num-traits/src/float.rs

2025 lines
52 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use core::mem;
use core::num::FpCategory;
use core::ops::Neg;
use core::f32;
use core::f64;
use {Num, NumCast, ToPrimitive};
/// Generic trait for floating point numbers that works with `no_std`.
///
/// This trait implements a subset of the `Float` trait.
pub trait FloatCore: Num + NumCast + Neg<Output = Self> + PartialOrd + Copy {
/// Returns positive infinity.
///
/// # Examples
///
/// ```
/// use num_traits::float::FloatCore;
/// use std::{f32, f64};
///
/// fn check<T: FloatCore>(x: T) {
/// assert!(T::infinity() == x);
/// }
///
/// check(f32::INFINITY);
/// check(f64::INFINITY);
/// ```
fn infinity() -> Self;
/// Returns negative infinity.
///
/// # Examples
///
/// ```
/// use num_traits::float::FloatCore;
/// use std::{f32, f64};
///
/// fn check<T: FloatCore>(x: T) {
/// assert!(T::neg_infinity() == x);
/// }
///
/// check(f32::NEG_INFINITY);
/// check(f64::NEG_INFINITY);
/// ```
fn neg_infinity() -> Self;
/// Returns NaN.
///
/// # Examples
///
/// ```
/// use num_traits::float::FloatCore;
///
/// fn check<T: FloatCore>() {
/// let n = T::nan();
/// assert!(n != n);
/// }
///
/// check::<f32>();
/// check::<f64>();
/// ```
fn nan() -> Self;
/// Returns `-0.0`.
///
/// # Examples
///
/// ```
/// use num_traits::float::FloatCore;
/// use std::{f32, f64};
///
/// fn check<T: FloatCore>(n: T) {
/// let z = T::neg_zero();
/// assert!(z.is_zero());
/// assert!(T::one() / z == n);
/// }
///
/// check(f32::NEG_INFINITY);
/// check(f64::NEG_INFINITY);
/// ```
fn neg_zero() -> Self;
/// Returns the smallest finite value that this type can represent.
///
/// # Examples
///
/// ```
/// use num_traits::float::FloatCore;
/// use std::{f32, f64};
///
/// fn check<T: FloatCore>(x: T) {
/// assert!(T::min_value() == x);
/// }
///
/// check(f32::MIN);
/// check(f64::MIN);
/// ```
fn min_value() -> Self;
/// Returns the smallest positive, normalized value that this type can represent.
///
/// # Examples
///
/// ```
/// use num_traits::float::FloatCore;
/// use std::{f32, f64};
///
/// fn check<T: FloatCore>(x: T) {
/// assert!(T::min_positive_value() == x);
/// }
///
/// check(f32::MIN_POSITIVE);
/// check(f64::MIN_POSITIVE);
/// ```
fn min_positive_value() -> Self;
/// Returns epsilon, a small positive value.
///
/// # Examples
///
/// ```
/// use num_traits::float::FloatCore;
/// use std::{f32, f64};
///
/// fn check<T: FloatCore>(x: T) {
/// assert!(T::epsilon() == x);
/// }
///
/// check(f32::EPSILON);
/// check(f64::EPSILON);
/// ```
fn epsilon() -> Self;
/// Returns the largest finite value that this type can represent.
///
/// # Examples
///
/// ```
/// use num_traits::float::FloatCore;
/// use std::{f32, f64};
///
/// fn check<T: FloatCore>(x: T) {
/// assert!(T::max_value() == x);
/// }
///
/// check(f32::MAX);
/// check(f64::MAX);
/// ```
fn max_value() -> Self;
/// Returns `true` if the number is NaN.
///
/// # Examples
///
/// ```
/// use num_traits::float::FloatCore;
/// use std::{f32, f64};
///
/// fn check<T: FloatCore>(x: T, p: bool) {
/// assert!(x.is_nan() == p);
/// }
///
/// check(f32::NAN, true);
/// check(f32::INFINITY, false);
/// check(f64::NAN, true);
/// check(0.0f64, false);
/// ```
#[inline]
fn is_nan(self) -> bool {
self != self
}
/// Returns `true` if the number is infinite.
///
/// # Examples
///
/// ```
/// use num_traits::float::FloatCore;
/// use std::{f32, f64};
///
/// fn check<T: FloatCore>(x: T, p: bool) {
/// assert!(x.is_infinite() == p);
/// }
///
/// check(f32::INFINITY, true);
/// check(f32::NEG_INFINITY, true);
/// check(f32::NAN, false);
/// check(f64::INFINITY, true);
/// check(f64::NEG_INFINITY, true);
/// check(0.0f64, false);
/// ```
#[inline]
fn is_infinite(self) -> bool {
self == Self::infinity() || self == Self::neg_infinity()
}
/// Returns `true` if the number is neither infinite or NaN.
///
/// # Examples
///
/// ```
/// use num_traits::float::FloatCore;
/// use std::{f32, f64};
///
/// fn check<T: FloatCore>(x: T, p: bool) {
/// assert!(x.is_finite() == p);
/// }
///
/// check(f32::INFINITY, false);
/// check(f32::MAX, true);
/// check(f64::NEG_INFINITY, false);
/// check(f64::MIN_POSITIVE, true);
/// check(f64::NAN, false);
/// ```
#[inline]
fn is_finite(self) -> bool {
!(self.is_nan() || self.is_infinite())
}
/// Returns `true` if the number is neither zero, infinite, subnormal or NaN.
///
/// # Examples
///
/// ```
/// use num_traits::float::FloatCore;
/// use std::{f32, f64};
///
/// fn check<T: FloatCore>(x: T, p: bool) {
/// assert!(x.is_normal() == p);
/// }
///
/// check(f32::INFINITY, false);
/// check(f32::MAX, true);
/// check(f64::NEG_INFINITY, false);
/// check(f64::MIN_POSITIVE, true);
/// check(0.0f64, false);
/// ```
#[inline]
fn is_normal(self) -> bool {
self.classify() == FpCategory::Normal
}
/// Returns the floating point category of the number. If only one property
/// is going to be tested, it is generally faster to use the specific
/// predicate instead.
///
/// # Examples
///
/// ```
/// use num_traits::float::FloatCore;
/// use std::{f32, f64};
/// use std::num::FpCategory;
///
/// fn check<T: FloatCore>(x: T, c: FpCategory) {
/// assert!(x.classify() == c);
/// }
///
/// check(f32::INFINITY, FpCategory::Infinite);
/// check(f32::MAX, FpCategory::Normal);
/// check(f64::NAN, FpCategory::Nan);
/// check(f64::MIN_POSITIVE, FpCategory::Normal);
/// check(f64::MIN_POSITIVE / 2.0, FpCategory::Subnormal);
/// check(0.0f64, FpCategory::Zero);
/// ```
fn classify(self) -> FpCategory;
/// Returns the largest integer less than or equal to a number.
///
/// # Examples
///
/// ```
/// use num_traits::float::FloatCore;
/// use std::{f32, f64};
///
/// fn check<T: FloatCore>(x: T, y: T) {
/// assert!(x.floor() == y);
/// }
///
/// check(f32::INFINITY, f32::INFINITY);
/// check(0.9f32, 0.0);
/// check(1.0f32, 1.0);
/// check(1.1f32, 1.0);
/// check(-0.0f64, 0.0);
/// check(-0.9f64, -1.0);
/// check(-1.0f64, -1.0);
/// check(-1.1f64, -2.0);
/// check(f64::MIN, f64::MIN);
/// ```
#[inline]
fn floor(self) -> Self {
let f = self.fract();
if f.is_nan() || f.is_zero() {
self
} else if self < Self::zero() {
self - f - Self::one()
} else {
self - f
}
}
/// Returns the smallest integer greater than or equal to a number.
///
/// # Examples
///
/// ```
/// use num_traits::float::FloatCore;
/// use std::{f32, f64};
///
/// fn check<T: FloatCore>(x: T, y: T) {
/// assert!(x.ceil() == y);
/// }
///
/// check(f32::INFINITY, f32::INFINITY);
/// check(0.9f32, 1.0);
/// check(1.0f32, 1.0);
/// check(1.1f32, 2.0);
/// check(-0.0f64, 0.0);
/// check(-0.9f64, -0.0);
/// check(-1.0f64, -1.0);
/// check(-1.1f64, -1.0);
/// check(f64::MIN, f64::MIN);
/// ```
#[inline]
fn ceil(self) -> Self {
let f = self.fract();
if f.is_nan() || f.is_zero() {
self
} else if self > Self::zero() {
self - f + Self::one()
} else {
self - f
}
}
/// Returns the nearest integer to a number. Round half-way cases away from `0.0`.
///
/// # Examples
///
/// ```
/// use num_traits::float::FloatCore;
/// use std::{f32, f64};
///
/// fn check<T: FloatCore>(x: T, y: T) {
/// assert!(x.round() == y);
/// }
///
/// check(f32::INFINITY, f32::INFINITY);
/// check(0.4f32, 0.0);
/// check(0.5f32, 1.0);
/// check(0.6f32, 1.0);
/// check(-0.4f64, 0.0);
/// check(-0.5f64, -1.0);
/// check(-0.6f64, -1.0);
/// check(f64::MIN, f64::MIN);
/// ```
#[inline]
fn round(self) -> Self {
let one = Self::one();
let h = Self::from(0.5).expect("Unable to cast from 0.5");
let f = self.fract();
if f.is_nan() || f.is_zero() {
self
} else if self > Self::zero() {
if f < h {
self - f
} else {
self - f + one
}
} else {
if -f < h {
self - f
} else {
self - f - one
}
}
}
/// Return the integer part of a number.
///
/// # Examples
///
/// ```
/// use num_traits::float::FloatCore;
/// use std::{f32, f64};
///
/// fn check<T: FloatCore>(x: T, y: T) {
/// assert!(x.trunc() == y);
/// }
///
/// check(f32::INFINITY, f32::INFINITY);
/// check(0.9f32, 0.0);
/// check(1.0f32, 1.0);
/// check(1.1f32, 1.0);
/// check(-0.0f64, 0.0);
/// check(-0.9f64, -0.0);
/// check(-1.0f64, -1.0);
/// check(-1.1f64, -1.0);
/// check(f64::MIN, f64::MIN);
/// ```
#[inline]
fn trunc(self) -> Self {
let f = self.fract();
if f.is_nan() {
self
} else {
self - f
}
}
/// Returns the fractional part of a number.
///
/// # Examples
///
/// ```
/// use num_traits::float::FloatCore;
/// use std::{f32, f64};
///
/// fn check<T: FloatCore>(x: T, y: T) {
/// assert!(x.fract() == y);
/// }
///
/// check(f32::MAX, 0.0);
/// check(0.75f32, 0.75);
/// check(1.0f32, 0.0);
/// check(1.25f32, 0.25);
/// check(-0.0f64, 0.0);
/// check(-0.75f64, -0.75);
/// check(-1.0f64, 0.0);
/// check(-1.25f64, -0.25);
/// check(f64::MIN, 0.0);
/// ```
#[inline]
fn fract(self) -> Self {
if self.is_zero() {
Self::zero()
} else {
self % Self::one()
}
}
/// Computes the absolute value of `self`. Returns `FloatCore::nan()` if the
/// number is `FloatCore::nan()`.
///
/// # Examples
///
/// ```
/// use num_traits::float::FloatCore;
/// use std::{f32, f64};
///
/// fn check<T: FloatCore>(x: T, y: T) {
/// assert!(x.abs() == y);
/// }
///
/// check(f32::INFINITY, f32::INFINITY);
/// check(1.0f32, 1.0);
/// check(0.0f64, 0.0);
/// check(-0.0f64, 0.0);
/// check(-1.0f64, 1.0);
/// check(f64::MIN, f64::MAX);
/// ```
#[inline]
fn abs(self) -> Self {
if self.is_sign_positive() {
return self;
}
if self.is_sign_negative() {
return -self;
}
Self::nan()
}
/// Returns a number that represents the sign of `self`.
///
/// - `1.0` if the number is positive, `+0.0` or `FloatCore::infinity()`
/// - `-1.0` if the number is negative, `-0.0` or `FloatCore::neg_infinity()`
/// - `FloatCore::nan()` if the number is `FloatCore::nan()`
///
/// # Examples
///
/// ```
/// use num_traits::float::FloatCore;
/// use std::{f32, f64};
///
/// fn check<T: FloatCore>(x: T, y: T) {
/// assert!(x.signum() == y);
/// }
///
/// check(f32::INFINITY, 1.0);
/// check(3.0f32, 1.0);
/// check(0.0f32, 1.0);
/// check(-0.0f64, -1.0);
/// check(-3.0f64, -1.0);
/// check(f64::MIN, -1.0);
/// ```
#[inline]
fn signum(self) -> Self {
if self.is_nan() {
Self::nan()
} else if self.is_sign_negative() {
-Self::one()
} else {
Self::one()
}
}
/// Returns `true` if `self` is positive, including `+0.0` and
/// `FloatCore::infinity()`, and since Rust 1.20 also
/// `FloatCore::nan()`.
///
/// # Examples
///
/// ```
/// use num_traits::float::FloatCore;
/// use std::{f32, f64};
///
/// fn check<T: FloatCore>(x: T, p: bool) {
/// assert!(x.is_sign_positive() == p);
/// }
///
/// check(f32::INFINITY, true);
/// check(f32::MAX, true);
/// check(0.0f32, true);
/// check(-0.0f64, false);
/// check(f64::NEG_INFINITY, false);
/// check(f64::MIN_POSITIVE, true);
/// check(-f64::NAN, false);
/// ```
#[inline]
fn is_sign_positive(self) -> bool {
!self.is_sign_negative()
}
/// Returns `true` if `self` is negative, including `-0.0` and
/// `FloatCore::neg_infinity()`, and since Rust 1.20 also
/// `-FloatCore::nan()`.
///
/// # Examples
///
/// ```
/// use num_traits::float::FloatCore;
/// use std::{f32, f64};
///
/// fn check<T: FloatCore>(x: T, p: bool) {
/// assert!(x.is_sign_negative() == p);
/// }
///
/// check(f32::INFINITY, false);
/// check(f32::MAX, false);
/// check(0.0f32, false);
/// check(-0.0f64, true);
/// check(f64::NEG_INFINITY, true);
/// check(f64::MIN_POSITIVE, false);
/// check(f64::NAN, false);
/// ```
#[inline]
fn is_sign_negative(self) -> bool {
let (_, _, sign) = self.integer_decode();
sign < 0
}
/// Returns the minimum of the two numbers.
///
/// If one of the arguments is NaN, then the other argument is returned.
///
/// # Examples
///
/// ```
/// use num_traits::float::FloatCore;
/// use std::{f32, f64};
///
/// fn check<T: FloatCore>(x: T, y: T, min: T) {
/// assert!(x.min(y) == min);
/// }
///
/// check(1.0f32, 2.0, 1.0);
/// check(f32::NAN, 2.0, 2.0);
/// check(1.0f64, -2.0, -2.0);
/// check(1.0f64, f64::NAN, 1.0);
/// ```
#[inline]
fn min(self, other: Self) -> Self {
if self.is_nan() {
return other;
}
if other.is_nan() {
return self;
}
if self < other {
self
} else {
other
}
}
/// Returns the maximum of the two numbers.
///
/// If one of the arguments is NaN, then the other argument is returned.
///
/// # Examples
///
/// ```
/// use num_traits::float::FloatCore;
/// use std::{f32, f64};
///
/// fn check<T: FloatCore>(x: T, y: T, min: T) {
/// assert!(x.max(y) == min);
/// }
///
/// check(1.0f32, 2.0, 2.0);
/// check(1.0f32, f32::NAN, 1.0);
/// check(-1.0f64, 2.0, 2.0);
/// check(-1.0f64, f64::NAN, -1.0);
/// ```
#[inline]
fn max(self, other: Self) -> Self {
if self.is_nan() {
return other;
}
if other.is_nan() {
return self;
}
if self > other {
self
} else {
other
}
}
/// Returns the reciprocal (multiplicative inverse) of the number.
///
/// # Examples
///
/// ```
/// use num_traits::float::FloatCore;
/// use std::{f32, f64};
///
/// fn check<T: FloatCore>(x: T, y: T) {
/// assert!(x.recip() == y);
/// assert!(y.recip() == x);
/// }
///
/// check(f32::INFINITY, 0.0);
/// check(2.0f32, 0.5);
/// check(-0.25f64, -4.0);
/// check(-0.0f64, f64::NEG_INFINITY);
/// ```
#[inline]
fn recip(self) -> Self {
Self::one() / self
}
/// Raise a number to an integer power.
///
/// Using this function is generally faster than using `powf`
///
/// # Examples
///
/// ```
/// use num_traits::float::FloatCore;
///
/// fn check<T: FloatCore>(x: T, exp: i32, powi: T) {
/// assert!(x.powi(exp) == powi);
/// }
///
/// check(9.0f32, 2, 81.0);
/// check(1.0f32, -2, 1.0);
/// check(10.0f64, 20, 1e20);
/// check(4.0f64, -2, 0.0625);
/// check(-1.0f64, std::i32::MIN, 1.0);
/// ```
#[inline]
fn powi(mut self, mut exp: i32) -> Self {
if exp < 0 {
exp = exp.wrapping_neg();
self = self.recip();
}
// It should always be possible to convert a positive `i32` to a `usize`.
// Note, `i32::MIN` will wrap and still be negative, so we need to convert
// to `u32` without sign-extension before growing to `usize`.
super::pow(self, (exp as u32).to_usize().unwrap())
}
/// Converts to degrees, assuming the number is in radians.
///
/// # Examples
///
/// ```
/// use num_traits::float::FloatCore;
/// use std::{f32, f64};
///
/// fn check<T: FloatCore>(rad: T, deg: T) {
/// assert!(rad.to_degrees() == deg);
/// }
///
/// check(0.0f32, 0.0);
/// check(f32::consts::PI, 180.0);
/// check(f64::consts::FRAC_PI_4, 45.0);
/// check(f64::INFINITY, f64::INFINITY);
/// ```
fn to_degrees(self) -> Self;
/// Converts to radians, assuming the number is in degrees.
///
/// # Examples
///
/// ```
/// use num_traits::float::FloatCore;
/// use std::{f32, f64};
///
/// fn check<T: FloatCore>(deg: T, rad: T) {
/// assert!(deg.to_radians() == rad);
/// }
///
/// check(0.0f32, 0.0);
/// check(180.0, f32::consts::PI);
/// check(45.0, f64::consts::FRAC_PI_4);
/// check(f64::INFINITY, f64::INFINITY);
/// ```
fn to_radians(self) -> Self;
/// Returns the mantissa, base 2 exponent, and sign as integers, respectively.
/// The original number can be recovered by `sign * mantissa * 2 ^ exponent`.
///
/// # Examples
///
/// ```
/// use num_traits::float::FloatCore;
/// use std::{f32, f64};
///
/// fn check<T: FloatCore>(x: T, m: u64, e: i16, s:i8) {
/// let (mantissa, exponent, sign) = x.integer_decode();
/// assert_eq!(mantissa, m);
/// assert_eq!(exponent, e);
/// assert_eq!(sign, s);
/// }
///
/// check(2.0f32, 1 << 23, -22, 1);
/// check(-2.0f32, 1 << 23, -22, -1);
/// check(f32::INFINITY, 1 << 23, 105, 1);
/// check(f64::NEG_INFINITY, 1 << 52, 972, -1);
/// ```
fn integer_decode(self) -> (u64, i16, i8);
}
impl FloatCore for f32 {
constant! {
infinity() -> f32::INFINITY;
neg_infinity() -> f32::NEG_INFINITY;
nan() -> f32::NAN;
neg_zero() -> -0.0;
min_value() -> f32::MIN;
min_positive_value() -> f32::MIN_POSITIVE;
epsilon() -> f32::EPSILON;
max_value() -> f32::MAX;
}
#[inline]
fn integer_decode(self) -> (u64, i16, i8) {
integer_decode_f32(self)
}
#[inline]
#[cfg(not(feature = "std"))]
fn classify(self) -> FpCategory {
const EXP_MASK: u32 = 0x7f800000;
const MAN_MASK: u32 = 0x007fffff;
let bits: u32 = unsafe { mem::transmute(self) };
match (bits & MAN_MASK, bits & EXP_MASK) {
(0, 0) => FpCategory::Zero,
(_, 0) => FpCategory::Subnormal,
(0, EXP_MASK) => FpCategory::Infinite,
(_, EXP_MASK) => FpCategory::Nan,
_ => FpCategory::Normal,
}
}
#[inline]
#[cfg(not(feature = "std"))]
fn to_degrees(self) -> Self {
// Use a constant for better precision.
const PIS_IN_180: f32 = 57.2957795130823208767981548141051703_f32;
self * PIS_IN_180
}
#[inline]
#[cfg(not(feature = "std"))]
fn to_radians(self) -> Self {
self * (f32::consts::PI / 180.0)
}
#[cfg(feature = "std")]
forward! {
Self::is_nan(self) -> bool;
Self::is_infinite(self) -> bool;
Self::is_finite(self) -> bool;
Self::is_normal(self) -> bool;
Self::classify(self) -> FpCategory;
Self::floor(self) -> Self;
Self::ceil(self) -> Self;
Self::round(self) -> Self;
Self::trunc(self) -> Self;
Self::fract(self) -> Self;
Self::abs(self) -> Self;
Self::signum(self) -> Self;
Self::is_sign_positive(self) -> bool;
Self::is_sign_negative(self) -> bool;
Self::min(self, other: Self) -> Self;
Self::max(self, other: Self) -> Self;
Self::recip(self) -> Self;
Self::powi(self, n: i32) -> Self;
Self::to_degrees(self) -> Self;
Self::to_radians(self) -> Self;
}
}
impl FloatCore for f64 {
constant! {
infinity() -> f64::INFINITY;
neg_infinity() -> f64::NEG_INFINITY;
nan() -> f64::NAN;
neg_zero() -> -0.0;
min_value() -> f64::MIN;
min_positive_value() -> f64::MIN_POSITIVE;
epsilon() -> f64::EPSILON;
max_value() -> f64::MAX;
}
#[inline]
fn integer_decode(self) -> (u64, i16, i8) {
integer_decode_f64(self)
}
#[inline]
#[cfg(not(feature = "std"))]
fn classify(self) -> FpCategory {
const EXP_MASK: u64 = 0x7ff0000000000000;
const MAN_MASK: u64 = 0x000fffffffffffff;
let bits: u64 = unsafe { mem::transmute(self) };
match (bits & MAN_MASK, bits & EXP_MASK) {
(0, 0) => FpCategory::Zero,
(_, 0) => FpCategory::Subnormal,
(0, EXP_MASK) => FpCategory::Infinite,
(_, EXP_MASK) => FpCategory::Nan,
_ => FpCategory::Normal,
}
}
#[inline]
#[cfg(not(feature = "std"))]
fn to_degrees(self) -> Self {
// The division here is correctly rounded with respect to the true
// value of 180/π. (This differs from f32, where a constant must be
// used to ensure a correctly rounded result.)
self * (180.0 / f64::consts::PI)
}
#[inline]
#[cfg(not(feature = "std"))]
fn to_radians(self) -> Self {
self * (f64::consts::PI / 180.0)
}
#[cfg(feature = "std")]
forward! {
Self::is_nan(self) -> bool;
Self::is_infinite(self) -> bool;
Self::is_finite(self) -> bool;
Self::is_normal(self) -> bool;
Self::classify(self) -> FpCategory;
Self::floor(self) -> Self;
Self::ceil(self) -> Self;
Self::round(self) -> Self;
Self::trunc(self) -> Self;
Self::fract(self) -> Self;
Self::abs(self) -> Self;
Self::signum(self) -> Self;
Self::is_sign_positive(self) -> bool;
Self::is_sign_negative(self) -> bool;
Self::min(self, other: Self) -> Self;
Self::max(self, other: Self) -> Self;
Self::recip(self) -> Self;
Self::powi(self, n: i32) -> Self;
Self::to_degrees(self) -> Self;
Self::to_radians(self) -> Self;
}
}
// FIXME: these doctests aren't actually helpful, because they're using and
// testing the inherent methods directly, not going through `Float`.
/// Generic trait for floating point numbers
///
/// This trait is only available with the `std` feature.
#[cfg(feature = "std")]
pub trait Float: Num + Copy + NumCast + PartialOrd + Neg<Output = Self> {
/// Returns the `NaN` value.
///
/// ```
/// use num_traits::Float;
///
/// let nan: f32 = Float::nan();
///
/// assert!(nan.is_nan());
/// ```
fn nan() -> Self;
/// Returns the infinite value.
///
/// ```
/// use num_traits::Float;
/// use std::f32;
///
/// let infinity: f32 = Float::infinity();
///
/// assert!(infinity.is_infinite());
/// assert!(!infinity.is_finite());
/// assert!(infinity > f32::MAX);
/// ```
fn infinity() -> Self;
/// Returns the negative infinite value.
///
/// ```
/// use num_traits::Float;
/// use std::f32;
///
/// let neg_infinity: f32 = Float::neg_infinity();
///
/// assert!(neg_infinity.is_infinite());
/// assert!(!neg_infinity.is_finite());
/// assert!(neg_infinity < f32::MIN);
/// ```
fn neg_infinity() -> Self;
/// Returns `-0.0`.
///
/// ```
/// use num_traits::{Zero, Float};
///
/// let inf: f32 = Float::infinity();
/// let zero: f32 = Zero::zero();
/// let neg_zero: f32 = Float::neg_zero();
///
/// assert_eq!(zero, neg_zero);
/// assert_eq!(7.0f32/inf, zero);
/// assert_eq!(zero * 10.0, zero);
/// ```
fn neg_zero() -> Self;
/// Returns the smallest finite value that this type can represent.
///
/// ```
/// use num_traits::Float;
/// use std::f64;
///
/// let x: f64 = Float::min_value();
///
/// assert_eq!(x, f64::MIN);
/// ```
fn min_value() -> Self;
/// Returns the smallest positive, normalized value that this type can represent.
///
/// ```
/// use num_traits::Float;
/// use std::f64;
///
/// let x: f64 = Float::min_positive_value();
///
/// assert_eq!(x, f64::MIN_POSITIVE);
/// ```
fn min_positive_value() -> Self;
/// Returns epsilon, a small positive value.
///
/// ```
/// use num_traits::Float;
/// use std::f64;
///
/// let x: f64 = Float::epsilon();
///
/// assert_eq!(x, f64::EPSILON);
/// ```
///
/// # Panics
///
/// The default implementation will panic if `f32::EPSILON` cannot
/// be cast to `Self`.
fn epsilon() -> Self {
Self::from(f32::EPSILON).expect("Unable to cast from f32::EPSILON")
}
/// Returns the largest finite value that this type can represent.
///
/// ```
/// use num_traits::Float;
/// use std::f64;
///
/// let x: f64 = Float::max_value();
/// assert_eq!(x, f64::MAX);
/// ```
fn max_value() -> Self;
/// Returns `true` if this value is `NaN` and false otherwise.
///
/// ```
/// use num_traits::Float;
/// use std::f64;
///
/// let nan = f64::NAN;
/// let f = 7.0;
///
/// assert!(nan.is_nan());
/// assert!(!f.is_nan());
/// ```
fn is_nan(self) -> bool;
/// Returns `true` if this value is positive infinity or negative infinity and
/// false otherwise.
///
/// ```
/// use num_traits::Float;
/// use std::f32;
///
/// let f = 7.0f32;
/// let inf: f32 = Float::infinity();
/// let neg_inf: f32 = Float::neg_infinity();
/// let nan: f32 = f32::NAN;
///
/// assert!(!f.is_infinite());
/// assert!(!nan.is_infinite());
///
/// assert!(inf.is_infinite());
/// assert!(neg_inf.is_infinite());
/// ```
fn is_infinite(self) -> bool;
/// Returns `true` if this number is neither infinite nor `NaN`.
///
/// ```
/// use num_traits::Float;
/// use std::f32;
///
/// let f = 7.0f32;
/// let inf: f32 = Float::infinity();
/// let neg_inf: f32 = Float::neg_infinity();
/// let nan: f32 = f32::NAN;
///
/// assert!(f.is_finite());
///
/// assert!(!nan.is_finite());
/// assert!(!inf.is_finite());
/// assert!(!neg_inf.is_finite());
/// ```
fn is_finite(self) -> bool;
/// Returns `true` if the number is neither zero, infinite,
/// [subnormal][subnormal], or `NaN`.
///
/// ```
/// use num_traits::Float;
/// use std::f32;
///
/// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32
/// let max = f32::MAX;
/// let lower_than_min = 1.0e-40_f32;
/// let zero = 0.0f32;
///
/// assert!(min.is_normal());
/// assert!(max.is_normal());
///
/// assert!(!zero.is_normal());
/// assert!(!f32::NAN.is_normal());
/// assert!(!f32::INFINITY.is_normal());
/// // Values between `0` and `min` are Subnormal.
/// assert!(!lower_than_min.is_normal());
/// ```
/// [subnormal]: http://en.wikipedia.org/wiki/Denormal_number
fn is_normal(self) -> bool;
/// Returns the floating point category of the number. If only one property
/// is going to be tested, it is generally faster to use the specific
/// predicate instead.
///
/// ```
/// use num_traits::Float;
/// use std::num::FpCategory;
/// use std::f32;
///
/// let num = 12.4f32;
/// let inf = f32::INFINITY;
///
/// assert_eq!(num.classify(), FpCategory::Normal);
/// assert_eq!(inf.classify(), FpCategory::Infinite);
/// ```
fn classify(self) -> FpCategory;
/// Returns the largest integer less than or equal to a number.
///
/// ```
/// use num_traits::Float;
///
/// let f = 3.99;
/// let g = 3.0;
///
/// assert_eq!(f.floor(), 3.0);
/// assert_eq!(g.floor(), 3.0);
/// ```
fn floor(self) -> Self;
/// Returns the smallest integer greater than or equal to a number.
///
/// ```
/// use num_traits::Float;
///
/// let f = 3.01;
/// let g = 4.0;
///
/// assert_eq!(f.ceil(), 4.0);
/// assert_eq!(g.ceil(), 4.0);
/// ```
fn ceil(self) -> Self;
/// Returns the nearest integer to a number. Round half-way cases away from
/// `0.0`.
///
/// ```
/// use num_traits::Float;
///
/// let f = 3.3;
/// let g = -3.3;
///
/// assert_eq!(f.round(), 3.0);
/// assert_eq!(g.round(), -3.0);
/// ```
fn round(self) -> Self;
/// Return the integer part of a number.
///
/// ```
/// use num_traits::Float;
///
/// let f = 3.3;
/// let g = -3.7;
///
/// assert_eq!(f.trunc(), 3.0);
/// assert_eq!(g.trunc(), -3.0);
/// ```
fn trunc(self) -> Self;
/// Returns the fractional part of a number.
///
/// ```
/// use num_traits::Float;
///
/// let x = 3.5;
/// let y = -3.5;
/// let abs_difference_x = (x.fract() - 0.5).abs();
/// let abs_difference_y = (y.fract() - (-0.5)).abs();
///
/// assert!(abs_difference_x < 1e-10);
/// assert!(abs_difference_y < 1e-10);
/// ```
fn fract(self) -> Self;
/// Computes the absolute value of `self`. Returns `Float::nan()` if the
/// number is `Float::nan()`.
///
/// ```
/// use num_traits::Float;
/// use std::f64;
///
/// let x = 3.5;
/// let y = -3.5;
///
/// let abs_difference_x = (x.abs() - x).abs();
/// let abs_difference_y = (y.abs() - (-y)).abs();
///
/// assert!(abs_difference_x < 1e-10);
/// assert!(abs_difference_y < 1e-10);
///
/// assert!(f64::NAN.abs().is_nan());
/// ```
fn abs(self) -> Self;
/// Returns a number that represents the sign of `self`.
///
/// - `1.0` if the number is positive, `+0.0` or `Float::infinity()`
/// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()`
/// - `Float::nan()` if the number is `Float::nan()`
///
/// ```
/// use num_traits::Float;
/// use std::f64;
///
/// let f = 3.5;
///
/// assert_eq!(f.signum(), 1.0);
/// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
///
/// assert!(f64::NAN.signum().is_nan());
/// ```
fn signum(self) -> Self;
/// Returns `true` if `self` is positive, including `+0.0`,
/// `Float::infinity()`, and since Rust 1.20 also `Float::nan()`.
///
/// ```
/// use num_traits::Float;
/// use std::f64;
///
/// let neg_nan: f64 = -f64::NAN;
///
/// let f = 7.0;
/// let g = -7.0;
///
/// assert!(f.is_sign_positive());
/// assert!(!g.is_sign_positive());
/// assert!(!neg_nan.is_sign_positive());
/// ```
fn is_sign_positive(self) -> bool;
/// Returns `true` if `self` is negative, including `-0.0`,
/// `Float::neg_infinity()`, and since Rust 1.20 also `-Float::nan()`.
///
/// ```
/// use num_traits::Float;
/// use std::f64;
///
/// let nan: f64 = f64::NAN;
///
/// let f = 7.0;
/// let g = -7.0;
///
/// assert!(!f.is_sign_negative());
/// assert!(g.is_sign_negative());
/// assert!(!nan.is_sign_negative());
/// ```
fn is_sign_negative(self) -> bool;
/// Fused multiply-add. Computes `(self * a) + b` with only one rounding
/// error, yielding a more accurate result than an unfused multiply-add.
///
/// Using `mul_add` can be more performant than an unfused multiply-add if
/// the target architecture has a dedicated `fma` CPU instruction.
///
/// ```
/// use num_traits::Float;
///
/// let m = 10.0;
/// let x = 4.0;
/// let b = 60.0;
///
/// // 100.0
/// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn mul_add(self, a: Self, b: Self) -> Self;
/// Take the reciprocal (inverse) of a number, `1/x`.
///
/// ```
/// use num_traits::Float;
///
/// let x = 2.0;
/// let abs_difference = (x.recip() - (1.0/x)).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn recip(self) -> Self;
/// Raise a number to an integer power.
///
/// Using this function is generally faster than using `powf`
///
/// ```
/// use num_traits::Float;
///
/// let x = 2.0;
/// let abs_difference = (x.powi(2) - x*x).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn powi(self, n: i32) -> Self;
/// Raise a number to a floating point power.
///
/// ```
/// use num_traits::Float;
///
/// let x = 2.0;
/// let abs_difference = (x.powf(2.0) - x*x).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn powf(self, n: Self) -> Self;
/// Take the square root of a number.
///
/// Returns NaN if `self` is a negative number.
///
/// ```
/// use num_traits::Float;
///
/// let positive = 4.0;
/// let negative = -4.0;
///
/// let abs_difference = (positive.sqrt() - 2.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// assert!(negative.sqrt().is_nan());
/// ```
fn sqrt(self) -> Self;
/// Returns `e^(self)`, (the exponential function).
///
/// ```
/// use num_traits::Float;
///
/// let one = 1.0;
/// // e^1
/// let e = one.exp();
///
/// // ln(e) - 1 == 0
/// let abs_difference = (e.ln() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn exp(self) -> Self;
/// Returns `2^(self)`.
///
/// ```
/// use num_traits::Float;
///
/// let f = 2.0;
///
/// // 2^2 - 4 == 0
/// let abs_difference = (f.exp2() - 4.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn exp2(self) -> Self;
/// Returns the natural logarithm of the number.
///
/// ```
/// use num_traits::Float;
///
/// let one = 1.0;
/// // e^1
/// let e = one.exp();
///
/// // ln(e) - 1 == 0
/// let abs_difference = (e.ln() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn ln(self) -> Self;
/// Returns the logarithm of the number with respect to an arbitrary base.
///
/// ```
/// use num_traits::Float;
///
/// let ten = 10.0;
/// let two = 2.0;
///
/// // log10(10) - 1 == 0
/// let abs_difference_10 = (ten.log(10.0) - 1.0).abs();
///
/// // log2(2) - 1 == 0
/// let abs_difference_2 = (two.log(2.0) - 1.0).abs();
///
/// assert!(abs_difference_10 < 1e-10);
/// assert!(abs_difference_2 < 1e-10);
/// ```
fn log(self, base: Self) -> Self;
/// Returns the base 2 logarithm of the number.
///
/// ```
/// use num_traits::Float;
///
/// let two = 2.0;
///
/// // log2(2) - 1 == 0
/// let abs_difference = (two.log2() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn log2(self) -> Self;
/// Returns the base 10 logarithm of the number.
///
/// ```
/// use num_traits::Float;
///
/// let ten = 10.0;
///
/// // log10(10) - 1 == 0
/// let abs_difference = (ten.log10() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn log10(self) -> Self;
/// Converts radians to degrees.
///
/// ```
/// use std::f64::consts;
///
/// let angle = consts::PI;
///
/// let abs_difference = (angle.to_degrees() - 180.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
#[inline]
fn to_degrees(self) -> Self {
let halfpi = Self::zero().acos();
let ninety = Self::from(90u8).unwrap();
self * ninety / halfpi
}
/// Converts degrees to radians.
///
/// ```
/// use std::f64::consts;
///
/// let angle = 180.0_f64;
///
/// let abs_difference = (angle.to_radians() - consts::PI).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
#[inline]
fn to_radians(self) -> Self {
let halfpi = Self::zero().acos();
let ninety = Self::from(90u8).unwrap();
self * halfpi / ninety
}
/// Returns the maximum of the two numbers.
///
/// ```
/// use num_traits::Float;
///
/// let x = 1.0;
/// let y = 2.0;
///
/// assert_eq!(x.max(y), y);
/// ```
fn max(self, other: Self) -> Self;
/// Returns the minimum of the two numbers.
///
/// ```
/// use num_traits::Float;
///
/// let x = 1.0;
/// let y = 2.0;
///
/// assert_eq!(x.min(y), x);
/// ```
fn min(self, other: Self) -> Self;
/// The positive difference of two numbers.
///
/// * If `self <= other`: `0:0`
/// * Else: `self - other`
///
/// ```
/// use num_traits::Float;
///
/// let x = 3.0;
/// let y = -3.0;
///
/// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
/// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
///
/// assert!(abs_difference_x < 1e-10);
/// assert!(abs_difference_y < 1e-10);
/// ```
fn abs_sub(self, other: Self) -> Self;
/// Take the cubic root of a number.
///
/// ```
/// use num_traits::Float;
///
/// let x = 8.0;
///
/// // x^(1/3) - 2 == 0
/// let abs_difference = (x.cbrt() - 2.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn cbrt(self) -> Self;
/// Calculate the length of the hypotenuse of a right-angle triangle given
/// legs of length `x` and `y`.
///
/// ```
/// use num_traits::Float;
///
/// let x = 2.0;
/// let y = 3.0;
///
/// // sqrt(x^2 + y^2)
/// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn hypot(self, other: Self) -> Self;
/// Computes the sine of a number (in radians).
///
/// ```
/// use num_traits::Float;
/// use std::f64;
///
/// let x = f64::consts::PI/2.0;
///
/// let abs_difference = (x.sin() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn sin(self) -> Self;
/// Computes the cosine of a number (in radians).
///
/// ```
/// use num_traits::Float;
/// use std::f64;
///
/// let x = 2.0*f64::consts::PI;
///
/// let abs_difference = (x.cos() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn cos(self) -> Self;
/// Computes the tangent of a number (in radians).
///
/// ```
/// use num_traits::Float;
/// use std::f64;
///
/// let x = f64::consts::PI/4.0;
/// let abs_difference = (x.tan() - 1.0).abs();
///
/// assert!(abs_difference < 1e-14);
/// ```
fn tan(self) -> Self;
/// Computes the arcsine of a number. Return value is in radians in
/// the range [-pi/2, pi/2] or NaN if the number is outside the range
/// [-1, 1].
///
/// ```
/// use num_traits::Float;
/// use std::f64;
///
/// let f = f64::consts::PI / 2.0;
///
/// // asin(sin(pi/2))
/// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn asin(self) -> Self;
/// Computes the arccosine of a number. Return value is in radians in
/// the range [0, pi] or NaN if the number is outside the range
/// [-1, 1].
///
/// ```
/// use num_traits::Float;
/// use std::f64;
///
/// let f = f64::consts::PI / 4.0;
///
/// // acos(cos(pi/4))
/// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn acos(self) -> Self;
/// Computes the arctangent of a number. Return value is in radians in the
/// range [-pi/2, pi/2];
///
/// ```
/// use num_traits::Float;
///
/// let f = 1.0;
///
/// // atan(tan(1))
/// let abs_difference = (f.tan().atan() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn atan(self) -> Self;
/// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`).
///
/// * `x = 0`, `y = 0`: `0`
/// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
/// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
/// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
///
/// ```
/// use num_traits::Float;
/// use std::f64;
///
/// let pi = f64::consts::PI;
/// // All angles from horizontal right (+x)
/// // 45 deg counter-clockwise
/// let x1 = 3.0;
/// let y1 = -3.0;
///
/// // 135 deg clockwise
/// let x2 = -3.0;
/// let y2 = 3.0;
///
/// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
/// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();
///
/// assert!(abs_difference_1 < 1e-10);
/// assert!(abs_difference_2 < 1e-10);
/// ```
fn atan2(self, other: Self) -> Self;
/// Simultaneously computes the sine and cosine of the number, `x`. Returns
/// `(sin(x), cos(x))`.
///
/// ```
/// use num_traits::Float;
/// use std::f64;
///
/// let x = f64::consts::PI/4.0;
/// let f = x.sin_cos();
///
/// let abs_difference_0 = (f.0 - x.sin()).abs();
/// let abs_difference_1 = (f.1 - x.cos()).abs();
///
/// assert!(abs_difference_0 < 1e-10);
/// assert!(abs_difference_0 < 1e-10);
/// ```
fn sin_cos(self) -> (Self, Self);
/// Returns `e^(self) - 1` in a way that is accurate even if the
/// number is close to zero.
///
/// ```
/// use num_traits::Float;
///
/// let x = 7.0;
///
/// // e^(ln(7)) - 1
/// let abs_difference = (x.ln().exp_m1() - 6.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn exp_m1(self) -> Self;
/// Returns `ln(1+n)` (natural logarithm) more accurately than if
/// the operations were performed separately.
///
/// ```
/// use num_traits::Float;
/// use std::f64;
///
/// let x = f64::consts::E - 1.0;
///
/// // ln(1 + (e - 1)) == ln(e) == 1
/// let abs_difference = (x.ln_1p() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn ln_1p(self) -> Self;
/// Hyperbolic sine function.
///
/// ```
/// use num_traits::Float;
/// use std::f64;
///
/// let e = f64::consts::E;
/// let x = 1.0;
///
/// let f = x.sinh();
/// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
/// let g = (e*e - 1.0)/(2.0*e);
/// let abs_difference = (f - g).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn sinh(self) -> Self;
/// Hyperbolic cosine function.
///
/// ```
/// use num_traits::Float;
/// use std::f64;
///
/// let e = f64::consts::E;
/// let x = 1.0;
/// let f = x.cosh();
/// // Solving cosh() at 1 gives this result
/// let g = (e*e + 1.0)/(2.0*e);
/// let abs_difference = (f - g).abs();
///
/// // Same result
/// assert!(abs_difference < 1.0e-10);
/// ```
fn cosh(self) -> Self;
/// Hyperbolic tangent function.
///
/// ```
/// use num_traits::Float;
/// use std::f64;
///
/// let e = f64::consts::E;
/// let x = 1.0;
///
/// let f = x.tanh();
/// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
/// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
/// let abs_difference = (f - g).abs();
///
/// assert!(abs_difference < 1.0e-10);
/// ```
fn tanh(self) -> Self;
/// Inverse hyperbolic sine function.
///
/// ```
/// use num_traits::Float;
///
/// let x = 1.0;
/// let f = x.sinh().asinh();
///
/// let abs_difference = (f - x).abs();
///
/// assert!(abs_difference < 1.0e-10);
/// ```
fn asinh(self) -> Self;
/// Inverse hyperbolic cosine function.
///
/// ```
/// use num_traits::Float;
///
/// let x = 1.0;
/// let f = x.cosh().acosh();
///
/// let abs_difference = (f - x).abs();
///
/// assert!(abs_difference < 1.0e-10);
/// ```
fn acosh(self) -> Self;
/// Inverse hyperbolic tangent function.
///
/// ```
/// use num_traits::Float;
/// use std::f64;
///
/// let e = f64::consts::E;
/// let f = e.tanh().atanh();
///
/// let abs_difference = (f - e).abs();
///
/// assert!(abs_difference < 1.0e-10);
/// ```
fn atanh(self) -> Self;
/// Returns the mantissa, base 2 exponent, and sign as integers, respectively.
/// The original number can be recovered by `sign * mantissa * 2 ^ exponent`.
///
/// ```
/// use num_traits::Float;
///
/// let num = 2.0f32;
///
/// // (8388608, -22, 1)
/// let (mantissa, exponent, sign) = Float::integer_decode(num);
/// let sign_f = sign as f32;
/// let mantissa_f = mantissa as f32;
/// let exponent_f = num.powf(exponent as f32);
///
/// // 1 * 8388608 * 2^(-22) == 2
/// let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn integer_decode(self) -> (u64, i16, i8);
}
#[cfg(feature = "std")]
macro_rules! float_impl {
($T:ident $decode:ident) => {
impl Float for $T {
constant! {
nan() -> $T::NAN;
infinity() -> $T::INFINITY;
neg_infinity() -> $T::NEG_INFINITY;
neg_zero() -> -0.0;
min_value() -> $T::MIN;
min_positive_value() -> $T::MIN_POSITIVE;
epsilon() -> $T::EPSILON;
max_value() -> $T::MAX;
}
#[inline]
#[allow(deprecated)]
fn abs_sub(self, other: Self) -> Self {
<$T>::abs_sub(self, other)
}
#[inline]
fn integer_decode(self) -> (u64, i16, i8) {
$decode(self)
}
forward! {
Self::is_nan(self) -> bool;
Self::is_infinite(self) -> bool;
Self::is_finite(self) -> bool;
Self::is_normal(self) -> bool;
Self::classify(self) -> FpCategory;
Self::floor(self) -> Self;
Self::ceil(self) -> Self;
Self::round(self) -> Self;
Self::trunc(self) -> Self;
Self::fract(self) -> Self;
Self::abs(self) -> Self;
Self::signum(self) -> Self;
Self::is_sign_positive(self) -> bool;
Self::is_sign_negative(self) -> bool;
Self::mul_add(self, a: Self, b: Self) -> Self;
Self::recip(self) -> Self;
Self::powi(self, n: i32) -> Self;
Self::powf(self, n: Self) -> Self;
Self::sqrt(self) -> Self;
Self::exp(self) -> Self;
Self::exp2(self) -> Self;
Self::ln(self) -> Self;
Self::log(self, base: Self) -> Self;
Self::log2(self) -> Self;
Self::log10(self) -> Self;
Self::to_degrees(self) -> Self;
Self::to_radians(self) -> Self;
Self::max(self, other: Self) -> Self;
Self::min(self, other: Self) -> Self;
Self::cbrt(self) -> Self;
Self::hypot(self, other: Self) -> Self;
Self::sin(self) -> Self;
Self::cos(self) -> Self;
Self::tan(self) -> Self;
Self::asin(self) -> Self;
Self::acos(self) -> Self;
Self::atan(self) -> Self;
Self::atan2(self, other: Self) -> Self;
Self::sin_cos(self) -> (Self, Self);
Self::exp_m1(self) -> Self;
Self::ln_1p(self) -> Self;
Self::sinh(self) -> Self;
Self::cosh(self) -> Self;
Self::tanh(self) -> Self;
Self::asinh(self) -> Self;
Self::acosh(self) -> Self;
Self::atanh(self) -> Self;
}
}
};
}
fn integer_decode_f32(f: f32) -> (u64, i16, i8) {
let bits: u32 = unsafe { mem::transmute(f) };
let sign: i8 = if bits >> 31 == 0 { 1 } else { -1 };
let mut exponent: i16 = ((bits >> 23) & 0xff) as i16;
let mantissa = if exponent == 0 {
(bits & 0x7fffff) << 1
} else {
(bits & 0x7fffff) | 0x800000
};
// Exponent bias + mantissa shift
exponent -= 127 + 23;
(mantissa as u64, exponent, sign)
}
fn integer_decode_f64(f: f64) -> (u64, i16, i8) {
let bits: u64 = unsafe { mem::transmute(f) };
let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 };
let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16;
let mantissa = if exponent == 0 {
(bits & 0xfffffffffffff) << 1
} else {
(bits & 0xfffffffffffff) | 0x10000000000000
};
// Exponent bias + mantissa shift
exponent -= 1023 + 52;
(mantissa, exponent, sign)
}
#[cfg(feature = "std")]
float_impl!(f32 integer_decode_f32);
#[cfg(feature = "std")]
float_impl!(f64 integer_decode_f64);
macro_rules! float_const_impl {
($(#[$doc:meta] $constant:ident,)+) => (
#[allow(non_snake_case)]
pub trait FloatConst {
$(#[$doc] fn $constant() -> Self;)+
}
float_const_impl! { @float f32, $($constant,)+ }
float_const_impl! { @float f64, $($constant,)+ }
);
(@float $T:ident, $($constant:ident,)+) => (
impl FloatConst for $T {
constant! {
$( $constant() -> $T::consts::$constant; )+
}
}
);
}
float_const_impl! {
#[doc = "Return Eulers number."]
E,
#[doc = "Return `1.0 / π`."]
FRAC_1_PI,
#[doc = "Return `1.0 / sqrt(2.0)`."]
FRAC_1_SQRT_2,
#[doc = "Return `2.0 / π`."]
FRAC_2_PI,
#[doc = "Return `2.0 / sqrt(π)`."]
FRAC_2_SQRT_PI,
#[doc = "Return `π / 2.0`."]
FRAC_PI_2,
#[doc = "Return `π / 3.0`."]
FRAC_PI_3,
#[doc = "Return `π / 4.0`."]
FRAC_PI_4,
#[doc = "Return `π / 6.0`."]
FRAC_PI_6,
#[doc = "Return `π / 8.0`."]
FRAC_PI_8,
#[doc = "Return `ln(10.0)`."]
LN_10,
#[doc = "Return `ln(2.0)`."]
LN_2,
#[doc = "Return `log10(e)`."]
LOG10_E,
#[doc = "Return `log2(e)`."]
LOG2_E,
#[doc = "Return Archimedes constant."]
PI,
#[doc = "Return `sqrt(2.0)`."]
SQRT_2,
}
#[cfg(test)]
mod tests {
use core::f64::consts;
const DEG_RAD_PAIRS: [(f64, f64); 7] = [
(0.0, 0.),
(22.5, consts::FRAC_PI_8),
(30.0, consts::FRAC_PI_6),
(45.0, consts::FRAC_PI_4),
(60.0, consts::FRAC_PI_3),
(90.0, consts::FRAC_PI_2),
(180.0, consts::PI),
];
#[test]
fn convert_deg_rad() {
use float::FloatCore;
for &(deg, rad) in &DEG_RAD_PAIRS {
assert!((FloatCore::to_degrees(rad) - deg).abs() < 1e-6);
assert!((FloatCore::to_radians(deg) - rad).abs() < 1e-6);
let (deg, rad) = (deg as f32, rad as f32);
assert!((FloatCore::to_degrees(rad) - deg).abs() < 1e-5);
assert!((FloatCore::to_radians(deg) - rad).abs() < 1e-5);
}
}
#[cfg(feature = "std")]
#[test]
fn convert_deg_rad_std() {
for &(deg, rad) in &DEG_RAD_PAIRS {
use Float;
assert!((Float::to_degrees(rad) - deg).abs() < 1e-6);
assert!((Float::to_radians(deg) - rad).abs() < 1e-6);
let (deg, rad) = (deg as f32, rad as f32);
assert!((Float::to_degrees(rad) - deg).abs() < 1e-5);
assert!((Float::to_radians(deg) - rad).abs() < 1e-5);
}
}
#[test]
// This fails with the forwarded `std` implementation in Rust 1.8.
// To avoid the failure, the test is limited to `no_std` builds.
#[cfg(not(feature = "std"))]
fn to_degrees_rounding() {
use float::FloatCore;
assert_eq!(
FloatCore::to_degrees(1_f32),
57.2957795130823208767981548141051703
);
}
}