// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Complex numbers. #![doc(html_logo_url = "https://rust-num.github.io/num/rust-logo-128x128-blk-v2.png", html_favicon_url = "https://rust-num.github.io/num/favicon.ico", html_root_url = "https://rust-num.github.io/num/", html_playground_url = "http://play.integer32.com/")] extern crate num_traits as traits; #[cfg(feature = "rustc-serialize")] extern crate rustc_serialize; #[cfg(feature = "serde")] extern crate serde; use std::fmt; #[cfg(test)] use std::hash; use std::ops::{Add, Div, Mul, Neg, Sub}; use traits::{Zero, One, Num, Float}; // FIXME #1284: handle complex NaN & infinity etc. This // probably doesn't map to C's _Complex correctly. /// A complex number in Cartesian form. /// /// ## Representation and Foreign Function Interface Compatibility /// /// `Complex` is memory layout compatible with an array `[T; 2]`. /// /// Note that `Complex` where F is a floating point type is **only** memory /// layout compatible with C's complex types, **not** necessarily calling /// convention compatible. This means that for FFI you can only pass /// `Complex` behind a pointer, not as a value. /// /// ## Examples /// /// Example of extern function declaration. /// /// ``` /// use num_complex::Complex; /// use std::os::raw::c_int; /// /// extern "C" { /// fn zaxpy_(n: *const c_int, alpha: *const Complex, /// x: *const Complex, incx: *const c_int, /// y: *mut Complex, incy: *const c_int); /// } /// ``` #[derive(PartialEq, Eq, Copy, Clone, Hash, Debug, Default)] #[cfg_attr(feature = "rustc-serialize", derive(RustcEncodable, RustcDecodable))] #[repr(C)] pub struct Complex { /// Real portion of the complex number pub re: T, /// Imaginary portion of the complex number pub im: T } pub type Complex32 = Complex; pub type Complex64 = Complex; impl Complex { /// Create a new Complex #[inline] pub fn new(re: T, im: T) -> Complex { Complex { re: re, im: im } } /// Returns imaginary unit #[inline] pub fn i() -> Complex { Self::new(T::zero(), T::one()) } /// Returns the square of the norm (since `T` doesn't necessarily /// have a sqrt function), i.e. `re^2 + im^2`. #[inline] pub fn norm_sqr(&self) -> T { self.re.clone() * self.re.clone() + self.im.clone() * self.im.clone() } /// Multiplies `self` by the scalar `t`. #[inline] pub fn scale(&self, t: T) -> Complex { Complex::new(self.re.clone() * t.clone(), self.im.clone() * t) } /// Divides `self` by the scalar `t`. #[inline] pub fn unscale(&self, t: T) -> Complex { Complex::new(self.re.clone() / t.clone(), self.im.clone() / t) } } impl> Complex { /// Returns the complex conjugate. i.e. `re - i im` #[inline] pub fn conj(&self) -> Complex { Complex::new(self.re.clone(), -self.im.clone()) } /// Returns `1/self` #[inline] pub fn inv(&self) -> Complex { let norm_sqr = self.norm_sqr(); Complex::new(self.re.clone() / norm_sqr.clone(), -self.im.clone() / norm_sqr) } } impl Complex { /// Calculate |self| #[inline] pub fn norm(&self) -> T { self.re.hypot(self.im) } /// Calculate the principal Arg of self. #[inline] pub fn arg(&self) -> T { self.im.atan2(self.re) } /// Convert to polar form (r, theta), such that `self = r * exp(i /// * theta)` #[inline] pub fn to_polar(&self) -> (T, T) { (self.norm(), self.arg()) } /// Convert a polar representation into a complex number. #[inline] pub fn from_polar(r: &T, theta: &T) -> Complex { Complex::new(*r * theta.cos(), *r * theta.sin()) } /// Computes `e^(self)`, where `e` is the base of the natural logarithm. #[inline] pub fn exp(&self) -> Complex { // formula: e^(a + bi) = e^a (cos(b) + i*sin(b)) // = from_polar(e^a, b) Complex::from_polar(&self.re.exp(), &self.im) } /// Computes the principal value of natural logarithm of `self`. /// /// This function has one branch cut: /// /// * `(-∞, 0]`, continuous from above. /// /// The branch satisfies `-π ≤ arg(ln(z)) ≤ π`. #[inline] pub fn ln(&self) -> Complex { // formula: ln(z) = ln|z| + i*arg(z) let (r, theta) = self.to_polar(); Complex::new(r.ln(), theta) } /// Computes the principal value of the square root of `self`. /// /// This function has one branch cut: /// /// * `(-∞, 0)`, continuous from above. /// /// The branch satisfies `-π/2 ≤ arg(sqrt(z)) ≤ π/2`. #[inline] pub fn sqrt(&self) -> Complex { // formula: sqrt(r e^(it)) = sqrt(r) e^(it/2) let two = T::one() + T::one(); let (r, theta) = self.to_polar(); Complex::from_polar(&(r.sqrt()), &(theta/two)) } /// Raises `self` to a floating point power. #[inline] pub fn powf(&self, exp: T) -> Complex { // formula: x^y = (ρ e^(i θ))^y = ρ^y e^(i θ y) // = from_polar(ρ^y, θ y) let (r, theta) = self.to_polar(); Complex::from_polar(&r.powf(exp), &(theta*exp)) } /// Returns the logarithm of `self` with respect to an arbitrary base. #[inline] pub fn log(&self, base: T) -> Complex { // formula: log_y(x) = log_y(ρ e^(i θ)) // = log_y(ρ) + log_y(e^(i θ)) = log_y(ρ) + ln(e^(i θ)) / ln(y) // = log_y(ρ) + i θ / ln(y) let (r, theta) = self.to_polar(); Complex::new(r.log(base), theta / base.ln()) } /// Raises `self` to a complex power. #[inline] pub fn powc(&self, exp: Complex) -> Complex { // formula: x^y = (a + i b)^(c + i d) // = (ρ e^(i θ))^c (ρ e^(i θ))^(i d) // where ρ=|x| and θ=arg(x) // = ρ^c e^(−d θ) e^(i c θ) ρ^(i d) // = p^c e^(−d θ) (cos(c θ) // + i sin(c θ)) (cos(d ln(ρ)) + i sin(d ln(ρ))) // = p^c e^(−d θ) ( // cos(c θ) cos(d ln(ρ)) − sin(c θ) sin(d ln(ρ)) // + i(cos(c θ) sin(d ln(ρ)) + sin(c θ) cos(d ln(ρ)))) // = p^c e^(−d θ) (cos(c θ + d ln(ρ)) + i sin(c θ + d ln(ρ))) // = from_polar(p^c e^(−d θ), c θ + d ln(ρ)) let (r, theta) = self.to_polar(); Complex::from_polar( &(r.powf(exp.re) * (-exp.im * theta).exp()), &(exp.re * theta + exp.im * r.ln())) } /// Raises a floating point number to the complex power `self`. #[inline] pub fn expf(&self, base: T) -> Complex { // formula: x^(a+bi) = x^a x^bi = x^a e^(b ln(x) i) // = from_polar(x^a, b ln(x)) Complex::from_polar(&base.powf(self.re), &(self.im * base.ln())) } /// Computes the sine of `self`. #[inline] pub fn sin(&self) -> Complex { // formula: sin(a + bi) = sin(a)cosh(b) + i*cos(a)sinh(b) Complex::new(self.re.sin() * self.im.cosh(), self.re.cos() * self.im.sinh()) } /// Computes the cosine of `self`. #[inline] pub fn cos(&self) -> Complex { // formula: cos(a + bi) = cos(a)cosh(b) - i*sin(a)sinh(b) Complex::new(self.re.cos() * self.im.cosh(), -self.re.sin() * self.im.sinh()) } /// Computes the tangent of `self`. #[inline] pub fn tan(&self) -> Complex { // formula: tan(a + bi) = (sin(2a) + i*sinh(2b))/(cos(2a) + cosh(2b)) let (two_re, two_im) = (self.re + self.re, self.im + self.im); Complex::new(two_re.sin(), two_im.sinh()).unscale(two_re.cos() + two_im.cosh()) } /// Computes the principal value of the inverse sine of `self`. /// /// This function has two branch cuts: /// /// * `(-∞, -1)`, continuous from above. /// * `(1, ∞)`, continuous from below. /// /// The branch satisfies `-π/2 ≤ Re(asin(z)) ≤ π/2`. #[inline] pub fn asin(&self) -> Complex { // formula: arcsin(z) = -i ln(sqrt(1-z^2) + iz) let i = Complex::i(); -i*((Complex::one() - self*self).sqrt() + i*self).ln() } /// Computes the principal value of the inverse cosine of `self`. /// /// This function has two branch cuts: /// /// * `(-∞, -1)`, continuous from above. /// * `(1, ∞)`, continuous from below. /// /// The branch satisfies `0 ≤ Re(acos(z)) ≤ π`. #[inline] pub fn acos(&self) -> Complex { // formula: arccos(z) = -i ln(i sqrt(1-z^2) + z) let i = Complex::i(); -i*(i*(Complex::one() - self*self).sqrt() + self).ln() } /// Computes the principal value of the inverse tangent of `self`. /// /// This function has two branch cuts: /// /// * `(-∞i, -i]`, continuous from the left. /// * `[i, ∞i)`, continuous from the right. /// /// The branch satisfies `-π/2 ≤ Re(atan(z)) ≤ π/2`. #[inline] pub fn atan(&self) -> Complex { // formula: arctan(z) = (ln(1+iz) - ln(1-iz))/(2i) let i = Complex::i(); let one = Complex::one(); let two = one + one; if *self == i { return Complex::new(T::zero(), T::infinity()); } else if *self == -i { return Complex::new(T::zero(), -T::infinity()); } ((one + i * self).ln() - (one - i * self).ln()) / (two * i) } /// Computes the hyperbolic sine of `self`. #[inline] pub fn sinh(&self) -> Complex { // formula: sinh(a + bi) = sinh(a)cos(b) + i*cosh(a)sin(b) Complex::new(self.re.sinh() * self.im.cos(), self.re.cosh() * self.im.sin()) } /// Computes the hyperbolic cosine of `self`. #[inline] pub fn cosh(&self) -> Complex { // formula: cosh(a + bi) = cosh(a)cos(b) + i*sinh(a)sin(b) Complex::new(self.re.cosh() * self.im.cos(), self.re.sinh() * self.im.sin()) } /// Computes the hyperbolic tangent of `self`. #[inline] pub fn tanh(&self) -> Complex { // formula: tanh(a + bi) = (sinh(2a) + i*sin(2b))/(cosh(2a) + cos(2b)) let (two_re, two_im) = (self.re + self.re, self.im + self.im); Complex::new(two_re.sinh(), two_im.sin()).unscale(two_re.cosh() + two_im.cos()) } /// Computes the principal value of inverse hyperbolic sine of `self`. /// /// This function has two branch cuts: /// /// * `(-∞i, -i)`, continuous from the left. /// * `(i, ∞i)`, continuous from the right. /// /// The branch satisfies `-π/2 ≤ Im(asinh(z)) ≤ π/2`. #[inline] pub fn asinh(&self) -> Complex { // formula: arcsinh(z) = ln(z + sqrt(1+z^2)) let one = Complex::one(); (self + (one + self * self).sqrt()).ln() } /// Computes the principal value of inverse hyperbolic cosine of `self`. /// /// This function has one branch cut: /// /// * `(-∞, 1)`, continuous from above. /// /// The branch satisfies `-π ≤ Im(acosh(z)) ≤ π` and `0 ≤ Re(acosh(z)) < ∞`. #[inline] pub fn acosh(&self) -> Complex { // formula: arccosh(z) = 2 ln(sqrt((z+1)/2) + sqrt((z-1)/2)) let one = Complex::one(); let two = one + one; two * (((self + one)/two).sqrt() + ((self - one)/two).sqrt()).ln() } /// Computes the principal value of inverse hyperbolic tangent of `self`. /// /// This function has two branch cuts: /// /// * `(-∞, -1]`, continuous from above. /// * `[1, ∞)`, continuous from below. /// /// The branch satisfies `-π/2 ≤ Im(atanh(z)) ≤ π/2`. #[inline] pub fn atanh(&self) -> Complex { // formula: arctanh(z) = (ln(1+z) - ln(1-z))/2 let one = Complex::one(); let two = one + one; if *self == one { return Complex::new(T::infinity(), T::zero()); } else if *self == -one { return Complex::new(-T::infinity(), T::zero()); } ((one + self).ln() - (one - self).ln()) / two } /// Checks if the given complex number is NaN #[inline] pub fn is_nan(self) -> bool { self.re.is_nan() || self.im.is_nan() } /// Checks if the given complex number is infinite #[inline] pub fn is_infinite(self) -> bool { !self.is_nan() && (self.re.is_infinite() || self.im.is_infinite()) } /// Checks if the given complex number is finite #[inline] pub fn is_finite(self) -> bool { self.re.is_finite() && self.im.is_finite() } /// Checks if the given complex number is normal #[inline] pub fn is_normal(self) -> bool { self.re.is_normal() && self.im.is_normal() } } impl From for Complex { #[inline] fn from(re: T) -> Complex { Complex { re: re, im: T::zero() } } } impl<'a, T: Clone + Num> From<&'a T> for Complex { #[inline] fn from(re: &T) -> Complex { From::from(re.clone()) } } macro_rules! forward_ref_ref_binop { (impl $imp:ident, $method:ident) => { impl<'a, 'b, T: Clone + Num> $imp<&'b Complex> for &'a Complex { type Output = Complex; #[inline] fn $method(self, other: &Complex) -> Complex { self.clone().$method(other.clone()) } } } } macro_rules! forward_ref_val_binop { (impl $imp:ident, $method:ident) => { impl<'a, T: Clone + Num> $imp> for &'a Complex { type Output = Complex; #[inline] fn $method(self, other: Complex) -> Complex { self.clone().$method(other) } } } } macro_rules! forward_val_ref_binop { (impl $imp:ident, $method:ident) => { impl<'a, T: Clone + Num> $imp<&'a Complex> for Complex { type Output = Complex; #[inline] fn $method(self, other: &Complex) -> Complex { self.$method(other.clone()) } } } } macro_rules! forward_all_binop { (impl $imp:ident, $method:ident) => { forward_ref_ref_binop!(impl $imp, $method); forward_ref_val_binop!(impl $imp, $method); forward_val_ref_binop!(impl $imp, $method); }; } /* arithmetic */ forward_all_binop!(impl Add, add); // (a + i b) + (c + i d) == (a + c) + i (b + d) impl Add> for Complex { type Output = Complex; #[inline] fn add(self, other: Complex) -> Complex { Complex::new(self.re + other.re, self.im + other.im) } } forward_all_binop!(impl Sub, sub); // (a + i b) - (c + i d) == (a - c) + i (b - d) impl Sub> for Complex { type Output = Complex; #[inline] fn sub(self, other: Complex) -> Complex { Complex::new(self.re - other.re, self.im - other.im) } } forward_all_binop!(impl Mul, mul); // (a + i b) * (c + i d) == (a*c - b*d) + i (a*d + b*c) impl Mul> for Complex { type Output = Complex; #[inline] fn mul(self, other: Complex) -> Complex { let re = self.re.clone() * other.re.clone() - self.im.clone() * other.im.clone(); let im = self.re * other.im + self.im * other.re; Complex::new(re, im) } } forward_all_binop!(impl Div, div); // (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d) // == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)] impl Div> for Complex { type Output = Complex; #[inline] fn div(self, other: Complex) -> Complex { let norm_sqr = other.norm_sqr(); let re = self.re.clone() * other.re.clone() + self.im.clone() * other.im.clone(); let im = self.im * other.re - self.re * other.im; Complex::new(re / norm_sqr.clone(), im / norm_sqr) } } impl> Neg for Complex { type Output = Complex; #[inline] fn neg(self) -> Complex { Complex::new(-self.re, -self.im) } } impl<'a, T: Clone + Num + Neg> Neg for &'a Complex { type Output = Complex; #[inline] fn neg(self) -> Complex { -self.clone() } } macro_rules! real_arithmetic { (@forward $imp:ident::$method:ident for $($real:ident),*) => ( impl<'a, T: Clone + Num> $imp<&'a T> for Complex { type Output = Complex; #[inline] fn $method(self, other: &T) -> Complex { self.$method(other.clone()) } } impl<'a, T: Clone + Num> $imp for &'a Complex { type Output = Complex; #[inline] fn $method(self, other: T) -> Complex { self.clone().$method(other) } } impl<'a, 'b, T: Clone + Num> $imp<&'a T> for &'b Complex { type Output = Complex; #[inline] fn $method(self, other: &T) -> Complex { self.clone().$method(other.clone()) } } $( impl<'a> $imp<&'a Complex<$real>> for $real { type Output = Complex<$real>; #[inline] fn $method(self, other: &Complex<$real>) -> Complex<$real> { self.$method(other.clone()) } } impl<'a> $imp> for &'a $real { type Output = Complex<$real>; #[inline] fn $method(self, other: Complex<$real>) -> Complex<$real> { self.clone().$method(other) } } impl<'a, 'b> $imp<&'a Complex<$real>> for &'b $real { type Output = Complex<$real>; #[inline] fn $method(self, other: &Complex<$real>) -> Complex<$real> { self.clone().$method(other.clone()) } } )* ); (@implement $imp:ident::$method:ident for $($real:ident),*) => ( impl $imp for Complex { type Output = Complex; #[inline] fn $method(self, other: T) -> Complex { self.$method(Complex::from(other)) } } $( impl $imp> for $real { type Output = Complex<$real>; #[inline] fn $method(self, other: Complex<$real>) -> Complex<$real> { Complex::from(self).$method(other) } } )* ); ($($real:ident),*) => ( real_arithmetic!(@forward Add::add for $($real),*); real_arithmetic!(@forward Sub::sub for $($real),*); real_arithmetic!(@forward Mul::mul for $($real),*); real_arithmetic!(@forward Div::div for $($real),*); real_arithmetic!(@implement Add::add for $($real),*); real_arithmetic!(@implement Sub::sub for $($real),*); real_arithmetic!(@implement Mul::mul for $($real),*); real_arithmetic!(@implement Div::div for $($real),*); ); } real_arithmetic!(usize, u8, u16, u32, u64, isize, i8, i16, i32, i64, f32, f64); /* constants */ impl Zero for Complex { #[inline] fn zero() -> Complex { Complex::new(Zero::zero(), Zero::zero()) } #[inline] fn is_zero(&self) -> bool { self.re.is_zero() && self.im.is_zero() } } impl One for Complex { #[inline] fn one() -> Complex { Complex::new(One::one(), Zero::zero()) } } macro_rules! write_complex { ($f:ident, $t:expr, $prefix:expr, $re:expr, $im:expr, $T:ident) => {{ let abs_re = if $re < Zero::zero() { $T::zero() - $re.clone() } else { $re.clone() }; let abs_im = if $im < Zero::zero() { $T::zero() - $im.clone() } else { $im.clone() }; let real: String; let imag: String; if let Some(prec) = $f.precision() { real = format!(concat!("{:.1$", $t, "}"), abs_re, prec); imag = format!(concat!("{:.1$", $t, "}"), abs_im, prec); } else { real = format!(concat!("{:", $t, "}"), abs_re); imag = format!(concat!("{:", $t, "}"), abs_im); } let prefix = if $f.alternate() { $prefix } else { "" }; let sign = if $re < Zero::zero() { "-" } else if $f.sign_plus() { "+" } else { "" }; let complex = if $im < Zero::zero() { format!("{}{pre}{re}-{pre}{im}i", sign, re=real, im=imag, pre=prefix) } else { format!("{}{pre}{re}+{pre}{im}i", sign, re=real, im=imag, pre=prefix) }; if let Some(width) = $f.width() { write!($f, "{0: >1$}", complex, width) } else { write!($f, "{}", complex) } }} } /* string conversions */ impl fmt::Display for Complex where T: fmt::Display + Num + PartialOrd + Clone { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write_complex!(f, "", "", self.re, self.im, T) } } impl fmt::LowerExp for Complex where T: fmt::LowerExp + Num + PartialOrd + Clone { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write_complex!(f, "e", "", self.re, self.im, T) } } impl fmt::UpperExp for Complex where T: fmt::UpperExp + Num + PartialOrd + Clone { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write_complex!(f, "E", "", self.re, self.im, T) } } impl fmt::LowerHex for Complex where T: fmt::LowerHex + Num + PartialOrd + Clone { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write_complex!(f, "x", "0x", self.re, self.im, T) } } impl fmt::UpperHex for Complex where T: fmt::UpperHex + Num + PartialOrd + Clone { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write_complex!(f, "X", "0x", self.re, self.im, T) } } impl fmt::Octal for Complex where T: fmt::Octal + Num + PartialOrd + Clone { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write_complex!(f, "o", "0o", self.re, self.im, T) } } impl fmt::Binary for Complex where T: fmt::Binary + Num + PartialOrd + Clone { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write_complex!(f, "b", "0b", self.re, self.im, T) } } #[cfg(feature = "serde")] impl serde::Serialize for Complex where T: serde::Serialize { fn serialize(&self, serializer: &mut S) -> Result<(), S::Error> where S: serde::Serializer { (&self.re, &self.im).serialize(serializer) } } #[cfg(feature = "serde")] impl serde::Deserialize for Complex where T: serde::Deserialize + Num + Clone { fn deserialize(deserializer: &mut D) -> Result where D: serde::Deserializer, { let (re, im) = try!(serde::Deserialize::deserialize(deserializer)); Ok(Complex::new(re, im)) } } #[cfg(test)] fn hash(x: &T) -> u64 { use std::hash::{BuildHasher, Hasher}; use std::collections::hash_map::RandomState; let mut hasher = ::Hasher::new(); x.hash(&mut hasher); hasher.finish() } #[cfg(test)] mod test { #![allow(non_upper_case_globals)] use super::{Complex64, Complex}; use std::f64; use traits::{Zero, One, Float}; pub const _0_0i : Complex64 = Complex { re: 0.0, im: 0.0 }; pub const _1_0i : Complex64 = Complex { re: 1.0, im: 0.0 }; pub const _1_1i : Complex64 = Complex { re: 1.0, im: 1.0 }; pub const _0_1i : Complex64 = Complex { re: 0.0, im: 1.0 }; pub const _neg1_1i : Complex64 = Complex { re: -1.0, im: 1.0 }; pub const _05_05i : Complex64 = Complex { re: 0.5, im: 0.5 }; pub const all_consts : [Complex64; 5] = [_0_0i, _1_0i, _1_1i, _neg1_1i, _05_05i]; #[test] fn test_consts() { // check our constants are what Complex::new creates fn test(c : Complex64, r : f64, i: f64) { assert_eq!(c, Complex::new(r,i)); } test(_0_0i, 0.0, 0.0); test(_1_0i, 1.0, 0.0); test(_1_1i, 1.0, 1.0); test(_neg1_1i, -1.0, 1.0); test(_05_05i, 0.5, 0.5); assert_eq!(_0_0i, Zero::zero()); assert_eq!(_1_0i, One::one()); } #[test] #[cfg_attr(target_arch = "x86", ignore)] // FIXME #7158: (maybe?) currently failing on x86. fn test_norm() { fn test(c: Complex64, ns: f64) { assert_eq!(c.norm_sqr(), ns); assert_eq!(c.norm(), ns.sqrt()) } test(_0_0i, 0.0); test(_1_0i, 1.0); test(_1_1i, 2.0); test(_neg1_1i, 2.0); test(_05_05i, 0.5); } #[test] fn test_scale_unscale() { assert_eq!(_05_05i.scale(2.0), _1_1i); assert_eq!(_1_1i.unscale(2.0), _05_05i); for &c in all_consts.iter() { assert_eq!(c.scale(2.0).unscale(2.0), c); } } #[test] fn test_conj() { for &c in all_consts.iter() { assert_eq!(c.conj(), Complex::new(c.re, -c.im)); assert_eq!(c.conj().conj(), c); } } #[test] fn test_inv() { assert_eq!(_1_1i.inv(), _05_05i.conj()); assert_eq!(_1_0i.inv(), _1_0i.inv()); } #[test] #[should_panic] fn test_divide_by_zero_natural() { let n = Complex::new(2, 3); let d = Complex::new(0, 0); let _x = n / d; } #[test] fn test_inv_zero() { // FIXME #20: should this really fail, or just NaN? assert!(_0_0i.inv().is_nan()); } #[test] fn test_arg() { fn test(c: Complex64, arg: f64) { assert!((c.arg() - arg).abs() < 1.0e-6) } test(_1_0i, 0.0); test(_1_1i, 0.25 * f64::consts::PI); test(_neg1_1i, 0.75 * f64::consts::PI); test(_05_05i, 0.25 * f64::consts::PI); } #[test] fn test_polar_conv() { fn test(c: Complex64) { let (r, theta) = c.to_polar(); assert!((c - Complex::from_polar(&r, &theta)).norm() < 1e-6); } for &c in all_consts.iter() { test(c); } } fn close(a: Complex64, b: Complex64) -> bool { close_to_tol(a, b, 1e-10) } fn close_to_tol(a: Complex64, b: Complex64, tol: f64) -> bool { // returns true if a and b are reasonably close (a == b) || (a-b).norm() < tol } #[test] fn test_exp() { assert!(close(_1_0i.exp(), _1_0i.scale(f64::consts::E))); assert!(close(_0_0i.exp(), _1_0i)); assert!(close(_0_1i.exp(), Complex::new(1.0.cos(), 1.0.sin()))); assert!(close(_05_05i.exp()*_05_05i.exp(), _1_1i.exp())); assert!(close(_0_1i.scale(-f64::consts::PI).exp(), _1_0i.scale(-1.0))); for &c in all_consts.iter() { // e^conj(z) = conj(e^z) assert!(close(c.conj().exp(), c.exp().conj())); // e^(z + 2 pi i) = e^z assert!(close(c.exp(), (c + _0_1i.scale(f64::consts::PI*2.0)).exp())); } } #[test] fn test_ln() { assert!(close(_1_0i.ln(), _0_0i)); assert!(close(_0_1i.ln(), _0_1i.scale(f64::consts::PI/2.0))); assert!(close(_0_0i.ln(), Complex::new(f64::neg_infinity(), 0.0))); assert!(close((_neg1_1i * _05_05i).ln(), _neg1_1i.ln() + _05_05i.ln())); for &c in all_consts.iter() { // ln(conj(z() = conj(ln(z)) assert!(close(c.conj().ln(), c.ln().conj())); // for this branch, -pi <= arg(ln(z)) <= pi assert!(-f64::consts::PI <= c.ln().arg() && c.ln().arg() <= f64::consts::PI); } } #[test] fn test_powc() { let a = Complex::new(2.0, -3.0); let b = Complex::new(3.0, 0.0); assert!(close(a.powc(b), a.powf(b.re))); assert!(close(b.powc(a), a.expf(b.re))); let c = Complex::new(1.0 / 3.0, 0.1); assert!(close_to_tol(a.powc(c), Complex::new(1.65826, -0.33502), 1e-5)); } #[test] fn test_powf() { let c = Complex::new(2.0, -1.0); let r = c.powf(3.5); assert!(close_to_tol(r, Complex::new(-0.8684746, -16.695934), 1e-5)); } #[test] fn test_log() { let c = Complex::new(2.0, -1.0); let r = c.log(10.0); assert!(close_to_tol(r, Complex::new(0.349485, -0.20135958), 1e-5)); } #[test] fn test_some_expf_cases() { let c = Complex::new(2.0, -1.0); let r = c.expf(10.0); assert!(close_to_tol(r, Complex::new(-66.82015, -74.39803), 1e-5)); let c = Complex::new(5.0, -2.0); let r = c.expf(3.4); assert!(close_to_tol(r, Complex::new(-349.25, -290.63), 1e-2)); let c = Complex::new(-1.5, 2.0 / 3.0); let r = c.expf(1.0 / 3.0); assert!(close_to_tol(r, Complex::new(3.8637, -3.4745), 1e-2)); } #[test] fn test_sqrt() { assert!(close(_0_0i.sqrt(), _0_0i)); assert!(close(_1_0i.sqrt(), _1_0i)); assert!(close(Complex::new(-1.0, 0.0).sqrt(), _0_1i)); assert!(close(Complex::new(-1.0, -0.0).sqrt(), _0_1i.scale(-1.0))); assert!(close(_0_1i.sqrt(), _05_05i.scale(2.0.sqrt()))); for &c in all_consts.iter() { // sqrt(conj(z() = conj(sqrt(z)) assert!(close(c.conj().sqrt(), c.sqrt().conj())); // for this branch, -pi/2 <= arg(sqrt(z)) <= pi/2 assert!(-f64::consts::PI/2.0 <= c.sqrt().arg() && c.sqrt().arg() <= f64::consts::PI/2.0); // sqrt(z) * sqrt(z) = z assert!(close(c.sqrt()*c.sqrt(), c)); } } #[test] fn test_sin() { assert!(close(_0_0i.sin(), _0_0i)); assert!(close(_1_0i.scale(f64::consts::PI*2.0).sin(), _0_0i)); assert!(close(_0_1i.sin(), _0_1i.scale(1.0.sinh()))); for &c in all_consts.iter() { // sin(conj(z)) = conj(sin(z)) assert!(close(c.conj().sin(), c.sin().conj())); // sin(-z) = -sin(z) assert!(close(c.scale(-1.0).sin(), c.sin().scale(-1.0))); } } #[test] fn test_cos() { assert!(close(_0_0i.cos(), _1_0i)); assert!(close(_1_0i.scale(f64::consts::PI*2.0).cos(), _1_0i)); assert!(close(_0_1i.cos(), _1_0i.scale(1.0.cosh()))); for &c in all_consts.iter() { // cos(conj(z)) = conj(cos(z)) assert!(close(c.conj().cos(), c.cos().conj())); // cos(-z) = cos(z) assert!(close(c.scale(-1.0).cos(), c.cos())); } } #[test] fn test_tan() { assert!(close(_0_0i.tan(), _0_0i)); assert!(close(_1_0i.scale(f64::consts::PI/4.0).tan(), _1_0i)); assert!(close(_1_0i.scale(f64::consts::PI).tan(), _0_0i)); for &c in all_consts.iter() { // tan(conj(z)) = conj(tan(z)) assert!(close(c.conj().tan(), c.tan().conj())); // tan(-z) = -tan(z) assert!(close(c.scale(-1.0).tan(), c.tan().scale(-1.0))); } } #[test] fn test_asin() { assert!(close(_0_0i.asin(), _0_0i)); assert!(close(_1_0i.asin(), _1_0i.scale(f64::consts::PI/2.0))); assert!(close(_1_0i.scale(-1.0).asin(), _1_0i.scale(-f64::consts::PI/2.0))); assert!(close(_0_1i.asin(), _0_1i.scale((1.0 + 2.0.sqrt()).ln()))); for &c in all_consts.iter() { // asin(conj(z)) = conj(asin(z)) assert!(close(c.conj().asin(), c.asin().conj())); // asin(-z) = -asin(z) assert!(close(c.scale(-1.0).asin(), c.asin().scale(-1.0))); // for this branch, -pi/2 <= asin(z).re <= pi/2 assert!(-f64::consts::PI/2.0 <= c.asin().re && c.asin().re <= f64::consts::PI/2.0); } } #[test] fn test_acos() { assert!(close(_0_0i.acos(), _1_0i.scale(f64::consts::PI/2.0))); assert!(close(_1_0i.acos(), _0_0i)); assert!(close(_1_0i.scale(-1.0).acos(), _1_0i.scale(f64::consts::PI))); assert!(close(_0_1i.acos(), Complex::new(f64::consts::PI/2.0, (2.0.sqrt() - 1.0).ln()))); for &c in all_consts.iter() { // acos(conj(z)) = conj(acos(z)) assert!(close(c.conj().acos(), c.acos().conj())); // for this branch, 0 <= acos(z).re <= pi assert!(0.0 <= c.acos().re && c.acos().re <= f64::consts::PI); } } #[test] fn test_atan() { assert!(close(_0_0i.atan(), _0_0i)); assert!(close(_1_0i.atan(), _1_0i.scale(f64::consts::PI/4.0))); assert!(close(_1_0i.scale(-1.0).atan(), _1_0i.scale(-f64::consts::PI/4.0))); assert!(close(_0_1i.atan(), Complex::new(0.0, f64::infinity()))); for &c in all_consts.iter() { // atan(conj(z)) = conj(atan(z)) assert!(close(c.conj().atan(), c.atan().conj())); // atan(-z) = -atan(z) assert!(close(c.scale(-1.0).atan(), c.atan().scale(-1.0))); // for this branch, -pi/2 <= atan(z).re <= pi/2 assert!(-f64::consts::PI/2.0 <= c.atan().re && c.atan().re <= f64::consts::PI/2.0); } } #[test] fn test_sinh() { assert!(close(_0_0i.sinh(), _0_0i)); assert!(close(_1_0i.sinh(), _1_0i.scale((f64::consts::E - 1.0/f64::consts::E)/2.0))); assert!(close(_0_1i.sinh(), _0_1i.scale(1.0.sin()))); for &c in all_consts.iter() { // sinh(conj(z)) = conj(sinh(z)) assert!(close(c.conj().sinh(), c.sinh().conj())); // sinh(-z) = -sinh(z) assert!(close(c.scale(-1.0).sinh(), c.sinh().scale(-1.0))); } } #[test] fn test_cosh() { assert!(close(_0_0i.cosh(), _1_0i)); assert!(close(_1_0i.cosh(), _1_0i.scale((f64::consts::E + 1.0/f64::consts::E)/2.0))); assert!(close(_0_1i.cosh(), _1_0i.scale(1.0.cos()))); for &c in all_consts.iter() { // cosh(conj(z)) = conj(cosh(z)) assert!(close(c.conj().cosh(), c.cosh().conj())); // cosh(-z) = cosh(z) assert!(close(c.scale(-1.0).cosh(), c.cosh())); } } #[test] fn test_tanh() { assert!(close(_0_0i.tanh(), _0_0i)); assert!(close(_1_0i.tanh(), _1_0i.scale((f64::consts::E.powi(2) - 1.0)/(f64::consts::E.powi(2) + 1.0)))); assert!(close(_0_1i.tanh(), _0_1i.scale(1.0.tan()))); for &c in all_consts.iter() { // tanh(conj(z)) = conj(tanh(z)) assert!(close(c.conj().tanh(), c.conj().tanh())); // tanh(-z) = -tanh(z) assert!(close(c.scale(-1.0).tanh(), c.tanh().scale(-1.0))); } } #[test] fn test_asinh() { assert!(close(_0_0i.asinh(), _0_0i)); assert!(close(_1_0i.asinh(), _1_0i.scale(1.0 + 2.0.sqrt()).ln())); assert!(close(_0_1i.asinh(), _0_1i.scale(f64::consts::PI/2.0))); assert!(close(_0_1i.asinh().scale(-1.0), _0_1i.scale(-f64::consts::PI/2.0))); for &c in all_consts.iter() { // asinh(conj(z)) = conj(asinh(z)) assert!(close(c.conj().asinh(), c.conj().asinh())); // asinh(-z) = -asinh(z) assert!(close(c.scale(-1.0).asinh(), c.asinh().scale(-1.0))); // for this branch, -pi/2 <= asinh(z).im <= pi/2 assert!(-f64::consts::PI/2.0 <= c.asinh().im && c.asinh().im <= f64::consts::PI/2.0); } } #[test] fn test_acosh() { assert!(close(_0_0i.acosh(), _0_1i.scale(f64::consts::PI/2.0))); assert!(close(_1_0i.acosh(), _0_0i)); assert!(close(_1_0i.scale(-1.0).acosh(), _0_1i.scale(f64::consts::PI))); for &c in all_consts.iter() { // acosh(conj(z)) = conj(acosh(z)) assert!(close(c.conj().acosh(), c.conj().acosh())); // for this branch, -pi <= acosh(z).im <= pi and 0 <= acosh(z).re assert!(-f64::consts::PI <= c.acosh().im && c.acosh().im <= f64::consts::PI && 0.0 <= c.cosh().re); } } #[test] fn test_atanh() { assert!(close(_0_0i.atanh(), _0_0i)); assert!(close(_0_1i.atanh(), _0_1i.scale(f64::consts::PI/4.0))); assert!(close(_1_0i.atanh(), Complex::new(f64::infinity(), 0.0))); for &c in all_consts.iter() { // atanh(conj(z)) = conj(atanh(z)) assert!(close(c.conj().atanh(), c.conj().atanh())); // atanh(-z) = -atanh(z) assert!(close(c.scale(-1.0).atanh(), c.atanh().scale(-1.0))); // for this branch, -pi/2 <= atanh(z).im <= pi/2 assert!(-f64::consts::PI/2.0 <= c.atanh().im && c.atanh().im <= f64::consts::PI/2.0); } } #[test] fn test_exp_ln() { for &c in all_consts.iter() { // e^ln(z) = z assert!(close(c.ln().exp(), c)); } } #[test] fn test_trig_to_hyperbolic() { for &c in all_consts.iter() { // sin(iz) = i sinh(z) assert!(close((_0_1i * c).sin(), _0_1i * c.sinh())); // cos(iz) = cosh(z) assert!(close((_0_1i * c).cos(), c.cosh())); // tan(iz) = i tanh(z) assert!(close((_0_1i * c).tan(), _0_1i * c.tanh())); } } #[test] fn test_trig_identities() { for &c in all_consts.iter() { // tan(z) = sin(z)/cos(z) assert!(close(c.tan(), c.sin()/c.cos())); // sin(z)^2 + cos(z)^2 = 1 assert!(close(c.sin()*c.sin() + c.cos()*c.cos(), _1_0i)); // sin(asin(z)) = z assert!(close(c.asin().sin(), c)); // cos(acos(z)) = z assert!(close(c.acos().cos(), c)); // tan(atan(z)) = z // i and -i are branch points if c != _0_1i && c != _0_1i.scale(-1.0) { assert!(close(c.atan().tan(), c)); } // sin(z) = (e^(iz) - e^(-iz))/(2i) assert!(close(((_0_1i*c).exp() - (_0_1i*c).exp().inv())/_0_1i.scale(2.0), c.sin())); // cos(z) = (e^(iz) + e^(-iz))/2 assert!(close(((_0_1i*c).exp() + (_0_1i*c).exp().inv()).unscale(2.0), c.cos())); // tan(z) = i (1 - e^(2iz))/(1 + e^(2iz)) assert!(close(_0_1i * (_1_0i - (_0_1i*c).scale(2.0).exp())/(_1_0i + (_0_1i*c).scale(2.0).exp()), c.tan())); } } #[test] fn test_hyperbolic_identites() { for &c in all_consts.iter() { // tanh(z) = sinh(z)/cosh(z) assert!(close(c.tanh(), c.sinh()/c.cosh())); // cosh(z)^2 - sinh(z)^2 = 1 assert!(close(c.cosh()*c.cosh() - c.sinh()*c.sinh(), _1_0i)); // sinh(asinh(z)) = z assert!(close(c.asinh().sinh(), c)); // cosh(acosh(z)) = z assert!(close(c.acosh().cosh(), c)); // tanh(atanh(z)) = z // 1 and -1 are branch points if c != _1_0i && c != _1_0i.scale(-1.0) { assert!(close(c.atanh().tanh(), c)); } // sinh(z) = (e^z - e^(-z))/2 assert!(close((c.exp() - c.exp().inv()).unscale(2.0), c.sinh())); // cosh(z) = (e^z + e^(-z))/2 assert!(close((c.exp() + c.exp().inv()).unscale(2.0), c.cosh())); // tanh(z) = ( e^(2z) - 1)/(e^(2z) + 1) assert!(close((c.scale(2.0).exp() - _1_0i)/(c.scale(2.0).exp() + _1_0i), c.tanh())); } } mod complex_arithmetic { use super::{_0_0i, _1_0i, _1_1i, _0_1i, _neg1_1i, _05_05i, all_consts}; use traits::Zero; #[test] fn test_add() { assert_eq!(_05_05i + _05_05i, _1_1i); assert_eq!(_0_1i + _1_0i, _1_1i); assert_eq!(_1_0i + _neg1_1i, _0_1i); for &c in all_consts.iter() { assert_eq!(_0_0i + c, c); assert_eq!(c + _0_0i, c); } } #[test] fn test_sub() { assert_eq!(_05_05i - _05_05i, _0_0i); assert_eq!(_0_1i - _1_0i, _neg1_1i); assert_eq!(_0_1i - _neg1_1i, _1_0i); for &c in all_consts.iter() { assert_eq!(c - _0_0i, c); assert_eq!(c - c, _0_0i); } } #[test] fn test_mul() { assert_eq!(_05_05i * _05_05i, _0_1i.unscale(2.0)); assert_eq!(_1_1i * _0_1i, _neg1_1i); // i^2 & i^4 assert_eq!(_0_1i * _0_1i, -_1_0i); assert_eq!(_0_1i * _0_1i * _0_1i * _0_1i, _1_0i); for &c in all_consts.iter() { assert_eq!(c * _1_0i, c); assert_eq!(_1_0i * c, c); } } #[test] fn test_div() { assert_eq!(_neg1_1i / _0_1i, _1_1i); for &c in all_consts.iter() { if c != Zero::zero() { assert_eq!(c / c, _1_0i); } } } #[test] fn test_neg() { assert_eq!(-_1_0i + _0_1i, _neg1_1i); assert_eq!((-_0_1i) * _0_1i, _1_0i); for &c in all_consts.iter() { assert_eq!(-(-c), c); } } } mod real_arithmetic { use super::super::Complex; #[test] fn test_add() { assert_eq!(Complex::new(4.0, 2.0) + 0.5, Complex::new(4.5, 2.0)); assert_eq!(0.5 + Complex::new(4.0, 2.0), Complex::new(4.5, 2.0)); } #[test] fn test_sub() { assert_eq!(Complex::new(4.0, 2.0) - 0.5, Complex::new(3.5, 2.0)); assert_eq!(0.5 - Complex::new(4.0, 2.0), Complex::new(-3.5, -2.0)); } #[test] fn test_mul() { assert_eq!(Complex::new(4.0, 2.0) * 0.5, Complex::new(2.0, 1.0)); assert_eq!(0.5 * Complex::new(4.0, 2.0), Complex::new(2.0, 1.0)); } #[test] fn test_div() { assert_eq!(Complex::new(4.0, 2.0) / 0.5, Complex::new(8.0, 4.0)); assert_eq!(0.5 / Complex::new(4.0, 2.0), Complex::new(0.1, -0.05)); } } #[test] fn test_to_string() { fn test(c : Complex64, s: String) { assert_eq!(c.to_string(), s); } test(_0_0i, "0+0i".to_string()); test(_1_0i, "1+0i".to_string()); test(_0_1i, "0+1i".to_string()); test(_1_1i, "1+1i".to_string()); test(_neg1_1i, "-1+1i".to_string()); test(-_neg1_1i, "1-1i".to_string()); test(_05_05i, "0.5+0.5i".to_string()); } #[test] fn test_string_formatting() { let a = Complex::new(1.23456, 123.456); assert_eq!(format!("{}", a), "1.23456+123.456i"); assert_eq!(format!("{:.2}", a), "1.23+123.46i"); assert_eq!(format!("{:.2e}", a), "1.23e0+1.23e2i"); assert_eq!(format!("{:+20.2E}", a), " +1.23E0+1.23E2i"); let b = Complex::new(0x80, 0xff); assert_eq!(format!("{:X}", b), "80+FFi"); assert_eq!(format!("{:#x}", b), "0x80+0xffi"); assert_eq!(format!("{:+#b}", b), "+0b10000000+0b11111111i"); assert_eq!(format!("{:+#16o}", b), " +0o200+0o377i"); let c = Complex::new(-10, -10000); assert_eq!(format!("{}", c), "-10-10000i"); assert_eq!(format!("{:16}", c), " -10-10000i"); } #[test] fn test_hash() { let a = Complex::new(0i32, 0i32); let b = Complex::new(1i32, 0i32); let c = Complex::new(0i32, 1i32); assert!(::hash(&a) != ::hash(&b)); assert!(::hash(&b) != ::hash(&c)); assert!(::hash(&c) != ::hash(&a)); } #[test] fn test_hashset() { use std::collections::HashSet; let a = Complex::new(0i32, 0i32); let b = Complex::new(1i32, 0i32); let c = Complex::new(0i32, 1i32); let set: HashSet<_> = [a, b, c].iter().cloned().collect(); assert!(set.contains(&a)); assert!(set.contains(&b)); assert!(set.contains(&c)); assert!(!set.contains(&(a + b + c))); } #[test] fn test_is_nan() { assert!(!_1_1i.is_nan()); let a = Complex::new(f64::NAN, f64::NAN); assert!(a.is_nan()); } #[test] fn test_is_nan_special_cases() { let a = Complex::new(0f64, f64::NAN); let b = Complex::new(f64::NAN, 0f64); assert!(a.is_nan()); assert!(b.is_nan()); } #[test] fn test_is_infinite() { let a = Complex::new(2f64, f64::INFINITY); assert!(a.is_infinite()); } #[test] fn test_is_finite() { assert!(_1_1i.is_finite()) } #[test] fn test_is_normal() { let a = Complex::new(0f64, f64::NAN); let b = Complex::new(2f64, f64::INFINITY); assert!(!a.is_normal()); assert!(!b.is_normal()); assert!(_1_1i.is_normal()); } }