl FromStrRadix for Ratio { /// Parses `numer/denom` where the numbers are in base `radix`. fn from_str_radix(s: &str, radix: uint) -> Option> { let split: Vec<&str> = s.splitn(1, '/').collect(); if split.len() < 2 { None } else { let a_option: Option = FromStrRadix::from_str_radix( split[0], radix); a_option.and_then(|a| { let b_option: Option = FromStrRadix::from_str_radix(split[1], radix); b_option.and_then(|b| { Some(Ratio::new(a.clone(), b.clone())) }) }) } } } #[cfg(test)] mod test { use super::{Ratio, Rational, BigRational}; use std::num::{Zero, One, FromStrRadix, FromPrimitive}; use std::from_str::FromStr; use std::hash::hash; use std::num; use std::i32; pub const _0 : Rational = Ratio { numer: 0, denom: 1}; pub const _1 : Rational = Ratio { numer: 1, denom: 1}; pub const _2: Rational = Ratio { numer: 2, denom: 1}; pub const _1_2: Rational = Ratio { numer: 1, denom: 2}; pub const _3_2: Rational = Ratio { numer: 3, denom: 2}; pub const _NEG1_2: Rational = Ratio { numer: -1, denom: 2}; pub const _1_3: Rational = Ratio { numer: 1, denom: 3}; pub const _NEG1_3: Rational = Ratio { numer: -1, denom: 3}; pub const _2_3: Rational = Ratio { numer: 2, denom: 3}; pub const _NEG2_3: Rational = Ratio { numer: -2, denom: 3}; pub fn to_big(n: Rational) -> BigRational { Ratio::new( FromPrimitive::from_int(n.numer).unwrap(), FromPrimitive::from_int(n.denom).unwrap() ) } #[test] fn test_test_constants() { // check our constants are what Ratio::new etc. would make. assert_eq!(_0, Zero::zero()); assert_eq!(_1, One::one()); assert_eq!(_2, Ratio::from_integer(2i)); assert_eq!(_1_2, Ratio::new(1i,2i)); assert_eq!(_3_2, Ratio::new(3i,2i)); assert_eq!(_NEG1_2, Ratio::new(-1i,2i)); } #[test] fn test_new_reduce() { let one22 = Ratio::new(2i,2); assert_eq!(one22, One::one()); } #[test] #[should_fail] fn test_new_zero() { let _a = Ratio::new(1i,0); } #[test] fn test_cmp() { assert!(_0 == _0 && _1 == _1); assert!(_0 != _1 && _1 != _0); assert!(_0 < _1 && !(_1 < _0)); assert!(_1 > _0 && !(_0 > _1)); assert!(_0 <= _0 && _1 <= _1); assert!(_0 <= _1 && !(_1 <= _0)); assert!(_0 >= _0 && _1 >= _1); assert!(_1 >= _0 && !(_0 >= _1)); } #[test] fn test_to_integer() { assert_eq!(_0.to_integer(), 0); assert_eq!(_1.to_integer(), 1); assert_eq!(_2.to_integer(), 2); assert_eq!(_1_2.to_integer(), 0); assert_eq!(_3_2.to_integer(), 1); assert_eq!(_NEG1_2.to_integer(), 0); } #[test] fn test_numer() { assert_eq!(_0.numer(), &0); assert_eq!(_1.numer(), &1); assert_eq!(_2.numer(), &2); assert_eq!(_1_2.numer(), &1); assert_eq!(_3_2.numer(), &3); assert_eq!(_NEG1_2.numer(), &(-1)); } #[test] fn test_denom() { assert_eq!(_0.denom(), &1); assert_eq!(_1.denom(), &1); assert_eq!(_2.denom(), &1); assert_eq!(_1_2.denom(), &2); assert_eq!(_3_2.denom(), &2); assert_eq!(_NEG1_2.denom(), &2); } #[test] fn test_is_integer() { assert!(_0.is_integer()); assert!(_1.is_integer()); assert!(_2.is_integer()); assert!(!_1_2.is_integer()); assert!(!_3_2.is_integer()); assert!(!_NEG1_2.is_integer()); } #[test] fn test_show() { assert_eq!(format!("{}", _2), "2".to_string()); assert_eq!(format!("{}", _1_2), "1/2".to_string()); assert_eq!(format!("{}", _0), "0".to_string()); assert_eq!(format!("{}", Ratio::from_integer(-2i)), "-2".to_string()); } mod arith { use super::{_0, _1, _2, _1_2, _3_2, _NEG1_2, to_big}; use super::super::{Ratio, Rational}; #[test] fn test_add() { fn test(a: Rational, b: Rational, c: Rational) { assert_eq!(a + b, c); assert_eq!(to_big(a) + to_big(b), to_big(c)); } test(_1, _1_2, _3_2); test(_1, _1, _2); test(_1_2, _3_2, _2); test(_1_2, _NEG1_2, _0); } #[test] fn test_sub() { fn test(a: Rational, b: Rational, c: Rational) { assert_eq!(a - b, c); assert_eq!(to_big(a) - to_big(b), to_big(c)) } test(_1, _1_2, _1_2); test(_3_2, _1_2, _1); test(_1, _NEG1_2, _3_2); } #[test] fn test_mul() { fn test(a: Rational, b: Rational, c: Rational) { assert_eq!(a * b, c); assert_eq!(to_big(a) * to_big(b), to_big(c)) } test(_1, _1_2, _1_2); test(_1_2, _3_2, Ratio::new(3i,4i)); test(_1_2, _NEG1_2, Ratio::new(-1i, 4i)); } #[test] fn test_div() { fn test(a: Rational, b: Rational, c: Rational) { assert_eq!(a / b, c); assert_eq!(to_big(a) / to_big(b), to_big(c)) } test(_1, _1_2, _2); test(_3_2, _1_2, _1 + _2); test(_1, _NEG1_2, _NEG1_2 + _NEG1_2 + _NEG1_2 + _NEG1_2); } #[test] fn test_rem() { fn test(a: Rational, b: Rational, c: Rational) { assert_eq!(a % b, c); assert_eq!(to_big(a) % to_big(b), to_big(c)) } test(_3_2, _1, _1_2); test(_2, _NEG1_2, _0); test(_1_2, _2, _1_2); } #[test] fn test_neg() { fn test(a: Rational, b: Rational) { assert_eq!(-a, b); assert_eq!(-to_big(a), to_big(b)) } test(_0, _0); test(_1_2, _NEG1_2); test(-_1, _1); } #[test] fn test_zero() { assert_eq!(_0 + _0, _0); assert_eq!(_0 * _0, _0); assert_eq!(_0 * _1, _0); assert_eq!(_0 / _NEG1_2, _0); assert_eq!(_0 - _0, _0); } #[test] #[should_fail] fn test_div_0() { let _a = _1 / _0; } } #[test] fn test_round() { assert_eq!(_1_3.ceil(), _1); assert_eq!(_1_3.floor(), _0); assert_eq!(_1_3.round(), _0); assert_eq!(_1_3.trunc(), _0); assert_eq!(_NEG1_3.ceil(), _0); assert_eq!(_NEG1_3.floor(), -_1); assert_eq!(_NEG1_3.round(), _0); assert_eq!(_NEG1_3.trunc(), _0); assert_eq!(_2_3.ceil(), _1); assert_eq!(_2_3.floor(), _0); assert_eq!(_2_3.round(), _1); assert_eq!(_2_3.trunc(), _0); assert_eq!(_NEG2_3.ceil(), _0); assert_eq!(_NEG2_3.floor(), -_1); assert_eq!(_NEG2_3.round(), -_1); assert_eq!(_NEG2_3.trunc(), _0); assert_eq!(_1_2.ceil(), _1); assert_eq!(_1_2.floor(), _0); assert_eq!(_1_2.round(), _1); assert_eq!(_1_2.trunc(), _0); assert_eq!(_NEG1_2.ceil(), _0); assert_eq!(_NEG1_2.floor(), -_1); assert_eq!(_NEG1_2.round(), -_1); assert_eq!(_NEG1_2.trunc(), _0); assert_eq!(_1.ceil(), _1); assert_eq!(_1.floor(), _1); assert_eq!(_1.round(), _1); assert_eq!(_1.trunc(), _1); // Overflow checks let _neg1 = Ratio::from_integer(-1); let _large_rat1 = Ratio::new(i32::MAX, i32::MAX-1); let _large_rat2 = Ratio::new(i32::MAX-1, i32::MAX); let _large_rat3 = Ratio::new(i32::MIN+2, i32::MIN+1); let _large_rat4 = Ratio::new(i32::MIN+1, i32::MIN+2); let _large_rat5 = Ratio::new(i32::MIN+2, i32::MAX); let _large_rat6 = Ratio::new(i32::MAX, i32::MIN+2); let _large_rat7 = Ratio::new(1, i32::MIN+1); let _large_rat8 = Ratio::new(1, i32::MAX); assert_eq!(_large_rat1.round(), One::one()); assert_eq!(_large_rat2.round(), One::one()); assert_eq!(_large_rat3.round(), One::one()); assert_eq!(_large_rat4.round(), One::one()); assert_eq!(_large_rat5.round(), _neg1); assert_eq!(_large_rat6.round(), _neg1); assert_eq!(_large_rat7.round(), Zero::zero()); assert_eq!(_large_rat8.round(), Zero::zero()); } #[test] fn test_fract() { assert_eq!(_1.fract(), _0); assert_eq!(_NEG1_2.fract(), _NEG1_2); assert_eq!(_1_2.fract(), _1_2); assert_eq!(_3_2.fract(), _1_2); } #[test] fn test_recip() { assert_eq!(_1 * _1.recip(), _1); assert_eq!(_2 * _2.recip(), _1); assert_eq!(_1_2 * _1_2.recip(), _1); assert_eq!(_3_2 * _3_2.recip(), _1); assert_eq!(_NEG1_2 * _NEG1_2.recip(), _1); } #[test] fn test_to_from_str() { fn test(r: Rational, s: String) { assert_eq!(FromStr::from_str(s.as_slice()), Some(r)); assert_eq!(r.to_string(), s); } test(_1, "1".to_string()); test(_0, "0".to_string()); test(_1_2, "1/2".to_string()); test(_3_2, "3/2".to_string()); test(_2, "2".to_string()); test(_NEG1_2, "-1/2".to_string()); } #[test] fn test_from_str_fail() { fn test(s: &str) { let rational: Option = FromStr::from_str(s); assert_eq!(rational, None); } let xs = ["0 /1", "abc", "", "1/", "--1/2","3/2/1"]; for &s in xs.iter() { test(s); } } #[test] fn test_from_float() { fn test(given: T, (numer, denom): (&str, &str)) { let ratio: BigRational = Ratio::from_float(given).unwrap(); assert_eq!(ratio, Ratio::new( FromStr::from_str(numer).unwrap(), FromStr::from_str(denom).unwrap())); } // f32 test(3.14159265359f32, ("13176795", "4194304")); test(2f32.powf(100.), ("1267650600228229401496703205376", "1")); test(-2f32.powf(100.), ("-1267650600228229401496703205376", "1")); test(1.0 / 2f32.powf(100.), ("1", "1267650600228229401496703205376")); test(684729.48391f32, ("1369459", "2")); test(-8573.5918555f32, ("-4389679", "512")); // f64 test(3.14159265359f64, ("3537118876014453", "1125899906842624")); test(2f64.powf(100.), ("1267650600228229401496703205376", "1")); test(-2f64.powf(100.), ("-1267650600228229401496703205376", "1")); test(684729.48391f64, ("367611342500051", "536870912")); test(-8573.5918555f64, ("-4713381968463931", "549755813888")); test(1.0 / 2f64.powf(100.), ("1", "1267650600228229401496703205376")); } #[test] fn test_from_float_fail() { use std::{f32, f64}; assert_eq!(Ratio::from_float(f32::NAN), None); assert_eq!(Ratio::from_float(f32::INFINITY), None); assert_eq!(Ratio::from_float(f32::NEG_INFINITY), None); assert_eq!(Ratio::from_float(f64::NAN), None); assert_eq!(Ratio::from_float(f64::INFINITY), None); assert_eq!(Ratio::from_float(f64::NEG_INFINITY), None); } #[test] fn test_signed() { assert_eq!(_NEG1_2.abs(), _1_2); assert_eq!(_3_2.abs_sub(&_1_2), _1); assert_eq!(_1_2.abs_sub(&_3_2), Zero::zero()); assert_eq!(_1_2.signum(), One::one()); assert_eq!(_NEG1_2.signum(), - num::one::>()); assert!(_NEG1_2.is_negative()); assert!(! _NEG1_2.is_positive()); assert!(! _1_2.is_negative()); } #[test] fn test_hash() { assert!(hash(&_0) != hash(&_1)); assert!(hash(&_0) != hash(&_3_2)); } }