// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Numeric traits for generic mathematics use std::intrinsics; use std::ops::{Add, Div, Mul, Neg, Rem, Sub}; use std::{uint, u8, u16, u32, u64}; use std::{int, i8, i16, i32, i64}; use std::{f32, f64}; /// The base trait for numeric types pub trait Num: PartialEq + Zero + One + Neg + Add + Sub + Mul + Div + Rem {} macro_rules! trait_impl { ($name:ident for $($t:ty)*) => ($( impl $name for $t {} )*) } trait_impl!(Num for uint u8 u16 u32 u64 int i8 i16 i32 i64 f32 f64); /// Defines an additive identity element for `Self`. /// /// # Deriving /// /// This trait can be automatically be derived using `#[deriving(Zero)]` /// attribute. If you choose to use this, make sure that the laws outlined in /// the documentation for `Zero::zero` still hold. pub trait Zero: Add { /// Returns the additive identity element of `Self`, `0`. /// /// # Laws /// /// ```{.text} /// a + 0 = a ∀ a ∈ Self /// 0 + a = a ∀ a ∈ Self /// ``` /// /// # Purity /// /// This function should return the same result at all times regardless of /// external mutable state, for example values stored in TLS or in /// `static mut`s. // FIXME (#5527): This should be an associated constant fn zero() -> Self; /// Returns `true` if `self` is equal to the additive identity. #[inline] fn is_zero(&self) -> bool; } macro_rules! zero_impl { ($t:ty, $v:expr) => { impl Zero for $t { #[inline] fn zero() -> $t { $v } #[inline] fn is_zero(&self) -> bool { *self == $v } } } } zero_impl!(uint, 0u); zero_impl!(u8, 0u8); zero_impl!(u16, 0u16); zero_impl!(u32, 0u32); zero_impl!(u64, 0u64); zero_impl!(int, 0i); zero_impl!(i8, 0i8); zero_impl!(i16, 0i16); zero_impl!(i32, 0i32); zero_impl!(i64, 0i64); zero_impl!(f32, 0.0f32); zero_impl!(f64, 0.0f64); /// Defines a multiplicative identity element for `Self`. pub trait One: Mul { /// Returns the multiplicative identity element of `Self`, `1`. /// /// # Laws /// /// ```{.text} /// a * 1 = a ∀ a ∈ Self /// 1 * a = a ∀ a ∈ Self /// ``` /// /// # Purity /// /// This function should return the same result at all times regardless of /// external mutable state, for example values stored in TLS or in /// `static mut`s. // FIXME (#5527): This should be an associated constant fn one() -> Self; } macro_rules! one_impl { ($t:ty, $v:expr) => { impl One for $t { #[inline] fn one() -> $t { $v } } } } one_impl!(uint, 1u); one_impl!(u8, 1u8); one_impl!(u16, 1u16); one_impl!(u32, 1u32); one_impl!(u64, 1u64); one_impl!(int, 1i); one_impl!(i8, 1i8); one_impl!(i16, 1i16); one_impl!(i32, 1i32); one_impl!(i64, 1i64); one_impl!(f32, 1.0f32); one_impl!(f64, 1.0f64); /// Useful functions for signed numbers (i.e. numbers that can be negative). pub trait Signed: Num + Neg { /// Computes the absolute value. /// /// For `f32` and `f64`, `NaN` will be returned if the number is `NaN`. /// /// For signed integers, `::MIN` will be returned if the number is `::MIN`. fn abs(&self) -> Self; /// The positive difference of two numbers. /// /// Returns `zero` if the number is less than or equal to `other`, otherwise the difference /// between `self` and `other` is returned. fn abs_sub(&self, other: &Self) -> Self; /// Returns the sign of the number. /// /// For `f32` and `f64`: /// /// * `1.0` if the number is positive, `+0.0` or `INFINITY` /// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` /// * `NaN` if the number is `NaN` /// /// For signed integers: /// /// * `0` if the number is zero /// * `1` if the number is positive /// * `-1` if the number is negative fn signum(&self) -> Self; /// Returns true if the number is positive and false if the number is zero or negative. fn is_positive(&self) -> bool; /// Returns true if the number is negative and false if the number is zero or positive. fn is_negative(&self) -> bool; } macro_rules! signed_impl { ($($t:ty)*) => ($( impl Signed for $t { #[inline] fn abs(&self) -> $t { if self.is_negative() { -*self } else { *self } } #[inline] fn abs_sub(&self, other: &$t) -> $t { if *self <= *other { 0 } else { *self - *other } } #[inline] fn signum(&self) -> $t { match *self { n if n > 0 => 1, 0 => 0, _ => -1, } } #[inline] fn is_positive(&self) -> bool { *self > 0 } #[inline] fn is_negative(&self) -> bool { *self < 0 } } )*) } signed_impl!(int i8 i16 i32 i64); macro_rules! signed_float_impl { ($t:ty, $nan:expr, $inf:expr, $neg_inf:expr, $fabs:path, $fcopysign:path, $fdim:ident) => { impl Signed for $t { /// Computes the absolute value. Returns `NAN` if the number is `NAN`. #[inline] fn abs(&self) -> $t { unsafe { $fabs(*self) } } /// The positive difference of two numbers. Returns `0.0` if the number is /// less than or equal to `other`, otherwise the difference between`self` /// and `other` is returned. #[inline] fn abs_sub(&self, other: &$t) -> $t { extern { fn $fdim(a: $t, b: $t) -> $t; } unsafe { $fdim(*self, *other) } } /// # Returns /// /// - `1.0` if the number is positive, `+0.0` or `INFINITY` /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` /// - `NAN` if the number is NaN #[inline] fn signum(&self) -> $t { if self != self { $nan } else { unsafe { $fcopysign(1.0, *self) } } } /// Returns `true` if the number is positive, including `+0.0` and `INFINITY` #[inline] fn is_positive(&self) -> bool { *self > 0.0 || (1.0 / *self) == $inf } /// Returns `true` if the number is negative, including `-0.0` and `NEG_INFINITY` #[inline] fn is_negative(&self) -> bool { *self < 0.0 || (1.0 / *self) == $neg_inf } } } } signed_float_impl!(f32, f32::NAN, f32::INFINITY, f32::NEG_INFINITY, intrinsics::fabsf32, intrinsics::copysignf32, fdimf); signed_float_impl!(f64, f64::NAN, f64::INFINITY, f64::NEG_INFINITY, intrinsics::fabsf64, intrinsics::copysignf64, fdim); /// A trait for values which cannot be negative pub trait Unsigned: Num {} trait_impl!(Unsigned for uint u8 u16 u32 u64); /// Numbers which have upper and lower bounds pub trait Bounded { // FIXME (#5527): These should be associated constants /// returns the smallest finite number this type can represent fn min_value() -> Self; /// returns the largest finite number this type can represent fn max_value() -> Self; } macro_rules! bounded_impl { ($t:ty, $min:expr, $max:expr) => { impl Bounded for $t { #[inline] fn min_value() -> $t { $min } #[inline] fn max_value() -> $t { $max } } } } bounded_impl!(uint, uint::MIN, uint::MAX); bounded_impl!(u8, u8::MIN, u8::MAX); bounded_impl!(u16, u16::MIN, u16::MAX); bounded_impl!(u32, u32::MIN, u32::MAX); bounded_impl!(u64, u64::MIN, u64::MAX); bounded_impl!(int, int::MIN, int::MAX); bounded_impl!(i8, i8::MIN, i8::MAX); bounded_impl!(i16, i16::MIN, i16::MAX); bounded_impl!(i32, i32::MIN, i32::MAX); bounded_impl!(i64, i64::MIN, i64::MAX); bounded_impl!(f32, f32::MIN_VALUE, f32::MAX_VALUE); bounded_impl!(f64, f64::MIN_VALUE, f64::MAX_VALUE); /// Saturating math operations pub trait Saturating { /// Saturating addition operator. /// Returns a+b, saturating at the numeric bounds instead of overflowing. fn saturating_add(self, v: Self) -> Self; /// Saturating subtraction operator. /// Returns a-b, saturating at the numeric bounds instead of overflowing. fn saturating_sub(self, v: Self) -> Self; } impl Saturating for T { #[inline] fn saturating_add(self, v: T) -> T { match self.checked_add(&v) { Some(x) => x, None => if v >= Zero::zero() { Bounded::max_value() } else { Bounded::min_value() } } } #[inline] fn saturating_sub(self, v: T) -> T { match self.checked_sub(&v) { Some(x) => x, None => if v >= Zero::zero() { Bounded::min_value() } else { Bounded::max_value() } } } } /// Performs addition that returns `None` instead of wrapping around on overflow. pub trait CheckedAdd: Add { /// Adds two numbers, checking for overflow. If overflow happens, `None` is returned. /// /// # Example /// /// ```rust /// use num::CheckedAdd; /// assert_eq!(5u16.checked_add(&65530), Some(65535)); /// assert_eq!(6u16.checked_add(&65530), None); /// ``` fn checked_add(&self, v: &Self) -> Option; } macro_rules! checked_impl { ($trait_name:ident, $method:ident, $t:ty, $op:path) => { impl $trait_name for $t { #[inline] fn $method(&self, v: &$t) -> Option<$t> { unsafe { let (x, y) = $op(*self, *v); if y { None } else { Some(x) } } } } } } macro_rules! checked_cast_impl { ($trait_name:ident, $method:ident, $t:ty, $cast:ty, $op:path) => { impl $trait_name for $t { #[inline] fn $method(&self, v: &$t) -> Option<$t> { unsafe { let (x, y) = $op(*self as $cast, *v as $cast); if y { None } else { Some(x as $t) } } } } } } #[cfg(target_word_size = "32")] checked_cast_impl!(CheckedAdd, checked_add, uint, u32, intrinsics::u32_add_with_overflow); #[cfg(target_word_size = "64")] checked_cast_impl!(CheckedAdd, checked_add, uint, u64, intrinsics::u64_add_with_overflow); checked_impl!(CheckedAdd, checked_add, u8, intrinsics::u8_add_with_overflow); checked_impl!(CheckedAdd, checked_add, u16, intrinsics::u16_add_with_overflow); checked_impl!(CheckedAdd, checked_add, u32, intrinsics::u32_add_with_overflow); checked_impl!(CheckedAdd, checked_add, u64, intrinsics::u64_add_with_overflow); #[cfg(target_word_size = "32")] checked_cast_impl!(CheckedAdd, checked_add, int, i32, intrinsics::i32_add_with_overflow); #[cfg(target_word_size = "64")] checked_cast_impl!(CheckedAdd, checked_add, int, i64, intrinsics::i64_add_with_overflow); checked_impl!(CheckedAdd, checked_add, i8, intrinsics::i8_add_with_overflow); checked_impl!(CheckedAdd, checked_add, i16, intrinsics::i16_add_with_overflow); checked_impl!(CheckedAdd, checked_add, i32, intrinsics::i32_add_with_overflow); checked_impl!(CheckedAdd, checked_add, i64, intrinsics::i64_add_with_overflow); /// Performs subtraction that returns `None` instead of wrapping around on underflow. pub trait CheckedSub: Sub { /// Subtracts two numbers, checking for underflow. If underflow happens, `None` is returned. /// /// # Example /// /// ```rust /// use num::CheckedSub; /// assert_eq!((-127i8).checked_sub(&1), Some(-128)); /// assert_eq!((-128i8).checked_sub(&1), None); /// ``` fn checked_sub(&self, v: &Self) -> Option; } #[cfg(target_word_size = "32")] checked_cast_impl!(CheckedSub, checked_sub, uint, u32, intrinsics::u32_sub_with_overflow); #[cfg(target_word_size = "64")] checked_cast_impl!(CheckedSub, checked_sub, uint, u64, intrinsics::u64_sub_with_overflow); checked_impl!(CheckedSub, checked_sub, u8, intrinsics::u8_sub_with_overflow); checked_impl!(CheckedSub, checked_sub, u16, intrinsics::u16_sub_with_overflow); checked_impl!(CheckedSub, checked_sub, u32, intrinsics::u32_sub_with_overflow); checked_impl!(CheckedSub, checked_sub, u64, intrinsics::u64_sub_with_overflow); #[cfg(target_word_size = "32")] checked_cast_impl!(CheckedSub, checked_sub, int, i32, intrinsics::i32_sub_with_overflow); #[cfg(target_word_size = "64")] checked_cast_impl!(CheckedSub, checked_sub, int, i64, intrinsics::i64_sub_with_overflow); checked_impl!(CheckedSub, checked_sub, i8, intrinsics::i8_sub_with_overflow); checked_impl!(CheckedSub, checked_sub, i16, intrinsics::i16_sub_with_overflow); checked_impl!(CheckedSub, checked_sub, i32, intrinsics::i32_sub_with_overflow); checked_impl!(CheckedSub, checked_sub, i64, intrinsics::i64_sub_with_overflow); /// Performs multiplication that returns `None` instead of wrapping around on underflow or /// overflow. pub trait CheckedMul: Mul { /// Multiplies two numbers, checking for underflow or overflow. If underflow or overflow /// happens, `None` is returned. /// /// # Example /// /// ```rust /// use num::CheckedMul; /// assert_eq!(5u8.checked_mul(&51), Some(255)); /// assert_eq!(5u8.checked_mul(&52), None); /// ``` fn checked_mul(&self, v: &Self) -> Option; } #[cfg(target_word_size = "32")] checked_cast_impl!(CheckedMul, checked_mul, uint, u32, intrinsics::u32_mul_with_overflow); #[cfg(target_word_size = "64")] checked_cast_impl!(CheckedMul, checked_mul, uint, u64, intrinsics::u64_mul_with_overflow); checked_impl!(CheckedMul, checked_mul, u8, intrinsics::u8_mul_with_overflow); checked_impl!(CheckedMul, checked_mul, u16, intrinsics::u16_mul_with_overflow); checked_impl!(CheckedMul, checked_mul, u32, intrinsics::u32_mul_with_overflow); checked_impl!(CheckedMul, checked_mul, u64, intrinsics::u64_mul_with_overflow); #[cfg(target_word_size = "32")] checked_cast_impl!(CheckedMul, checked_mul, int, i32, intrinsics::i32_mul_with_overflow); #[cfg(target_word_size = "64")] checked_cast_impl!(CheckedMul, checked_mul, int, i64, intrinsics::i64_mul_with_overflow); checked_impl!(CheckedMul, checked_mul, i8, intrinsics::i8_mul_with_overflow); checked_impl!(CheckedMul, checked_mul, i16, intrinsics::i16_mul_with_overflow); checked_impl!(CheckedMul, checked_mul, i32, intrinsics::i32_mul_with_overflow); checked_impl!(CheckedMul, checked_mul, i64, intrinsics::i64_mul_with_overflow); /// Performs division that returns `None` instead of panicking on division by zero and instead of /// wrapping around on underflow and overflow. pub trait CheckedDiv: Div { /// Divides two numbers, checking for underflow, overflow and division by zero. If any of that /// happens, `None` is returned. /// /// # Example /// /// ```rust /// use num::CheckedDiv; /// assert_eq!((-127i8).checked_div(&-1), Some(127)); /// assert_eq!((-128i8).checked_div(&-1), None); /// assert_eq!((1i8).checked_div(&0), None); /// ``` fn checked_div(&self, v: &Self) -> Option; } macro_rules! checkeddiv_int_impl { ($t:ty, $min:expr) => { impl CheckedDiv for $t { #[inline] fn checked_div(&self, v: &$t) -> Option<$t> { if *v == 0 || (*self == $min && *v == -1) { None } else { Some(*self / *v) } } } } } checkeddiv_int_impl!(int, int::MIN); checkeddiv_int_impl!(i8, i8::MIN); checkeddiv_int_impl!(i16, i16::MIN); checkeddiv_int_impl!(i32, i32::MIN); checkeddiv_int_impl!(i64, i64::MIN); macro_rules! checkeddiv_uint_impl { ($($t:ty)*) => ($( impl CheckedDiv for $t { #[inline] fn checked_div(&self, v: &$t) -> Option<$t> { if *v == 0 { None } else { Some(*self / *v) } } } )*) } checkeddiv_uint_impl!(uint u8 u16 u32 u64);