num-traits/src/int.rs

410 lines
11 KiB
Rust

use core::ops::{BitAnd, BitOr, BitXor, Not, Shl, Shr};
use bounds::Bounded;
use ops::checked::*;
use ops::saturating::Saturating;
use {Num, NumCast};
/// Generic trait for primitive integers.
///
/// The `PrimInt` trait is an abstraction over the builtin primitive integer types (e.g., `u8`,
/// `u32`, `isize`, `i128`, ...). It inherits the basic numeric traits and extends them with
/// bitwise operators and non-wrapping arithmetic.
///
/// The trait explicitly inherits `Copy`, `Eq`, `Ord`, and `Sized`. The intention is that all
/// types implementing this trait behave like primitive types that are passed by value by default
/// and behave like builtin integers. Furthermore, the types are expected to expose the integer
/// value in binary representation and support bitwise operators. The standard bitwise operations
/// (e.g., bitwise-and, bitwise-or, right-shift, left-shift) are inherited and the trait extends
/// these with introspective queries (e.g., `PrimInt::count_ones()`, `PrimInt::leading_zeros()`),
/// bitwise combinators (e.g., `PrimInt::rotate_left()`), and endianness converters (e.g.,
/// `PrimInt::to_be()`).
///
/// All `PrimInt` types are expected to be fixed-width binary integers. The width can be queried
/// via `T::zero().count_zeros()`. The trait currently lacks a way to query the width at
/// compile-time.
///
/// While a default implementation for all builtin primitive integers is provided, the trait is in
/// no way restricted to these. Other integer types that fulfil the requirements are free to
/// implement the trait was well.
///
/// This trait and many of the method names originate in the unstable `core::num::Int` trait from
/// the rust standard library. The original trait was never stabilized and thus removed from the
/// standard library.
pub trait PrimInt:
Sized
+ Copy
+ Num
+ NumCast
+ Bounded
+ PartialOrd
+ Ord
+ Eq
+ Not<Output = Self>
+ BitAnd<Output = Self>
+ BitOr<Output = Self>
+ BitXor<Output = Self>
+ Shl<usize, Output = Self>
+ Shr<usize, Output = Self>
+ CheckedAdd<Output = Self>
+ CheckedSub<Output = Self>
+ CheckedMul<Output = Self>
+ CheckedDiv<Output = Self>
+ Saturating
{
/// Returns the number of ones in the binary representation of `self`.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// let n = 0b01001100u8;
///
/// assert_eq!(n.count_ones(), 3);
/// ```
fn count_ones(self) -> u32;
/// Returns the number of zeros in the binary representation of `self`.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// let n = 0b01001100u8;
///
/// assert_eq!(n.count_zeros(), 5);
/// ```
fn count_zeros(self) -> u32;
/// Returns the number of leading zeros in the binary representation
/// of `self`.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// let n = 0b0101000u16;
///
/// assert_eq!(n.leading_zeros(), 10);
/// ```
fn leading_zeros(self) -> u32;
/// Returns the number of trailing zeros in the binary representation
/// of `self`.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// let n = 0b0101000u16;
///
/// assert_eq!(n.trailing_zeros(), 3);
/// ```
fn trailing_zeros(self) -> u32;
/// Shifts the bits to the left by a specified amount amount, `n`, wrapping
/// the truncated bits to the end of the resulting integer.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// let n = 0x0123456789ABCDEFu64;
/// let m = 0x3456789ABCDEF012u64;
///
/// assert_eq!(n.rotate_left(12), m);
/// ```
fn rotate_left(self, n: u32) -> Self;
/// Shifts the bits to the right by a specified amount amount, `n`, wrapping
/// the truncated bits to the beginning of the resulting integer.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// let n = 0x0123456789ABCDEFu64;
/// let m = 0xDEF0123456789ABCu64;
///
/// assert_eq!(n.rotate_right(12), m);
/// ```
fn rotate_right(self, n: u32) -> Self;
/// Shifts the bits to the left by a specified amount amount, `n`, filling
/// zeros in the least significant bits.
///
/// This is bitwise equivalent to signed `Shl`.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// let n = 0x0123456789ABCDEFu64;
/// let m = 0x3456789ABCDEF000u64;
///
/// assert_eq!(n.signed_shl(12), m);
/// ```
fn signed_shl(self, n: u32) -> Self;
/// Shifts the bits to the right by a specified amount amount, `n`, copying
/// the "sign bit" in the most significant bits even for unsigned types.
///
/// This is bitwise equivalent to signed `Shr`.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// let n = 0xFEDCBA9876543210u64;
/// let m = 0xFFFFEDCBA9876543u64;
///
/// assert_eq!(n.signed_shr(12), m);
/// ```
fn signed_shr(self, n: u32) -> Self;
/// Shifts the bits to the left by a specified amount amount, `n`, filling
/// zeros in the least significant bits.
///
/// This is bitwise equivalent to unsigned `Shl`.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// let n = 0x0123456789ABCDEFi64;
/// let m = 0x3456789ABCDEF000i64;
///
/// assert_eq!(n.unsigned_shl(12), m);
/// ```
fn unsigned_shl(self, n: u32) -> Self;
/// Shifts the bits to the right by a specified amount amount, `n`, filling
/// zeros in the most significant bits.
///
/// This is bitwise equivalent to unsigned `Shr`.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// let n = -8i8; // 0b11111000
/// let m = 62i8; // 0b00111110
///
/// assert_eq!(n.unsigned_shr(2), m);
/// ```
fn unsigned_shr(self, n: u32) -> Self;
/// Reverses the byte order of the integer.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// let n = 0x0123456789ABCDEFu64;
/// let m = 0xEFCDAB8967452301u64;
///
/// assert_eq!(n.swap_bytes(), m);
/// ```
fn swap_bytes(self) -> Self;
/// Convert an integer from big endian to the target's endianness.
///
/// On big endian this is a no-op. On little endian the bytes are swapped.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// let n = 0x0123456789ABCDEFu64;
///
/// if cfg!(target_endian = "big") {
/// assert_eq!(u64::from_be(n), n)
/// } else {
/// assert_eq!(u64::from_be(n), n.swap_bytes())
/// }
/// ```
fn from_be(x: Self) -> Self;
/// Convert an integer from little endian to the target's endianness.
///
/// On little endian this is a no-op. On big endian the bytes are swapped.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// let n = 0x0123456789ABCDEFu64;
///
/// if cfg!(target_endian = "little") {
/// assert_eq!(u64::from_le(n), n)
/// } else {
/// assert_eq!(u64::from_le(n), n.swap_bytes())
/// }
/// ```
fn from_le(x: Self) -> Self;
/// Convert `self` to big endian from the target's endianness.
///
/// On big endian this is a no-op. On little endian the bytes are swapped.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// let n = 0x0123456789ABCDEFu64;
///
/// if cfg!(target_endian = "big") {
/// assert_eq!(n.to_be(), n)
/// } else {
/// assert_eq!(n.to_be(), n.swap_bytes())
/// }
/// ```
fn to_be(self) -> Self;
/// Convert `self` to little endian from the target's endianness.
///
/// On little endian this is a no-op. On big endian the bytes are swapped.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// let n = 0x0123456789ABCDEFu64;
///
/// if cfg!(target_endian = "little") {
/// assert_eq!(n.to_le(), n)
/// } else {
/// assert_eq!(n.to_le(), n.swap_bytes())
/// }
/// ```
fn to_le(self) -> Self;
/// Raises self to the power of `exp`, using exponentiation by squaring.
///
/// # Examples
///
/// ```
/// use num_traits::PrimInt;
///
/// assert_eq!(2i32.pow(4), 16);
/// ```
fn pow(self, exp: u32) -> Self;
}
macro_rules! prim_int_impl {
($T:ty, $S:ty, $U:ty) => {
impl PrimInt for $T {
#[inline]
fn count_ones(self) -> u32 {
<$T>::count_ones(self)
}
#[inline]
fn count_zeros(self) -> u32 {
<$T>::count_zeros(self)
}
#[inline]
fn leading_zeros(self) -> u32 {
<$T>::leading_zeros(self)
}
#[inline]
fn trailing_zeros(self) -> u32 {
<$T>::trailing_zeros(self)
}
#[inline]
fn rotate_left(self, n: u32) -> Self {
<$T>::rotate_left(self, n)
}
#[inline]
fn rotate_right(self, n: u32) -> Self {
<$T>::rotate_right(self, n)
}
#[inline]
fn signed_shl(self, n: u32) -> Self {
((self as $S) << n) as $T
}
#[inline]
fn signed_shr(self, n: u32) -> Self {
((self as $S) >> n) as $T
}
#[inline]
fn unsigned_shl(self, n: u32) -> Self {
((self as $U) << n) as $T
}
#[inline]
fn unsigned_shr(self, n: u32) -> Self {
((self as $U) >> n) as $T
}
#[inline]
fn swap_bytes(self) -> Self {
<$T>::swap_bytes(self)
}
#[inline]
fn from_be(x: Self) -> Self {
<$T>::from_be(x)
}
#[inline]
fn from_le(x: Self) -> Self {
<$T>::from_le(x)
}
#[inline]
fn to_be(self) -> Self {
<$T>::to_be(self)
}
#[inline]
fn to_le(self) -> Self {
<$T>::to_le(self)
}
#[inline]
fn pow(self, exp: u32) -> Self {
<$T>::pow(self, exp)
}
}
};
}
// prim_int_impl!(type, signed, unsigned);
prim_int_impl!(u8, i8, u8);
prim_int_impl!(u16, i16, u16);
prim_int_impl!(u32, i32, u32);
prim_int_impl!(u64, i64, u64);
#[cfg(has_i128)]
prim_int_impl!(u128, i128, u128);
prim_int_impl!(usize, isize, usize);
prim_int_impl!(i8, i8, u8);
prim_int_impl!(i16, i16, u16);
prim_int_impl!(i32, i32, u32);
prim_int_impl!(i64, i64, u64);
#[cfg(has_i128)]
prim_int_impl!(i128, i128, u128);
prim_int_impl!(isize, isize, usize);