use core::mem::size_of; use core::num::Wrapping; use identities::Zero; use bounds::Bounded; use float::FloatCore; /// A generic trait for converting a value to a number. pub trait ToPrimitive { /// Converts the value of `self` to an `isize`. #[inline] fn to_isize(&self) -> Option { self.to_i64().and_then(|x| x.to_isize()) } /// Converts the value of `self` to an `i8`. #[inline] fn to_i8(&self) -> Option { self.to_i64().and_then(|x| x.to_i8()) } /// Converts the value of `self` to an `i16`. #[inline] fn to_i16(&self) -> Option { self.to_i64().and_then(|x| x.to_i16()) } /// Converts the value of `self` to an `i32`. #[inline] fn to_i32(&self) -> Option { self.to_i64().and_then(|x| x.to_i32()) } /// Converts the value of `self` to an `i64`. fn to_i64(&self) -> Option; /// Converts the value of `self` to a `usize`. #[inline] fn to_usize(&self) -> Option { self.to_u64().and_then(|x| x.to_usize()) } /// Converts the value of `self` to an `u8`. #[inline] fn to_u8(&self) -> Option { self.to_u64().and_then(|x| x.to_u8()) } /// Converts the value of `self` to an `u16`. #[inline] fn to_u16(&self) -> Option { self.to_u64().and_then(|x| x.to_u16()) } /// Converts the value of `self` to an `u32`. #[inline] fn to_u32(&self) -> Option { self.to_u64().and_then(|x| x.to_u32()) } /// Converts the value of `self` to an `u64`. #[inline] fn to_u64(&self) -> Option; /// Converts the value of `self` to an `f32`. #[inline] fn to_f32(&self) -> Option { self.to_f64().and_then(|x| x.to_f32()) } /// Converts the value of `self` to an `f64`. #[inline] fn to_f64(&self) -> Option { self.to_i64().and_then(|x| x.to_f64()) } } macro_rules! impl_to_primitive_int_to_int { ($SrcT:ty, $DstT:ty, $slf:expr) => ( { if size_of::<$SrcT>() <= size_of::<$DstT>() { Some($slf as $DstT) } else { let n = $slf as i64; let min_value: $DstT = Bounded::min_value(); let max_value: $DstT = Bounded::max_value(); if min_value as i64 <= n && n <= max_value as i64 { Some($slf as $DstT) } else { None } } } ) } macro_rules! impl_to_primitive_int_to_uint { ($SrcT:ty, $DstT:ty, $slf:expr) => ( { let zero: $SrcT = Zero::zero(); let max_value: $DstT = Bounded::max_value(); if zero <= $slf && $slf as u64 <= max_value as u64 { Some($slf as $DstT) } else { None } } ) } macro_rules! impl_to_primitive_int { ($T:ty) => ( impl ToPrimitive for $T { #[inline] fn to_isize(&self) -> Option { impl_to_primitive_int_to_int!($T, isize, *self) } #[inline] fn to_i8(&self) -> Option { impl_to_primitive_int_to_int!($T, i8, *self) } #[inline] fn to_i16(&self) -> Option { impl_to_primitive_int_to_int!($T, i16, *self) } #[inline] fn to_i32(&self) -> Option { impl_to_primitive_int_to_int!($T, i32, *self) } #[inline] fn to_i64(&self) -> Option { impl_to_primitive_int_to_int!($T, i64, *self) } #[inline] fn to_usize(&self) -> Option { impl_to_primitive_int_to_uint!($T, usize, *self) } #[inline] fn to_u8(&self) -> Option { impl_to_primitive_int_to_uint!($T, u8, *self) } #[inline] fn to_u16(&self) -> Option { impl_to_primitive_int_to_uint!($T, u16, *self) } #[inline] fn to_u32(&self) -> Option { impl_to_primitive_int_to_uint!($T, u32, *self) } #[inline] fn to_u64(&self) -> Option { impl_to_primitive_int_to_uint!($T, u64, *self) } #[inline] fn to_f32(&self) -> Option { Some(*self as f32) } #[inline] fn to_f64(&self) -> Option { Some(*self as f64) } } ) } impl_to_primitive_int!(isize); impl_to_primitive_int!(i8); impl_to_primitive_int!(i16); impl_to_primitive_int!(i32); impl_to_primitive_int!(i64); macro_rules! impl_to_primitive_uint_to_int { ($DstT:ty, $slf:expr) => ( { let max_value: $DstT = Bounded::max_value(); if $slf as u64 <= max_value as u64 { Some($slf as $DstT) } else { None } } ) } macro_rules! impl_to_primitive_uint_to_uint { ($SrcT:ty, $DstT:ty, $slf:expr) => ( { if size_of::<$SrcT>() <= size_of::<$DstT>() { Some($slf as $DstT) } else { let zero: $SrcT = Zero::zero(); let max_value: $DstT = Bounded::max_value(); if zero <= $slf && $slf as u64 <= max_value as u64 { Some($slf as $DstT) } else { None } } } ) } macro_rules! impl_to_primitive_uint { ($T:ty) => ( impl ToPrimitive for $T { #[inline] fn to_isize(&self) -> Option { impl_to_primitive_uint_to_int!(isize, *self) } #[inline] fn to_i8(&self) -> Option { impl_to_primitive_uint_to_int!(i8, *self) } #[inline] fn to_i16(&self) -> Option { impl_to_primitive_uint_to_int!(i16, *self) } #[inline] fn to_i32(&self) -> Option { impl_to_primitive_uint_to_int!(i32, *self) } #[inline] fn to_i64(&self) -> Option { impl_to_primitive_uint_to_int!(i64, *self) } #[inline] fn to_usize(&self) -> Option { impl_to_primitive_uint_to_uint!($T, usize, *self) } #[inline] fn to_u8(&self) -> Option { impl_to_primitive_uint_to_uint!($T, u8, *self) } #[inline] fn to_u16(&self) -> Option { impl_to_primitive_uint_to_uint!($T, u16, *self) } #[inline] fn to_u32(&self) -> Option { impl_to_primitive_uint_to_uint!($T, u32, *self) } #[inline] fn to_u64(&self) -> Option { impl_to_primitive_uint_to_uint!($T, u64, *self) } #[inline] fn to_f32(&self) -> Option { Some(*self as f32) } #[inline] fn to_f64(&self) -> Option { Some(*self as f64) } } ) } impl_to_primitive_uint!(usize); impl_to_primitive_uint!(u8); impl_to_primitive_uint!(u16); impl_to_primitive_uint!(u32); impl_to_primitive_uint!(u64); macro_rules! impl_to_primitive_float_to_float { ($SrcT:ident, $DstT:ident, $slf:expr) => ( if size_of::<$SrcT>() <= size_of::<$DstT>() { Some($slf as $DstT) } else { // Make sure the value is in range for the cast. // NaN and +-inf are cast as they are. let n = $slf as f64; let max_value: $DstT = ::core::$DstT::MAX; if !FloatCore::is_finite(n) || (-max_value as f64 <= n && n <= max_value as f64) { Some($slf as $DstT) } else { None } } ) } macro_rules! impl_to_primitive_float_to_signed_int { ($SrcT:ident, $DstT:ident, $slf:expr) => ({ let t = $slf.trunc(); if t >= $DstT::min_value() as $SrcT && t <= $DstT::max_value() as $SrcT { Some($slf as $DstT) } else { None } }) } macro_rules! impl_to_primitive_float_to_unsigned_int { ($SrcT:ident, $DstT:ident, $slf:expr) => ({ let t = $slf.trunc(); if t >= $DstT::min_value() as $SrcT && t <= $DstT::max_value() as $SrcT { Some($slf as $DstT) } else { None } }) } macro_rules! impl_to_primitive_float { ($T:ident) => ( impl ToPrimitive for $T { #[inline] fn to_isize(&self) -> Option { impl_to_primitive_float_to_signed_int!($T, isize, *self) } #[inline] fn to_i8(&self) -> Option { impl_to_primitive_float_to_signed_int!($T, i8, *self) } #[inline] fn to_i16(&self) -> Option { impl_to_primitive_float_to_signed_int!($T, i16, *self) } #[inline] fn to_i32(&self) -> Option { impl_to_primitive_float_to_signed_int!($T, i32, *self) } #[inline] fn to_i64(&self) -> Option { impl_to_primitive_float_to_signed_int!($T, i64, *self) } #[inline] fn to_usize(&self) -> Option { impl_to_primitive_float_to_unsigned_int!($T, usize, *self) } #[inline] fn to_u8(&self) -> Option { impl_to_primitive_float_to_unsigned_int!($T, u8, *self) } #[inline] fn to_u16(&self) -> Option { impl_to_primitive_float_to_unsigned_int!($T, u16, *self) } #[inline] fn to_u32(&self) -> Option { impl_to_primitive_float_to_unsigned_int!($T, u32, *self) } #[inline] fn to_u64(&self) -> Option { impl_to_primitive_float_to_unsigned_int!($T, u64, *self) } #[inline] fn to_f32(&self) -> Option { impl_to_primitive_float_to_float!($T, f32, *self) } #[inline] fn to_f64(&self) -> Option { impl_to_primitive_float_to_float!($T, f64, *self) } } ) } impl_to_primitive_float!(f32); impl_to_primitive_float!(f64); /// A generic trait for converting a number to a value. pub trait FromPrimitive: Sized { /// Convert an `isize` to return an optional value of this type. If the /// value cannot be represented by this value, the `None` is returned. #[inline] fn from_isize(n: isize) -> Option { FromPrimitive::from_i64(n as i64) } /// Convert an `i8` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_i8(n: i8) -> Option { FromPrimitive::from_i64(n as i64) } /// Convert an `i16` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_i16(n: i16) -> Option { FromPrimitive::from_i64(n as i64) } /// Convert an `i32` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_i32(n: i32) -> Option { FromPrimitive::from_i64(n as i64) } /// Convert an `i64` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. fn from_i64(n: i64) -> Option; /// Convert a `usize` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_usize(n: usize) -> Option { FromPrimitive::from_u64(n as u64) } /// Convert an `u8` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_u8(n: u8) -> Option { FromPrimitive::from_u64(n as u64) } /// Convert an `u16` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_u16(n: u16) -> Option { FromPrimitive::from_u64(n as u64) } /// Convert an `u32` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_u32(n: u32) -> Option { FromPrimitive::from_u64(n as u64) } /// Convert an `u64` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. fn from_u64(n: u64) -> Option; /// Convert a `f32` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_f32(n: f32) -> Option { FromPrimitive::from_f64(n as f64) } /// Convert a `f64` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_f64(n: f64) -> Option { FromPrimitive::from_i64(n as i64) } } macro_rules! impl_from_primitive { ($T:ty, $to_ty:ident) => ( #[allow(deprecated)] impl FromPrimitive for $T { #[inline] fn from_i8(n: i8) -> Option<$T> { n.$to_ty() } #[inline] fn from_i16(n: i16) -> Option<$T> { n.$to_ty() } #[inline] fn from_i32(n: i32) -> Option<$T> { n.$to_ty() } #[inline] fn from_i64(n: i64) -> Option<$T> { n.$to_ty() } #[inline] fn from_u8(n: u8) -> Option<$T> { n.$to_ty() } #[inline] fn from_u16(n: u16) -> Option<$T> { n.$to_ty() } #[inline] fn from_u32(n: u32) -> Option<$T> { n.$to_ty() } #[inline] fn from_u64(n: u64) -> Option<$T> { n.$to_ty() } #[inline] fn from_f32(n: f32) -> Option<$T> { n.$to_ty() } #[inline] fn from_f64(n: f64) -> Option<$T> { n.$to_ty() } } ) } impl_from_primitive!(isize, to_isize); impl_from_primitive!(i8, to_i8); impl_from_primitive!(i16, to_i16); impl_from_primitive!(i32, to_i32); impl_from_primitive!(i64, to_i64); impl_from_primitive!(usize, to_usize); impl_from_primitive!(u8, to_u8); impl_from_primitive!(u16, to_u16); impl_from_primitive!(u32, to_u32); impl_from_primitive!(u64, to_u64); impl_from_primitive!(f32, to_f32); impl_from_primitive!(f64, to_f64); impl ToPrimitive for Wrapping { fn to_i64(&self) -> Option { self.0.to_i64() } fn to_u64(&self) -> Option { self.0.to_u64() } } impl FromPrimitive for Wrapping { fn from_u64(n: u64) -> Option { T::from_u64(n).map(Wrapping) } fn from_i64(n: i64) -> Option { T::from_i64(n).map(Wrapping) } } /// Cast from one machine scalar to another. /// /// # Examples /// /// ``` /// # use num_traits as num; /// let twenty: f32 = num::cast(0x14).unwrap(); /// assert_eq!(twenty, 20f32); /// ``` /// #[inline] pub fn cast(n: T) -> Option { NumCast::from(n) } /// An interface for casting between machine scalars. pub trait NumCast: Sized + ToPrimitive { /// Creates a number from another value that can be converted into /// a primitive via the `ToPrimitive` trait. fn from(n: T) -> Option; } macro_rules! impl_num_cast { ($T:ty, $conv:ident) => ( impl NumCast for $T { #[inline] #[allow(deprecated)] fn from(n: N) -> Option<$T> { // `$conv` could be generated using `concat_idents!`, but that // macro seems to be broken at the moment n.$conv() } } ) } impl_num_cast!(u8, to_u8); impl_num_cast!(u16, to_u16); impl_num_cast!(u32, to_u32); impl_num_cast!(u64, to_u64); impl_num_cast!(usize, to_usize); impl_num_cast!(i8, to_i8); impl_num_cast!(i16, to_i16); impl_num_cast!(i32, to_i32); impl_num_cast!(i64, to_i64); impl_num_cast!(isize, to_isize); impl_num_cast!(f32, to_f32); impl_num_cast!(f64, to_f64); impl NumCast for Wrapping { fn from(n: U) -> Option { T::from(n).map(Wrapping) } } /// A generic interface for casting between machine scalars with the /// `as` operator, which admits narrowing and precision loss. /// Implementers of this trait AsPrimitive should behave like a primitive /// numeric type (e.g. a newtype around another primitive), and the /// intended conversion must never fail. /// /// # Examples /// /// ``` /// # use num_traits::AsPrimitive; /// let three: i32 = (3.14159265f32).as_(); /// assert_eq!(three, 3); /// ``` /// /// # Safety /// /// Currently, some uses of the `as` operator are not entirely safe. /// In particular, it is undefined behavior if: /// /// - A truncated floating point value cannot fit in the target integer /// type ([#10184](https://github.com/rust-lang/rust/issues/10184)); /// /// ```ignore /// # use num_traits::AsPrimitive; /// let x: u8 = (1.04E+17).as_(); // UB /// ``` /// /// - Or a floating point value does not fit in another floating /// point type ([#15536](https://github.com/rust-lang/rust/issues/15536)). /// /// ```ignore /// # use num_traits::AsPrimitive; /// let x: f32 = (1e300f64).as_(); // UB /// ``` /// pub trait AsPrimitive: 'static + Copy where T: 'static + Copy { /// Convert a value to another, using the `as` operator. fn as_(self) -> T; } macro_rules! impl_as_primitive { ($T: ty => $( $U: ty ),* ) => { $( impl AsPrimitive<$U> for $T { #[inline] fn as_(self) -> $U { self as $U } } )* }; } impl_as_primitive!(u8 => char, u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); impl_as_primitive!(i8 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); impl_as_primitive!(u16 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); impl_as_primitive!(i16 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); impl_as_primitive!(u32 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); impl_as_primitive!(i32 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); impl_as_primitive!(u64 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); impl_as_primitive!(i64 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); impl_as_primitive!(usize => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); impl_as_primitive!(isize => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); impl_as_primitive!(f32 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); impl_as_primitive!(f64 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64); impl_as_primitive!(char => char, u8, i8, u16, i16, u32, i32, u64, isize, usize, i64); impl_as_primitive!(bool => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64); #[test] fn to_primitive_float() { use core::f32; use core::f64; let f32_toolarge = 1e39f64; assert_eq!(f32_toolarge.to_f32(), None); assert_eq!((f32::MAX as f64).to_f32(), Some(f32::MAX)); assert_eq!((-f32::MAX as f64).to_f32(), Some(-f32::MAX)); assert_eq!(f64::INFINITY.to_f32(), Some(f32::INFINITY)); assert_eq!((f64::NEG_INFINITY).to_f32(), Some(f32::NEG_INFINITY)); assert!((f64::NAN).to_f32().map_or(false, |f| f.is_nan())); } #[test] fn wrapping_to_primitive() { macro_rules! test_wrapping_to_primitive { ($($t:ty)+) => { $({ let i: $t = 0; let w = Wrapping(i); assert_eq!(i.to_u8(), w.to_u8()); assert_eq!(i.to_u16(), w.to_u16()); assert_eq!(i.to_u32(), w.to_u32()); assert_eq!(i.to_u64(), w.to_u64()); assert_eq!(i.to_usize(), w.to_usize()); assert_eq!(i.to_i8(), w.to_i8()); assert_eq!(i.to_i16(), w.to_i16()); assert_eq!(i.to_i32(), w.to_i32()); assert_eq!(i.to_i64(), w.to_i64()); assert_eq!(i.to_isize(), w.to_isize()); assert_eq!(i.to_f32(), w.to_f32()); assert_eq!(i.to_f64(), w.to_f64()); })+ }; } test_wrapping_to_primitive!(usize u8 u16 u32 u64 isize i8 i16 i32 i64); } #[test] fn wrapping_is_toprimitive() { fn require_toprimitive(_: &T) {} require_toprimitive(&Wrapping(42)); } #[test] fn wrapping_is_fromprimitive() { fn require_fromprimitive(_: &T) {} require_fromprimitive(&Wrapping(42)); } #[test] fn wrapping_is_numcast() { fn require_numcast(_: &T) {} require_numcast(&Wrapping(42)); } #[test] fn as_primitive() { let x: f32 = (1.625f64).as_(); assert_eq!(x, 1.625f32); let x: f32 = (3.14159265358979323846f64).as_(); assert_eq!(x, 3.1415927f32); let x: u8 = (768i16).as_(); assert_eq!(x, 0); } #[test] fn float_to_integer_checks_overflow() { // This will overflow an i32 let source: f64 = 1.0e+123f64; // Expect the overflow to be caught assert_eq!(cast::(source), None); } #[test] fn test_cast_to_int() { let big_f: f64 = 1.0e123; let normal_f: f64 = 1.0; let small_f: f64 = -1.0e123; assert_eq!(None, cast::(big_f)); assert_eq!(None, cast::(big_f)); assert_eq!(None, cast::(big_f)); assert_eq!(None, cast::(big_f)); assert_eq!(None, cast::(big_f)); assert_eq!(Some(normal_f as isize), cast::(normal_f)); assert_eq!(Some(normal_f as i8), cast::(normal_f)); assert_eq!(Some(normal_f as i16), cast::(normal_f)); assert_eq!(Some(normal_f as i32), cast::(normal_f)); assert_eq!(Some(normal_f as i64), cast::(normal_f)); assert_eq!(None, cast::(small_f)); assert_eq!(None, cast::(small_f)); assert_eq!(None, cast::(small_f)); assert_eq!(None, cast::(small_f)); assert_eq!(None, cast::(small_f)); } #[test] fn test_cast_to_unsigned_int() { let big_f: f64 = 1.0e123; let normal_f: f64 = 1.0; let small_f: f64 = -1.0e123; assert_eq!(None, cast::(big_f)); assert_eq!(None, cast::(big_f)); assert_eq!(None, cast::(big_f)); assert_eq!(None, cast::(big_f)); assert_eq!(None, cast::(big_f)); assert_eq!(Some(normal_f as usize), cast::(normal_f)); assert_eq!(Some(normal_f as u8), cast::(normal_f)); assert_eq!(Some(normal_f as u16), cast::(normal_f)); assert_eq!(Some(normal_f as u32), cast::(normal_f)); assert_eq!(Some(normal_f as u64), cast::(normal_f)); assert_eq!(None, cast::(small_f)); assert_eq!(None, cast::(small_f)); assert_eq!(None, cast::(small_f)); assert_eq!(None, cast::(small_f)); assert_eq!(None, cast::(small_f)); }