// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Rational numbers #![doc(html_logo_url = "https://rust-num.github.io/num/rust-logo-128x128-blk-v2.png", html_favicon_url = "https://rust-num.github.io/num/favicon.ico", html_root_url = "https://rust-num.github.io/num/", html_playground_url = "http://play.integer32.com/")] #[cfg(feature = "rustc-serialize")] extern crate rustc_serialize; #[cfg(feature = "serde")] extern crate serde; #[cfg(feature = "num-bigint")] extern crate num_bigint as bigint; extern crate num_traits as traits; extern crate num_integer as integer; use std::cmp; use std::error::Error; use std::fmt; use std::hash::{Hash, Hasher}; use std::ops::{Add, Div, Mul, Neg, Rem, Sub}; use std::str::FromStr; #[cfg(feature = "num-bigint")] use bigint::{BigInt, BigUint, Sign}; use integer::Integer; use traits::{FromPrimitive, Float, PrimInt, Num, Signed, Zero, One, Bounded, NumCast}; /// Represents the ratio between 2 numbers. #[derive(Copy, Clone, Debug)] #[cfg_attr(feature = "rustc-serialize", derive(RustcEncodable, RustcDecodable))] #[allow(missing_docs)] pub struct Ratio { numer: T, denom: T, } /// Alias for a `Ratio` of machine-sized integers. pub type Rational = Ratio; pub type Rational32 = Ratio; pub type Rational64 = Ratio; #[cfg(feature = "num-bigint")] /// Alias for arbitrary precision rationals. pub type BigRational = Ratio; impl Ratio { /// Creates a new `Ratio`. Fails if `denom` is zero. #[inline] pub fn new(numer: T, denom: T) -> Ratio { if denom.is_zero() { panic!("denominator == 0"); } let mut ret = Ratio::new_raw(numer, denom); ret.reduce(); ret } /// Creates a `Ratio` representing the integer `t`. #[inline] pub fn from_integer(t: T) -> Ratio { Ratio::new_raw(t, One::one()) } /// Creates a `Ratio` without checking for `denom == 0` or reducing. #[inline] pub fn new_raw(numer: T, denom: T) -> Ratio { Ratio { numer: numer, denom: denom, } } /// Converts to an integer, rounding towards zero. #[inline] pub fn to_integer(&self) -> T { self.trunc().numer } /// Gets an immutable reference to the numerator. #[inline] pub fn numer<'a>(&'a self) -> &'a T { &self.numer } /// Gets an immutable reference to the denominator. #[inline] pub fn denom<'a>(&'a self) -> &'a T { &self.denom } /// Returns true if the rational number is an integer (denominator is 1). #[inline] pub fn is_integer(&self) -> bool { self.denom == One::one() } /// Puts self into lowest terms, with denom > 0. fn reduce(&mut self) { let g: T = self.numer.gcd(&self.denom); // FIXME(#5992): assignment operator overloads // self.numer /= g; self.numer = self.numer.clone() / g.clone(); // FIXME(#5992): assignment operator overloads // self.denom /= g; self.denom = self.denom.clone() / g; // keep denom positive! if self.denom < T::zero() { self.numer = T::zero() - self.numer.clone(); self.denom = T::zero() - self.denom.clone(); } } /// Returns a reduced copy of self. /// /// In general, it is not necessary to use this method, as the only /// method of procuring a non-reduced fraction is through `new_raw`. pub fn reduced(&self) -> Ratio { let mut ret = self.clone(); ret.reduce(); ret } /// Returns the reciprocal. /// /// Fails if the `Ratio` is zero. #[inline] pub fn recip(&self) -> Ratio { match self.numer.cmp(&T::zero()) { cmp::Ordering::Equal => panic!("numerator == 0"), cmp::Ordering::Greater => Ratio::new_raw(self.denom.clone(), self.numer.clone()), cmp::Ordering::Less => Ratio::new_raw(T::zero() - self.denom.clone(), T::zero() - self.numer.clone()) } } /// Rounds towards minus infinity. #[inline] pub fn floor(&self) -> Ratio { if *self < Zero::zero() { let one: T = One::one(); Ratio::from_integer((self.numer.clone() - self.denom.clone() + one) / self.denom.clone()) } else { Ratio::from_integer(self.numer.clone() / self.denom.clone()) } } /// Rounds towards plus infinity. #[inline] pub fn ceil(&self) -> Ratio { if *self < Zero::zero() { Ratio::from_integer(self.numer.clone() / self.denom.clone()) } else { let one: T = One::one(); Ratio::from_integer((self.numer.clone() + self.denom.clone() - one) / self.denom.clone()) } } /// Rounds to the nearest integer. Rounds half-way cases away from zero. #[inline] pub fn round(&self) -> Ratio { let zero: Ratio = Zero::zero(); let one: T = One::one(); let two: T = one.clone() + one.clone(); // Find unsigned fractional part of rational number let mut fractional = self.fract(); if fractional < zero { fractional = zero - fractional }; // The algorithm compares the unsigned fractional part with 1/2, that // is, a/b >= 1/2, or a >= b/2. For odd denominators, we use // a >= (b/2)+1. This avoids overflow issues. let half_or_larger = if fractional.denom().is_even() { *fractional.numer() >= fractional.denom().clone() / two.clone() } else { *fractional.numer() >= (fractional.denom().clone() / two.clone()) + one.clone() }; if half_or_larger { let one: Ratio = One::one(); if *self >= Zero::zero() { self.trunc() + one } else { self.trunc() - one } } else { self.trunc() } } /// Rounds towards zero. #[inline] pub fn trunc(&self) -> Ratio { Ratio::from_integer(self.numer.clone() / self.denom.clone()) } /// Returns the fractional part of a number, with division rounded towards zero. /// /// Satisfies `self == self.trunc() + self.fract()`. #[inline] pub fn fract(&self) -> Ratio { Ratio::new_raw(self.numer.clone() % self.denom.clone(), self.denom.clone()) } } impl Ratio { /// Raises the `Ratio` to the power of an exponent. #[inline] pub fn pow(&self, expon: i32) -> Ratio { match expon.cmp(&0) { cmp::Ordering::Equal => One::one(), cmp::Ordering::Less => self.recip().pow(-expon), cmp::Ordering::Greater => { Ratio::new_raw(self.numer.pow(expon as u32), self.denom.pow(expon as u32)) } } } } #[cfg(feature = "num-bigint")] impl Ratio { /// Converts a float into a rational number. pub fn from_float(f: T) -> Option { if !f.is_finite() { return None; } let (mantissa, exponent, sign) = f.integer_decode(); let bigint_sign = if sign == 1 { Sign::Plus } else { Sign::Minus }; if exponent < 0 { let one: BigInt = One::one(); let denom: BigInt = one << ((-exponent) as usize); let numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap(); Some(Ratio::new(BigInt::from_biguint(bigint_sign, numer), denom)) } else { let mut numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap(); numer = numer << (exponent as usize); Some(Ratio::from_integer(BigInt::from_biguint(bigint_sign, numer))) } } } // From integer impl From for Ratio where T: Clone + Integer { fn from(x: T) -> Ratio { Ratio::from_integer(x) } } // From pair (through the `new` constructor) impl From<(T, T)> for Ratio where T: Clone + Integer { fn from(pair: (T, T)) -> Ratio { Ratio::new(pair.0, pair.1) } } // Comparisons // Mathematically, comparing a/b and c/d is the same as comparing a*d and b*c, but it's very easy // for those multiplications to overflow fixed-size integers, so we need to take care. impl Ord for Ratio { #[inline] fn cmp(&self, other: &Self) -> cmp::Ordering { // With equal denominators, the numerators can be directly compared if self.denom == other.denom { let ord = self.numer.cmp(&other.numer); return if self.denom < T::zero() { ord.reverse() } else { ord }; } // With equal numerators, the denominators can be inversely compared if self.numer == other.numer { let ord = self.denom.cmp(&other.denom); return if self.numer < T::zero() { ord } else { ord.reverse() }; } // Unfortunately, we don't have CheckedMul to try. That could sometimes avoid all the // division below, or even always avoid it for BigInt and BigUint. // FIXME- future breaking change to add Checked* to Integer? // Compare as floored integers and remainders let (self_int, self_rem) = self.numer.div_mod_floor(&self.denom); let (other_int, other_rem) = other.numer.div_mod_floor(&other.denom); match self_int.cmp(&other_int) { cmp::Ordering::Greater => cmp::Ordering::Greater, cmp::Ordering::Less => cmp::Ordering::Less, cmp::Ordering::Equal => { match (self_rem.is_zero(), other_rem.is_zero()) { (true, true) => cmp::Ordering::Equal, (true, false) => cmp::Ordering::Less, (false, true) => cmp::Ordering::Greater, (false, false) => { // Compare the reciprocals of the remaining fractions in reverse let self_recip = Ratio::new_raw(self.denom.clone(), self_rem); let other_recip = Ratio::new_raw(other.denom.clone(), other_rem); self_recip.cmp(&other_recip).reverse() } } } } } } impl PartialOrd for Ratio { #[inline] fn partial_cmp(&self, other: &Self) -> Option { Some(self.cmp(other)) } } impl PartialEq for Ratio { #[inline] fn eq(&self, other: &Self) -> bool { self.cmp(other) == cmp::Ordering::Equal } } impl Eq for Ratio {} // NB: We can't just `#[derive(Hash)]`, because it needs to agree // with `Eq` even for non-reduced ratios. impl Hash for Ratio { fn hash(&self, state: &mut H) { recurse(&self.numer, &self.denom, state); fn recurse(numer: &T, denom: &T, state: &mut H) { if !denom.is_zero() { let (int, rem) = numer.div_mod_floor(denom); int.hash(state); recurse(denom, &rem, state); } else { denom.hash(state); } } } } macro_rules! forward_val_val_binop { (impl $imp:ident, $method:ident) => { impl $imp> for Ratio { type Output = Ratio; #[inline] fn $method(self, other: Ratio) -> Ratio { (&self).$method(&other) } } } } macro_rules! forward_ref_val_binop { (impl $imp:ident, $method:ident) => { impl<'a, T> $imp> for &'a Ratio where T: Clone + Integer { type Output = Ratio; #[inline] fn $method(self, other: Ratio) -> Ratio { self.$method(&other) } } } } macro_rules! forward_val_ref_binop { (impl $imp:ident, $method:ident) => { impl<'a, T> $imp<&'a Ratio> for Ratio where T: Clone + Integer { type Output = Ratio; #[inline] fn $method(self, other: &Ratio) -> Ratio { (&self).$method(other) } } } } macro_rules! forward_all_binop { (impl $imp:ident, $method:ident) => { forward_val_val_binop!(impl $imp, $method); forward_ref_val_binop!(impl $imp, $method); forward_val_ref_binop!(impl $imp, $method); }; } // Arithmetic forward_all_binop!(impl Mul, mul); // a/b * c/d = (a*c)/(b*d) impl<'a, 'b, T> Mul<&'b Ratio> for &'a Ratio where T: Clone + Integer { type Output = Ratio; #[inline] fn mul(self, rhs: &Ratio) -> Ratio { Ratio::new(self.numer.clone() * rhs.numer.clone(), self.denom.clone() * rhs.denom.clone()) } } forward_all_binop!(impl Div, div); // (a/b) / (c/d) = (a*d)/(b*c) impl<'a, 'b, T> Div<&'b Ratio> for &'a Ratio where T: Clone + Integer { type Output = Ratio; #[inline] fn div(self, rhs: &Ratio) -> Ratio { Ratio::new(self.numer.clone() * rhs.denom.clone(), self.denom.clone() * rhs.numer.clone()) } } // Abstracts the a/b `op` c/d = (a*d `op` b*d) / (b*d) pattern macro_rules! arith_impl { (impl $imp:ident, $method:ident) => { forward_all_binop!(impl $imp, $method); impl<'a, 'b, T: Clone + Integer> $imp<&'b Ratio> for &'a Ratio { type Output = Ratio; #[inline] fn $method(self, rhs: &Ratio) -> Ratio { Ratio::new((self.numer.clone() * rhs.denom.clone()).$method(self.denom.clone() * rhs.numer.clone()), self.denom.clone() * rhs.denom.clone()) } } } } // a/b + c/d = (a*d + b*c)/(b*d) arith_impl!(impl Add, add); // a/b - c/d = (a*d - b*c)/(b*d) arith_impl!(impl Sub, sub); // a/b % c/d = (a*d % b*c)/(b*d) arith_impl!(impl Rem, rem); impl Neg for Ratio where T: Clone + Integer + Neg { type Output = Ratio; #[inline] fn neg(self) -> Ratio { Ratio::new_raw(-self.numer, self.denom) } } impl<'a, T> Neg for &'a Ratio where T: Clone + Integer + Neg { type Output = Ratio; #[inline] fn neg(self) -> Ratio { -self.clone() } } // Constants impl Zero for Ratio { #[inline] fn zero() -> Ratio { Ratio::new_raw(Zero::zero(), One::one()) } #[inline] fn is_zero(&self) -> bool { self.numer.is_zero() } } impl One for Ratio { #[inline] fn one() -> Ratio { Ratio::new_raw(One::one(), One::one()) } } impl Num for Ratio { type FromStrRadixErr = ParseRatioError; /// Parses `numer/denom` where the numbers are in base `radix`. fn from_str_radix(s: &str, radix: u32) -> Result, ParseRatioError> { let split: Vec<&str> = s.splitn(2, '/').collect(); if split.len() < 2 { Err(ParseRatioError { kind: RatioErrorKind::ParseError }) } else { let a_result: Result = T::from_str_radix(split[0], radix).map_err(|_| { ParseRatioError { kind: RatioErrorKind::ParseError } }); a_result.and_then(|a| { let b_result: Result = T::from_str_radix(split[1], radix).map_err(|_| { ParseRatioError { kind: RatioErrorKind::ParseError } }); b_result.and_then(|b| { if b.is_zero() { Err(ParseRatioError { kind: RatioErrorKind::ZeroDenominator }) } else { Ok(Ratio::new(a.clone(), b.clone())) } }) }) } } } impl Signed for Ratio { #[inline] fn abs(&self) -> Ratio { if self.is_negative() { -self.clone() } else { self.clone() } } #[inline] fn abs_sub(&self, other: &Ratio) -> Ratio { if *self <= *other { Zero::zero() } else { self - other } } #[inline] fn signum(&self) -> Ratio { if self.is_positive() { Self::one() } else if self.is_zero() { Self::zero() } else { -Self::one() } } #[inline] fn is_positive(&self) -> bool { (self.numer.is_positive() && self.denom.is_positive()) || (self.numer.is_negative() && self.denom.is_negative()) } #[inline] fn is_negative(&self) -> bool { (self.numer.is_negative() && self.denom.is_positive()) || (self.numer.is_positive() && self.denom.is_negative()) } } // String conversions impl fmt::Display for Ratio where T: fmt::Display + Eq + One { /// Renders as `numer/denom`. If denom=1, renders as numer. fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { if self.denom == One::one() { write!(f, "{}", self.numer) } else { write!(f, "{}/{}", self.numer, self.denom) } } } impl FromStr for Ratio { type Err = ParseRatioError; /// Parses `numer/denom` or just `numer`. fn from_str(s: &str) -> Result, ParseRatioError> { let mut split = s.splitn(2, '/'); let n = try!(split.next().ok_or(ParseRatioError { kind: RatioErrorKind::ParseError })); let num = try!(FromStr::from_str(n) .map_err(|_| ParseRatioError { kind: RatioErrorKind::ParseError })); let d = split.next().unwrap_or("1"); let den = try!(FromStr::from_str(d) .map_err(|_| ParseRatioError { kind: RatioErrorKind::ParseError })); if Zero::is_zero(&den) { Err(ParseRatioError { kind: RatioErrorKind::ZeroDenominator }) } else { Ok(Ratio::new(num, den)) } } } impl Into<(T, T)> for Ratio { fn into(self) -> (T, T) { (self.numer, self.denom) } } #[cfg(feature = "serde")] impl serde::Serialize for Ratio where T: serde::Serialize + Clone + Integer + PartialOrd { fn serialize(&self, serializer: &mut S) -> Result<(), S::Error> where S: serde::Serializer { (self.numer(), self.denom()).serialize(serializer) } } #[cfg(feature = "serde")] impl serde::Deserialize for Ratio where T: serde::Deserialize + Clone + Integer + PartialOrd { fn deserialize(deserializer: &mut D) -> Result where D: serde::Deserializer { let (numer, denom): (T,T) = try!(serde::Deserialize::deserialize(deserializer)); if denom.is_zero() { Err(serde::de::Error::invalid_value("denominator is zero")) } else { Ok(Ratio::new_raw(numer, denom)) } } } // FIXME: Bubble up specific errors #[derive(Copy, Clone, Debug, PartialEq)] pub struct ParseRatioError { kind: RatioErrorKind, } #[derive(Copy, Clone, Debug, PartialEq)] enum RatioErrorKind { ParseError, ZeroDenominator, } impl fmt::Display for ParseRatioError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.description().fmt(f) } } impl Error for ParseRatioError { fn description(&self) -> &str { self.kind.description() } } impl RatioErrorKind { fn description(&self) -> &'static str { match *self { RatioErrorKind::ParseError => "failed to parse integer", RatioErrorKind::ZeroDenominator => "zero value denominator", } } } #[cfg(feature = "num-bigint")] impl FromPrimitive for Ratio { fn from_i64(n: i64) -> Option { Some(Ratio::from_integer(n.into())) } fn from_u64(n: u64) -> Option { Some(Ratio::from_integer(n.into())) } fn from_f32(n: f32) -> Option { Ratio::from_float(n) } fn from_f64(n: f64) -> Option { Ratio::from_float(n) } } macro_rules! from_primitive_integer { ($typ:ty, $approx:ident) => { impl FromPrimitive for Ratio<$typ> { fn from_i64(n: i64) -> Option { <$typ as FromPrimitive>::from_i64(n).map(Ratio::from_integer) } fn from_u64(n: u64) -> Option { <$typ as FromPrimitive>::from_u64(n).map(Ratio::from_integer) } fn from_f32(n: f32) -> Option { $approx(n, 10e-20, 30) } fn from_f64(n: f64) -> Option { $approx(n, 10e-20, 30) } } } } from_primitive_integer!(i8, approximate_float); from_primitive_integer!(i16, approximate_float); from_primitive_integer!(i32, approximate_float); from_primitive_integer!(i64, approximate_float); from_primitive_integer!(isize, approximate_float); from_primitive_integer!(u8, approximate_float_unsigned); from_primitive_integer!(u16, approximate_float_unsigned); from_primitive_integer!(u32, approximate_float_unsigned); from_primitive_integer!(u64, approximate_float_unsigned); from_primitive_integer!(usize, approximate_float_unsigned); impl Ratio { pub fn approximate_float(f: F) -> Option> { // 1/10e-20 < 1/2**32 which seems like a good default, and 30 seems // to work well. Might want to choose something based on the types in the future, e.g. // T::max().recip() and T::bits() or something similar. let epsilon = ::from(10e-20).expect("Can't convert 10e-20"); approximate_float(f, epsilon, 30) } } fn approximate_float(val: F, max_error: F, max_iterations: usize) -> Option> where T: Integer + Signed + Bounded + NumCast + Clone, F: Float + NumCast { let negative = val.is_sign_negative(); let abs_val = val.abs(); let r = approximate_float_unsigned(abs_val, max_error, max_iterations); // Make negative again if needed if negative { r.map(|r| r.neg()) } else { r } } // No Unsigned constraint because this also works on positive integers and is called // like that, see above fn approximate_float_unsigned(val: F, max_error: F, max_iterations: usize) -> Option> where T: Integer + Bounded + NumCast + Clone, F: Float + NumCast { // Continued fractions algorithm // http://mathforum.org/dr.math/faq/faq.fractions.html#decfrac if val < F::zero() { return None; } let mut q = val; let mut n0 = T::zero(); let mut d0 = T::one(); let mut n1 = T::one(); let mut d1 = T::zero(); let t_max = T::max_value(); let t_max_f = match ::from(t_max.clone()) { None => return None, Some(t_max_f) => t_max_f, }; // 1/epsilon > T::MAX let epsilon = t_max_f.recip(); // Overflow if q > t_max_f { return None; } for _ in 0..max_iterations { let a = match ::from(q) { None => break, Some(a) => a, }; let a_f = match ::from(a.clone()) { None => break, Some(a_f) => a_f, }; let f = q - a_f; // Prevent overflow if !a.is_zero() && (n1 > t_max.clone() / a.clone() || d1 > t_max.clone() / a.clone() || a.clone() * n1.clone() > t_max.clone() - n0.clone() || a.clone() * d1.clone() > t_max.clone() - d0.clone()) { break; } let n = a.clone() * n1.clone() + n0.clone(); let d = a.clone() * d1.clone() + d0.clone(); n0 = n1; d0 = d1; n1 = n.clone(); d1 = d.clone(); // Simplify fraction. Doing so here instead of at the end // allows us to get closer to the target value without overflows let g = Integer::gcd(&n1, &d1); if !g.is_zero() { n1 = n1 / g.clone(); d1 = d1 / g.clone(); } // Close enough? let (n_f, d_f) = match (::from(n), ::from(d)) { (Some(n_f), Some(d_f)) => (n_f, d_f), _ => break, }; if (n_f / d_f - val).abs() < max_error { break; } // Prevent division by ~0 if f < epsilon { break; } q = f.recip(); } // Overflow if d1.is_zero() { return None; } Some(Ratio::new(n1, d1)) } #[cfg(test)] fn hash(x: &T) -> u64 { use std::hash::BuildHasher; use std::collections::hash_map::RandomState; let mut hasher = ::Hasher::new(); x.hash(&mut hasher); hasher.finish() } #[cfg(test)] mod test { use super::{Ratio, Rational}; #[cfg(feature = "num-bigint")] use super::BigRational; use std::str::FromStr; use std::i32; use std::f64; use traits::{Zero, One, Signed, FromPrimitive}; pub const _0: Rational = Ratio { numer: 0, denom: 1, }; pub const _1: Rational = Ratio { numer: 1, denom: 1, }; pub const _2: Rational = Ratio { numer: 2, denom: 1, }; pub const _NEG2: Rational = Ratio { numer: -2, denom: 1, }; pub const _1_2: Rational = Ratio { numer: 1, denom: 2, }; pub const _3_2: Rational = Ratio { numer: 3, denom: 2, }; pub const _NEG1_2: Rational = Ratio { numer: -1, denom: 2, }; pub const _1_NEG2: Rational = Ratio { numer: 1, denom: -2, }; pub const _NEG1_NEG2: Rational = Ratio { numer: -1, denom: -2, }; pub const _1_3: Rational = Ratio { numer: 1, denom: 3, }; pub const _NEG1_3: Rational = Ratio { numer: -1, denom: 3, }; pub const _2_3: Rational = Ratio { numer: 2, denom: 3, }; pub const _NEG2_3: Rational = Ratio { numer: -2, denom: 3, }; #[cfg(feature = "num-bigint")] pub fn to_big(n: Rational) -> BigRational { Ratio::new(FromPrimitive::from_isize(n.numer).unwrap(), FromPrimitive::from_isize(n.denom).unwrap()) } #[cfg(not(feature = "num-bigint"))] pub fn to_big(n: Rational) -> Rational { Ratio::new(FromPrimitive::from_isize(n.numer).unwrap(), FromPrimitive::from_isize(n.denom).unwrap()) } #[test] fn test_test_constants() { // check our constants are what Ratio::new etc. would make. assert_eq!(_0, Zero::zero()); assert_eq!(_1, One::one()); assert_eq!(_2, Ratio::from_integer(2)); assert_eq!(_1_2, Ratio::new(1, 2)); assert_eq!(_3_2, Ratio::new(3, 2)); assert_eq!(_NEG1_2, Ratio::new(-1, 2)); assert_eq!(_2, From::from(2)); } #[test] fn test_new_reduce() { let one22 = Ratio::new(2, 2); assert_eq!(one22, One::one()); } #[test] #[should_panic] fn test_new_zero() { let _a = Ratio::new(1, 0); } #[test] fn test_approximate_float() { assert_eq!(Ratio::from_f32(0.5f32), Some(Ratio::new(1i64, 2))); assert_eq!(Ratio::from_f64(0.5f64), Some(Ratio::new(1i32, 2))); assert_eq!(Ratio::from_f32(5f32), Some(Ratio::new(5i64, 1))); assert_eq!(Ratio::from_f64(5f64), Some(Ratio::new(5i32, 1))); assert_eq!(Ratio::from_f32(29.97f32), Some(Ratio::new(2997i64, 100))); assert_eq!(Ratio::from_f32(-29.97f32), Some(Ratio::new(-2997i64, 100))); assert_eq!(Ratio::::from_f32(63.5f32), Some(Ratio::new(127i8, 2))); assert_eq!(Ratio::::from_f32(126.5f32), Some(Ratio::new(126i8, 1))); assert_eq!(Ratio::::from_f32(127.0f32), Some(Ratio::new(127i8, 1))); assert_eq!(Ratio::::from_f32(127.5f32), None); assert_eq!(Ratio::::from_f32(-63.5f32), Some(Ratio::new(-127i8, 2))); assert_eq!(Ratio::::from_f32(-126.5f32), Some(Ratio::new(-126i8, 1))); assert_eq!(Ratio::::from_f32(-127.0f32), Some(Ratio::new(-127i8, 1))); assert_eq!(Ratio::::from_f32(-127.5f32), None); assert_eq!(Ratio::::from_f32(-127f32), None); assert_eq!(Ratio::::from_f32(127f32), Some(Ratio::new(127u8, 1))); assert_eq!(Ratio::::from_f32(127.5f32), Some(Ratio::new(255u8, 2))); assert_eq!(Ratio::::from_f32(256f32), None); assert_eq!(Ratio::::from_f64(-10e200), None); assert_eq!(Ratio::::from_f64(10e200), None); assert_eq!(Ratio::::from_f64(f64::INFINITY), None); assert_eq!(Ratio::::from_f64(f64::NEG_INFINITY), None); assert_eq!(Ratio::::from_f64(f64::NAN), None); assert_eq!(Ratio::::from_f64(f64::EPSILON), Some(Ratio::new(1, 4503599627370496))); assert_eq!(Ratio::::from_f64(0.0), Some(Ratio::new(0, 1))); assert_eq!(Ratio::::from_f64(-0.0), Some(Ratio::new(0, 1))); } #[test] fn test_cmp() { assert!(_0 == _0 && _1 == _1); assert!(_0 != _1 && _1 != _0); assert!(_0 < _1 && !(_1 < _0)); assert!(_1 > _0 && !(_0 > _1)); assert!(_0 <= _0 && _1 <= _1); assert!(_0 <= _1 && !(_1 <= _0)); assert!(_0 >= _0 && _1 >= _1); assert!(_1 >= _0 && !(_0 >= _1)); } #[test] fn test_cmp_overflow() { use std::cmp::Ordering; // issue #7 example: let big = Ratio::new(128u8, 1); let small = big.recip(); assert!(big > small); // try a few that are closer together // (some matching numer, some matching denom, some neither) let ratios = vec![ Ratio::new(125_i8, 127_i8), Ratio::new(63_i8, 64_i8), Ratio::new(124_i8, 125_i8), Ratio::new(125_i8, 126_i8), Ratio::new(126_i8, 127_i8), Ratio::new(127_i8, 126_i8), ]; fn check_cmp(a: Ratio, b: Ratio, ord: Ordering) { println!("comparing {} and {}", a, b); assert_eq!(a.cmp(&b), ord); assert_eq!(b.cmp(&a), ord.reverse()); } for (i, &a) in ratios.iter().enumerate() { check_cmp(a, a, Ordering::Equal); check_cmp(-a, a, Ordering::Less); for &b in &ratios[i + 1..] { check_cmp(a, b, Ordering::Less); check_cmp(-a, -b, Ordering::Greater); check_cmp(a.recip(), b.recip(), Ordering::Greater); check_cmp(-a.recip(), -b.recip(), Ordering::Less); } } } #[test] fn test_to_integer() { assert_eq!(_0.to_integer(), 0); assert_eq!(_1.to_integer(), 1); assert_eq!(_2.to_integer(), 2); assert_eq!(_1_2.to_integer(), 0); assert_eq!(_3_2.to_integer(), 1); assert_eq!(_NEG1_2.to_integer(), 0); } #[test] fn test_numer() { assert_eq!(_0.numer(), &0); assert_eq!(_1.numer(), &1); assert_eq!(_2.numer(), &2); assert_eq!(_1_2.numer(), &1); assert_eq!(_3_2.numer(), &3); assert_eq!(_NEG1_2.numer(), &(-1)); } #[test] fn test_denom() { assert_eq!(_0.denom(), &1); assert_eq!(_1.denom(), &1); assert_eq!(_2.denom(), &1); assert_eq!(_1_2.denom(), &2); assert_eq!(_3_2.denom(), &2); assert_eq!(_NEG1_2.denom(), &2); } #[test] fn test_is_integer() { assert!(_0.is_integer()); assert!(_1.is_integer()); assert!(_2.is_integer()); assert!(!_1_2.is_integer()); assert!(!_3_2.is_integer()); assert!(!_NEG1_2.is_integer()); } #[test] fn test_show() { assert_eq!(format!("{}", _2), "2".to_string()); assert_eq!(format!("{}", _1_2), "1/2".to_string()); assert_eq!(format!("{}", _0), "0".to_string()); assert_eq!(format!("{}", Ratio::from_integer(-2)), "-2".to_string()); } mod arith { use super::{_0, _1, _2, _1_2, _3_2, _NEG1_2, to_big}; use super::super::{Ratio, Rational}; #[test] fn test_add() { fn test(a: Rational, b: Rational, c: Rational) { assert_eq!(a + b, c); assert_eq!(to_big(a) + to_big(b), to_big(c)); } test(_1, _1_2, _3_2); test(_1, _1, _2); test(_1_2, _3_2, _2); test(_1_2, _NEG1_2, _0); } #[test] fn test_sub() { fn test(a: Rational, b: Rational, c: Rational) { assert_eq!(a - b, c); assert_eq!(to_big(a) - to_big(b), to_big(c)) } test(_1, _1_2, _1_2); test(_3_2, _1_2, _1); test(_1, _NEG1_2, _3_2); } #[test] fn test_mul() { fn test(a: Rational, b: Rational, c: Rational) { assert_eq!(a * b, c); assert_eq!(to_big(a) * to_big(b), to_big(c)) } test(_1, _1_2, _1_2); test(_1_2, _3_2, Ratio::new(3, 4)); test(_1_2, _NEG1_2, Ratio::new(-1, 4)); } #[test] fn test_div() { fn test(a: Rational, b: Rational, c: Rational) { assert_eq!(a / b, c); assert_eq!(to_big(a) / to_big(b), to_big(c)) } test(_1, _1_2, _2); test(_3_2, _1_2, _1 + _2); test(_1, _NEG1_2, _NEG1_2 + _NEG1_2 + _NEG1_2 + _NEG1_2); } #[test] fn test_rem() { fn test(a: Rational, b: Rational, c: Rational) { assert_eq!(a % b, c); assert_eq!(to_big(a) % to_big(b), to_big(c)) } test(_3_2, _1, _1_2); test(_2, _NEG1_2, _0); test(_1_2, _2, _1_2); } #[test] fn test_neg() { fn test(a: Rational, b: Rational) { assert_eq!(-a, b); assert_eq!(-to_big(a), to_big(b)) } test(_0, _0); test(_1_2, _NEG1_2); test(-_1, _1); } #[test] fn test_zero() { assert_eq!(_0 + _0, _0); assert_eq!(_0 * _0, _0); assert_eq!(_0 * _1, _0); assert_eq!(_0 / _NEG1_2, _0); assert_eq!(_0 - _0, _0); } #[test] #[should_panic] fn test_div_0() { let _a = _1 / _0; } } #[test] fn test_round() { assert_eq!(_1_3.ceil(), _1); assert_eq!(_1_3.floor(), _0); assert_eq!(_1_3.round(), _0); assert_eq!(_1_3.trunc(), _0); assert_eq!(_NEG1_3.ceil(), _0); assert_eq!(_NEG1_3.floor(), -_1); assert_eq!(_NEG1_3.round(), _0); assert_eq!(_NEG1_3.trunc(), _0); assert_eq!(_2_3.ceil(), _1); assert_eq!(_2_3.floor(), _0); assert_eq!(_2_3.round(), _1); assert_eq!(_2_3.trunc(), _0); assert_eq!(_NEG2_3.ceil(), _0); assert_eq!(_NEG2_3.floor(), -_1); assert_eq!(_NEG2_3.round(), -_1); assert_eq!(_NEG2_3.trunc(), _0); assert_eq!(_1_2.ceil(), _1); assert_eq!(_1_2.floor(), _0); assert_eq!(_1_2.round(), _1); assert_eq!(_1_2.trunc(), _0); assert_eq!(_NEG1_2.ceil(), _0); assert_eq!(_NEG1_2.floor(), -_1); assert_eq!(_NEG1_2.round(), -_1); assert_eq!(_NEG1_2.trunc(), _0); assert_eq!(_1.ceil(), _1); assert_eq!(_1.floor(), _1); assert_eq!(_1.round(), _1); assert_eq!(_1.trunc(), _1); // Overflow checks let _neg1 = Ratio::from_integer(-1); let _large_rat1 = Ratio::new(i32::MAX, i32::MAX - 1); let _large_rat2 = Ratio::new(i32::MAX - 1, i32::MAX); let _large_rat3 = Ratio::new(i32::MIN + 2, i32::MIN + 1); let _large_rat4 = Ratio::new(i32::MIN + 1, i32::MIN + 2); let _large_rat5 = Ratio::new(i32::MIN + 2, i32::MAX); let _large_rat6 = Ratio::new(i32::MAX, i32::MIN + 2); let _large_rat7 = Ratio::new(1, i32::MIN + 1); let _large_rat8 = Ratio::new(1, i32::MAX); assert_eq!(_large_rat1.round(), One::one()); assert_eq!(_large_rat2.round(), One::one()); assert_eq!(_large_rat3.round(), One::one()); assert_eq!(_large_rat4.round(), One::one()); assert_eq!(_large_rat5.round(), _neg1); assert_eq!(_large_rat6.round(), _neg1); assert_eq!(_large_rat7.round(), Zero::zero()); assert_eq!(_large_rat8.round(), Zero::zero()); } #[test] fn test_fract() { assert_eq!(_1.fract(), _0); assert_eq!(_NEG1_2.fract(), _NEG1_2); assert_eq!(_1_2.fract(), _1_2); assert_eq!(_3_2.fract(), _1_2); } #[test] fn test_recip() { assert_eq!(_1 * _1.recip(), _1); assert_eq!(_2 * _2.recip(), _1); assert_eq!(_1_2 * _1_2.recip(), _1); assert_eq!(_3_2 * _3_2.recip(), _1); assert_eq!(_NEG1_2 * _NEG1_2.recip(), _1); assert_eq!(_3_2.recip(), _2_3); assert_eq!(_NEG1_2.recip(), _NEG2); assert_eq!(_NEG1_2.recip().denom(), &1); } #[test] #[should_panic(expected = "== 0")] fn test_recip_fail() { let _a = Ratio::new(0, 1).recip(); } #[test] fn test_pow() { assert_eq!(_1_2.pow(2), Ratio::new(1, 4)); assert_eq!(_1_2.pow(-2), Ratio::new(4, 1)); assert_eq!(_1.pow(1), _1); assert_eq!(_NEG1_2.pow(2), _1_2.pow(2)); assert_eq!(_NEG1_2.pow(3), -_1_2.pow(3)); assert_eq!(_3_2.pow(0), _1); assert_eq!(_3_2.pow(-1), _3_2.recip()); assert_eq!(_3_2.pow(3), Ratio::new(27, 8)); } #[test] fn test_to_from_str() { fn test(r: Rational, s: String) { assert_eq!(FromStr::from_str(&s), Ok(r)); assert_eq!(r.to_string(), s); } test(_1, "1".to_string()); test(_0, "0".to_string()); test(_1_2, "1/2".to_string()); test(_3_2, "3/2".to_string()); test(_2, "2".to_string()); test(_NEG1_2, "-1/2".to_string()); } #[test] fn test_from_str_fail() { fn test(s: &str) { let rational: Result = FromStr::from_str(s); assert!(rational.is_err()); } let xs = ["0 /1", "abc", "", "1/", "--1/2", "3/2/1", "1/0"]; for &s in xs.iter() { test(s); } } #[cfg(feature = "num-bigint")] #[test] fn test_from_float() { use traits::Float; fn test(given: T, (numer, denom): (&str, &str)) { let ratio: BigRational = Ratio::from_float(given).unwrap(); assert_eq!(ratio, Ratio::new(FromStr::from_str(numer).unwrap(), FromStr::from_str(denom).unwrap())); } // f32 test(3.14159265359f32, ("13176795", "4194304")); test(2f32.powf(100.), ("1267650600228229401496703205376", "1")); test(-2f32.powf(100.), ("-1267650600228229401496703205376", "1")); test(1.0 / 2f32.powf(100.), ("1", "1267650600228229401496703205376")); test(684729.48391f32, ("1369459", "2")); test(-8573.5918555f32, ("-4389679", "512")); // f64 test(3.14159265359f64, ("3537118876014453", "1125899906842624")); test(2f64.powf(100.), ("1267650600228229401496703205376", "1")); test(-2f64.powf(100.), ("-1267650600228229401496703205376", "1")); test(684729.48391f64, ("367611342500051", "536870912")); test(-8573.5918555f64, ("-4713381968463931", "549755813888")); test(1.0 / 2f64.powf(100.), ("1", "1267650600228229401496703205376")); } #[cfg(feature = "num-bigint")] #[test] fn test_from_float_fail() { use std::{f32, f64}; assert_eq!(Ratio::from_float(f32::NAN), None); assert_eq!(Ratio::from_float(f32::INFINITY), None); assert_eq!(Ratio::from_float(f32::NEG_INFINITY), None); assert_eq!(Ratio::from_float(f64::NAN), None); assert_eq!(Ratio::from_float(f64::INFINITY), None); assert_eq!(Ratio::from_float(f64::NEG_INFINITY), None); } #[test] fn test_signed() { assert_eq!(_NEG1_2.abs(), _1_2); assert_eq!(_3_2.abs_sub(&_1_2), _1); assert_eq!(_1_2.abs_sub(&_3_2), Zero::zero()); assert_eq!(_1_2.signum(), One::one()); assert_eq!(_NEG1_2.signum(), ->::one()); assert_eq!(_0.signum(), Zero::zero()); assert!(_NEG1_2.is_negative()); assert!(_1_NEG2.is_negative()); assert!(!_NEG1_2.is_positive()); assert!(!_1_NEG2.is_positive()); assert!(_1_2.is_positive()); assert!(_NEG1_NEG2.is_positive()); assert!(!_1_2.is_negative()); assert!(!_NEG1_NEG2.is_negative()); assert!(!_0.is_positive()); assert!(!_0.is_negative()); } #[test] fn test_hash() { assert!(::hash(&_0) != ::hash(&_1)); assert!(::hash(&_0) != ::hash(&_3_2)); // a == b -> hash(a) == hash(b) let a = Rational::new_raw(4, 2); let b = Rational::new_raw(6, 3); assert_eq!(a, b); assert_eq!(::hash(&a), ::hash(&b)); let a = Rational::new_raw(123456789, 1000); let b = Rational::new_raw(123456789 * 5, 5000); assert_eq!(a, b); assert_eq!(::hash(&a), ::hash(&b)); } #[test] fn test_into_pair() { assert_eq! ((0, 1), _0.into()); assert_eq! ((-2, 1), _NEG2.into()); assert_eq! ((1, -2), _1_NEG2.into()); } #[test] fn test_from_pair() { assert_eq! (_0, Ratio::from ((0, 1))); assert_eq! (_1, Ratio::from ((1, 1))); assert_eq! (_NEG2, Ratio::from ((-2, 1))); assert_eq! (_1_NEG2, Ratio::from ((1, -2))); } }